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Abstract
Objectives: Recent developments in incremental dentine analysis allowing increased temporal

resolution for tissues formed during the first 1,000 days of life have cast doubt on the veracity

of weaning studies using bone collagen carbon (δ13C) and nitrogen (δ15N) isotope ratio data

from infants. Here, we compare published bone data from the well-preserved Anglo-Saxon site

of Raunds Furnells, England, with co-forming dentine from the same individuals, and investigate

the relationship of these with juvenile stature. The high-resolution isotope data recorded in den-

tine allow us to investigate the relationship of diet with juvenile stature during this critical

period of life.

Materials and methods: We compare incremental dentine collagen δ13C and δ15N data to pub-

lished bone collagen data for 18 juveniles and 5 female adults from Anglo Saxon Raunds Furnells

alongside new data for juvenile skeletal and dental age. An improvement in the method by sam-

pling the first 0.5 mm of the sub-cuspal or sub-incisal dentine allows the isotopic measurement

of dentine formed in utero.

Results and discussion: δ13C profiles for both dentine and bone are similar and more robust

than δ15N for estimating the age at which weaning foods are introduced. Our results suggest

δ15N values from dentine can be used to evaluate the maternal/in utero diet and physiology

during pregnancy, and that infant dentine profiles may reflect diet PLUS an element of physio-

logical stress. In particular, bone collagen fails to record the same range of δ15N as co-forming

dentine, especially where growth is stunted, suggesting that infant bone collagen is unreliable

for weaning studies.
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1 | INTRODUCTION

An evaluation of the breastfeeding and weaning behavior of past

populations using the stable isotope ratios of carbon (δ13C) and nitro-

gen (δ15N) from the body tissues as a method of estimating diet con-

tinues to be the subject of many studies. Because infant feeding

practices have varied throughout human history as a response to cul-

tural and environmental change, and because breastfeeding (and the

lack of breastfeeding) can affect the health of both mother and infant,

the interpretations have been used to investigate factors such as rates

of infant mortality, birth-spacing, and maternal occupation (for a sum-

mary, see Tsutaya & Yoneda, 2015).

Many studies use isotope ratio measurements of bone collagen

δ13C and δ15N from infants of different ages at death on the grounds

that these data will represent the diet of each individual during life.

These data are then compared to bone collagen data from females of

child-bearing age within the same population (e.g., Jay, Fuller,

Richards, Knüsel, & King, 2008) to identify mother/infant trophic level

shift, which has been demonstrated in the tissues of modern mother/

infant pairs (de Luca et al., 2012; Fogel, Tuross, & Owsley, 1989;

Received: 14 February 2018 Revised: 9 June 2018 Accepted: 19 June 2018

DOI: 10.1002/ajpa.23682

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2018 The Authors. American Journal of Physical Anthropology published by Wiley Periodicals, Inc.

524 wileyonlinelibrary.com/journal/ajpa Am J Phys Anthropol. 2018;167:524–540.

http://orcid.org/0000-0002-7166-5857
http://orcid.org/0000-0003-2560-548X
mailto:j.beaumont6@bradford.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/ajpa


Fuller, Fuller, Harris, & Hedges, 2006). However, because of factors

such as slow turnover of bone in both mother and infant, and the

unknown effect of any disease or nutritional stress on the δ15N values

of infants who have died, the assumption that the data from infant

bone collagen accurately reflect diet in the individual, and can be used

as a proxy for the population as a whole, seems increasingly unsafe

(Beaumont, Montgomery, Buckberry, & Jay, 2015; DeWitte & Stoja-

nowski, 2015). The use of incremental dentine collagen to assess the

childhood diet of both infants who died and adults who survived their

early years has produced isotope profiles which can show detailed

temporal changes in the isotope ratios: moreover, the magnitude of

δ15N values can be related not only to dietary change but also to

periods of physiological stress (Armit, Shapland, Montgomery, & Beau-

mont, 2015; Beaumont et al., 2015; Henderson, Lee-Thorp, & Loe,

2014; Montgomery et al., 2013). During periods of undernutrition, the

body can enter a catabolic state during which an individual will use

amino acids from their own body tissues to synthesise new proteins

such as collagen. This will have the effect of increasing the δ15N

values in the same way as a trophic level shift (and see discussion in

Katzenberg & Lovell, 1999). A recent publication has also shown the

relationship between the isotope ratios in breastmilk and the maternal

and infant fingernails, albeit in a single modern pair (Herrscher,

Goude, & Metz, 2017). This provides evidence for the stability of the

δ15N values in breastmilk in this well-nourished pair, with a smaller

than expected shift in δ15N between maternal and infant fingernails.

However, there are significant changes in the δ13C of breastmilk

which decreased over the period of breastfeeding, and which could be

related to the increase in storage of fat during pregnancy and recy-

cling of maternal fat stores during breastfeeding. Fat stores are built

up during the first two trimesters to be available for the fetus during

the third trimester (Butte, Hopkinson, Wong, Smith, & Ellis, 2000)

which may in turn alter the mother’s δ13C. Cameron (2012) reports a

study of 36 fetuses which found a dramatic increase in the average

weight of fat between 30 and 40 weeks gestation from 30 g to 430 g,

interpreted as a high-energy store for the post-partum period. Where

fat stores have been recycled this produces a fall in the δ13C as

described by Neuberger, Jopp, Graw, Püschel, and Grupe (2013),

Lehn, Rossmann, and Graw (2015), and Cherel, Hobson, Bailleul, and

Groscolas (2005) and which was seen in the dentine collagen of juve-

niles from Kilkenny workhouse during starvation (Beaumont & Mont-

gomery, 2016).

A recent study by Beaumont, Gledhill and Montgomery (2014)

has shown that the δ13C and δ15N values of human dentine collagen

can be measured either using the denatured and lyophilized (freeze-

dried) product, or by freeze-drying a smaller section of the deminera-

lized collagen. In that study, each dentine section was divided into

two: one portion which was denatured/lyophilized and a second

which was only frozen and freeze-dried prior to analysis. The δ13C

and δ15N values of the two differently-treated portions of the

section are comparable, and the quality parameters for the C:N ratio

remained within the limits deemed acceptable by DeNiro (1987) even

when using dentine from teeth where the preservation was poor

(Beaumont et al., 2014). This means that a much smaller sample than

previously can be reliably used to measure δ13C and δ15N and opens

the way for sampling of the δ13C and δ15N of incremental dentine

with even greater temporal resolution, enabling a detailed analysis of

perinatal diet, breastfeeding and weaning.

It has been a feature of some isotope studies that data from both

dentine and bone collagen have been used interchangeably (e.g., (King

et al., 2018; Müldner, Chenery, & Eckardt, 2011; Sandberg, Sponheimer,

Lee-Thorp, & Van Gerven, 2014). However, because of the uncertainty

about the temporal period represented by the bone collagen, it is critical

that we understand how the two are related: whilst it may be valid to

compare dentine and bone collagen when investigating juvenile and adult

data from the same individual, do both tissues record the same values at

the same period of life? Data from 19th century Lukin Street, London

(Beaumont, 2013) has shown that some infants have no overlap between

the deciduous incremental dentine profiles and bulk bone collagen δ15N,

meaning that even bulk dentine collagen and bone collagen would differ.

This study is the first time that a previously-published bone collagen

δ13C and δ15N analysis of breastfeeding and weaning has been re-

investigated using the incremental dentine from the same individuals.

The skeletal remains of the individuals in question derive from the

Anglo-Saxon cemetery site of Raunds Furnells and are curated at the

Biological Anthropology Research Centre, University of Bradford. The

human remains from this site have been the subject of a number of

anthropological studies (Craig, 2005; Craig & Buckberry, 2010; Hoppa,

1992; Lewis, 2002; Powell, 1996, 113–124) including previous investiga-

tion of δ13C and δ15N (Haydock, Clarke, Craig-Atkins, Howcroft, & Buck-

berry, 2013; Howcroft, 2008). In the latest study by Haydock

et al. (2013), a significant quantity of δ13C and δ15N data were produced

from bone collagen samples taken from 20 adults and 59 children. The

site has been the subject of intensive research interest because of the

large number of burials and good bone preservation of the individuals

excavated (n = 361), of which a substantial proportion are the unusually

well-preserved remains of juveniles (n = 162; Boddington, 1996; Craig &

Buckberry, 2010; Hadley & Buckberry, 2005). Raunds Furnells also bene-

fits from a well-understood site chronology. Radiocarbon dates for the

graveyard give a combined date range of cal AD 978–1040 to two sigma

(Boddington, 1996, 72); thus, it is apparent that the cemetery was

founded in the 10th century and went out of use before the Norman

Conquest (AD 1066).

The isotope data from Howcroft (2008) and Haydock et al. (2013)

are consistent with other contemporary inland Anglo-Saxon sites and

suggest a diet mainly composed of C3 plants and terrestrial animals,

with some input from freshwater fish (Mays & Beavan, 2012).

1.1 | Nutrition and growth

In a healthy population, growth and height is primarily determined by

genetics, but can also be influenced by the environment, nutrition,

and socioeconomic status (Floud, Wachter, & Gregory, 1990; Hoppa,

1992; Larsen, 2015; Mays, 2016; Sutphen, 1985). Growth velocity

(the rate of change of stature) is considerably greater during the first

6 months of life, before it settles to a gradual increase in height per

year (Lejarraga, 2012). The cessation or slowing of long-bone growth

can result in a decrease in the potential stature of the individual,

known as stunting (Saunders & Hoppa, 1993; WHO, 2013). This could

result in a permanent small stature, particularly in females (Bose,

2018), although Tanner held the view that “the undernourished child

BEAUMONT ET AL. 525



slows down and waits for better times” (Tanner, 1989,130). Human

growth has been shown to occur in a saltatory pattern: short intermit-

tent episodes which vary by anatomical site. Each person will have indi-

vidual episodes of measurable growth (saltations) punctuated by

periods of no growth (stasis) the patterns of which are mediated by

genetic and environmental factors. The final stature of the individual is

the accumulation of different frequency of saltations and the amount

of growth during each event (Lampl, 2012). This allows for “catch-up

growth” if conditions improve. Stature has been shown to be sensitive

to both environmental conditions (such as nutrition and disease) and

physiological factors (Jantz & Owsley, 1984) and stunted growth is one

of the main complications that can result from chronic inflammation

and infection in juvenile individuals (Pinhasi, Teschler-Nicola, Knaus, &

Shaw, 2005). In contrast, dental development is not significantly

affected by environmental impacts. It has, for example, been demon-

strated that no form of malnutrition—neither acute nor chronic—has

any measurable impact on the timing of tooth formation (Elamin &

Liversidge, 2013; Ives, 2015; Lewis, 2007, 38). Thus, a comparison of

skeletal age and dental age in juveniles can be used as a measure of

environmental stress, as discussed in Mays, Brickley, and Ives (2008).

The Raunds Furnells individuals have been the subject of several previ-

ous studies which examined osteological markers of biological stress

including Harris lines, enamel hypoplasia, cribra orbitalia, and porotic

hyperostosis (Craig & Buckberry, 2010; Haydock et al., 2013; Lewis,

2002; Ribot & Roberts, 1996). These studies conclude that this popula-

tion experienced high levels of biological stress during their lives.

2 | MATERIALS AND METHODS

Eighteen juveniles were selected from those previously analyzed to

investigate δ13C and δ15N variations in bone collagen data by Hay-

dock et al. (2013) and Howcroft et al. (2012) representing a range of

ages at death and δ15N bone collagen values. Five females with age-

at-death estimates of young adult (18–25 years) or young middle

adult (25–35 years) were selected to represent the childhood values

of the putative mothers whose δ15N bone collagen values were used

in the plots produced by Howcroft et al. (2012)(see Table 1). The fem-

ora and dentition of 15 juveniles from the sample of 59 in the study

by Haydock et al. (2013; including 8 of the 18 selected for the incre-

mental dentine analysis in this study) were complete enough to allow

the re-assessment of skeletal and dental age.

2.1 | Measuring in utero dentine development

Micro-CT scanning of deciduous teeth from modern individuals of

known-age from the Stack collection (Wellcome collection at the

Royal College of Surgeons, London) allowed the measurement of the

depth of dentine which had developed before death. These measure-

ments showed that all deciduous teeth had formed at least 0.5 mm of

dentine prior to 40 weeks gestation, thus this first-forming section of

dentine is considered to represent pre-natal δ13C and δ15N among the

archaeological sample in this study (Figure 1). Scanning was carried

out at the Microscopy and Cellular Imaging Facility, University of

Aberdeen using a SkyScan-1,072 high-resolution desk-top micro-CT

system. Teeth were scanned at 100 kV/98.4uA at a magnification of

×23, giving a pixel resolution of 13.31 μm. Back projection images

were reconstructed using NRecon software, viewed in Dataviewer

and shown in greyscale (Figure 1).

2.2 | Stable isotope analysis

A single tooth was taken from each of the 18 juveniles and 5 adults.

This was a deciduous tooth for 17 of the juveniles, permanent first

molar (M1) for the remaining juvenile individual (for whom no decidu-

ous teeth were available). Deciduous teeth, and most M1 teeth, begin

to form before 40 weeks gestation (AlQahtani, Hector, & Liversidge,

2010). The deciduous teeth grow during the first 2.5 years of life, thus

recording the isotope ratios from in utero to early childhood and act-

ing as an archive of these where present in juveniles. A permanent

incisor or M1 tooth was sampled from each of the adults and was cho-

sen based on the lack of wear on the incisal/cuspal tip (see Table 1).

The permanent M1 continues to form until the age of 8.5 years

�0.5 years. Permanent incisors begin to form in the first 3–6 months

of life and continue to grow until 6–10 years (depending on the

tooth). Thus, these teeth represent tissue from the earliest period of

childhood available in the older child or adult (AlQahtani et al., 2010;

AlQahtani, Hector, & Liversidge, 2014). In some cases, the teeth were

still developing, or some of the deciduous teeth had undergone some

root resorption prior to death, which reduces the amount of the life

course available to measure.

TABLE 1 Tooth notation, developmental stage of teeth, and age at

death of individuals from Raunds-Furnell

Site
Skeleton
number

Tooth
notation

Tooth
selected

Estimated skeletal
age in years

RAUNDS 5251 61 UL DI1 0.0

RAUNDS 5082 71 L DI1 1.3

RAUNDS 5109 51 UR DI1 2.0

RAUNDS 5140 61 UL DI1 2.0

RAUNDS 5273 54 UR DM1 2.0

RAUNDS 5012 61 UL DI1 2.5

RAUNDS 5102 82 LR DI2 2.5

RAUNDS 5292 52 UR DI2 2.5

RAUNDS 5005 85 LR DM2 3.0

RAUNDS 5023 71 LL DI1 3.0

RAUNDS 5264 74 LL DM1 3.5

RAUNDS 5345 55 UR DM2 3.5

RAUNDS 5354 54 UR DM1 3.5

RAUNDS 5170 84 LR DM1 4.0

RAUNDS 5212 73 LL DC 4.0

RAUNDS 5070 61 UR DI1 5.0

RAUNDS 5135 65 UL DM2 5.5

RAUNDS 5338 26 ULM1 6.0

RAUNDS 5125 65 UL DM2 7.0

RAUNDS 5154 16 UR M1 18–25

RAUNDS 5187 41 LRI1 18–25

RAUNDS 5021 41 LR I1 25–35

RAUNDS 5093 12 UR I2 25–35

RAUNDS 5239 42 LR I2 25–35
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Each tooth was cleaned by air abrasion, a single root removed

from molar teeth and incisor teeth were bisected, and the bulk of the

enamel removed from the sampled portion using a hand-held saw.

There were no macroscopically visible areas of caries or secondary

dentine present on any of the teeth sampled, thus avoiding the mea-

surement of damaged collagen or tissue which has grown later than

the primary dentine (Beaumont, Gledhill, Lee-Thorp, & Montgom-

ery, 2013).

Each tooth sample was demineralized in 0.5 M HCl at 4 �C follow-

ing the modified Longin method (Brown, Nelson, Vogel, & Southon,

1988) and then sectioned according to the second method in Beau-

mont et al. (2013) using a scalpel.

For each of the juveniles, the first-forming 0.5 mm was removed

from the incisal edge/cusp tip as a first sample, and 1 mm samples

taken thereafter down the length of the tooth.

The first 0.5 mm dentine sample of each deciduous tooth was fro-

zen, freeze-dried, and measured without denaturing (see above and

Beaumont et al., 2014). The rationale for analyzing this smaller sample

separately is that only the first 0.5 mm of tissue forms before birth,

and therefore contains isotope ratio values from the in utero period.

Because human dentine is laid down in an overlapping pattern, incre-

mental horizontal sampling of the tissue throughout most of the tooth

results in averaging of the isotopic values attenuation of the signal.

However, as there is little overlap of the layers nearest to the enamel-

dentine junction, this attenuation will be reduced in the earliest-

forming dentine, giving a more accurate result.

All of the 1 mm demineralized dentine sections were denatured

by heating to 70 �C in a pH 3 solution of HCl for 24 hr, frozen and

then freeze-dried.

Each of the samples was analyzed in duplicate. The samples

were combusted in a Thermo Flash EA 1112 and the separated N2

and CO2 was introduced to a Delta plus XL via a Conflo III interface.

All samples were interspersed with laboratory and international

standards, and the analytical error was determined to be 0.2‰

or less.

2.3 | Assigning dental and skeletal age

In the original isotopic studies by Howcroft (2008) and Haydock

et al. (2013), the completeness of the individuals was not a factor in

the selection of samples. Thus, only eight of the juveniles in this study

sampled for incremental dentine were sufficiently well-preserved to

allow skeletal and dental age estimation comparisons. Dental age was

estimated using the definitions of developmental stage by Moorrees,

Fanning, and Hunt (1963) and the QMUL London Dental Atlas

(AlQahtani et al., 2010). The skeletal age of the individuals was esti-

mated using a combination of epiphyseal fusion data (Scheuer &

Black, 2000), long bone diaphyseal lengths (Buikstra & Ubelaker,

1994; Gindhart, 1973; Maresh, 1955), and cortical bone thickness

indices of the femora (Mays, 1999). The latter was carried out at the

University of Bradford by taking antero-posterior radiographs of each

bone, measuring total bone width (T) and medullary width (M) and cal-

culating the cortical index (100 × [T − M]/T). This index is a measure

of the appositional growth of the bone and reflects the deposition of

new bone (Mays, 1999).

3 | RESULTS

3.1 | Isotope data

The isotopic data from this study are shown in Table 2. The in utero

dentine collagen sample values ranged for δ15N from 12.2‰ to

15.6‰, and for δ13C the range was from −19.8‰ to −18.4‰. All but

one of the δ15N in utero values was higher than the maximum value

from the adult bone collagen which was 12.5‰, and 12 of the 18‰

δ13C values were higher than the maximum adult bone collagen value

of −19.4‰ (Haydock et al., 2013).

The highest peak dentine δ15N value from the profiles was

R5354, 17.9‰, and the lowest was R5093, 11.2‰. The highest

peak dentine δ13C was R5109, −18.0‰, and the lowest was

R5021, −19.5‰.

Across all the juvenile dentine profiles the maximum variation in

δ13C values across the life course was 1.5‰ for R5338. The maximum

variation in δ15N across the life course for deciduous teeth was 6.0‰

(R5354), but for the M1 from R5338 was 6.5‰.

3.2 | Skeletal and dental ages

All of the juveniles re-assessed (n = 15) had a dental age between

birth and 9 years, and a skeletal age between birth and 7 years. A

total of 79% of the individuals showed a higher dental age than skel-

etal age, 13% had a higher skeletal age than dental age and the

remaining 8% had matching skeletal and dental ages. The difference

FIGURE 1 Micro-CT images slices of upper second deciduous molar, coronal view (a), and coronal view (b) and sagittal view (c) of lower left first

deciduous incisor from individual 469 from the stack collection (Royal College of surgeons England) aged 40.5 weeks gestation. Measurements in mm
are shown of the depth of dentine developed in the cuspal (a) and incisal (b and c) areas [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Isotope data and collagen quality indicators for dentine sections from teeth from Raunds-Furnell

Skeletal number δ15N‰ δ13C ‰ Amt%N Amt%C C:N

R5093-1 10.9 −20.1 15.4 42.5 3.2

R5093-2 10.1 −20.0 14.7 40.6 3.2

R5093-3 10.1 −19.7 15.0 41.0 3.2

R5093-4 10.1 −19.6 14.8 40.3 3.2

R5093-5 10.0 −19.5 14.6 39.8 3.2

R5093-6 9.9 −19.3 15.1 41.4 3.2

R5093-7 9.9 −19.4 15.6 42.7 3.2

R5093-8 10.0 −19.5 15.2 41.8 3.2

R5093-9 10.1 −19.6 15.1 41.6 3.2

R5093-10 10.1 −19.5 14.9 40.8 3.2

R5093-11 10.0 −19.5 15.0 40.7 3.2

R5093-12 10.2 −19.5 15.4 42.4 3.2

R5093-13 10.5 −19.4 15.0 41.3 3.2

R5093-14 11.0 −19.4 15.0 41.3 3.2

R5093-15 11.2 −19.6 15.5 42.9 3.2

R5093-16 11.2 −19.8 15.1 41.5 3.2

R5154-1 14.6 −18.9 15.4 42.0 3.2

R5154-2 13.7 −19.0 14.9 40.7 3.2

R5154-3 12.9 −19.1 15.7 42.8 3.2

R5154-4 11.6 −19.6 15.3 41.8 3.2

R5154-5 11.2 −19.8 15.5 42.3 3.2

R5154-6 11.1 −19.7 15.6 42.4 3.2

R5154-7 11.1 −19.6 15.1 41.2 3.2

R5154-8 11.2 −19.6 15.2 41.4 3.2

R5154-9 11.4 −19.6 15.7 43.1 3.2

R5154-10 11.8 −19.4 15.4 42.2 3.2

R5154-11 11.3 −19.5 15.3 41.9 3.2

R5154-12 10.6 −19.7 14.9 40.7 3.2

R5154-13 10.3 −19.8 15.3 41.6 3.2

R5154-14 10.4 −19.7 15.0 40.5 3.2

R5154-15 10.3 −19.7 15.5 42.4 3.2

R5154-16 10.6 −19.6 15.3 42.0 3.2

R5135-1 12.9 −19.6 38.0 13.8 3.2

R5135-2 14.1 −19.1 41.1 15.0 3.2

R5135-3 14.4 −18.9 41.6 15.3 3.2

R5135-4 13.5 −19.0 41.3 15.2 3.2

R5135-5 12.6 −19.3 41.7 15.2 3.2

R5135-6 12.2 −19.3 41.2 14.9 3.2

R5135-7 12.2 −19.3 41.5 15.1 3.2

R5135-8 11.9 −19.4 41.4 15.1 3.2

R5135-9 11.5 −19.7 41.6 15.0 3.2

R5135-10 11.5 −19.7 41.5 14.7 3.3

R5135-11 11.5 −19.6 41.2 14.7 3.3

R5135-12 11.5 −19.6 41.1 14.5 3.3

R5212-1 12.2 −19.4 41.2 15.1 3.2

R5212-2 12.9 −19.0 42.2 15.5 3.2

R5212-3 13.6 −19.1 42.0 15.5 3.2

R5212-4 13.7 −19.1 41.6 15.3 3.2

R5212-5 13.8 −19.3 42.2 15.5 3.2

R5212-6 14.0 −19.4 42.1 15.4 3.2

R5212-7 13.5 −19.4 42.0 15.2 3.2

(Continues)
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TABLE 2 (Continued)

Skeletal number δ15N‰ δ13C ‰ Amt%N Amt%C C:N

R5212-8 12.9 −19.5 41.9 15.0 3.3

R5212-9 12.4 −19.5 42.0 15.3 3.2

R5212-10 11.6 −19.6 42.2 15.3 3.2

R5212-11 10.9 −19.8 42.0 15.1 3.2

R5212-12 10.8 −19.8 42.1 15.2 3.2

R5212-13 11.4 −20.1 42.3 15.2 3.2

R5264-1 13.4 −18.5 41.7 15.2 3.2

R5264-2 13.5 −18.4 42.0 15.3 3.2

R5264-3 14.2 −18.5 42.0 15.2 3.2

R5264-4 14.9 −18.8 41.6 14.8 3.3

R5264-5 15.0 −19.0 42.1 15.0 3.3

R5264-6 15.1 −19.0 42.0 14.9 3.3

R5264-7 14.9 −19.1 42.1 15.1 3.3

R5264-8 14.7 −19.3 42.0 14.9 3.3

R5264-9 14.6 −19.3 41.8 14.8 3.3

R5264-10 14.4 −19.6 41.8 15.0 3.2

R5345-1 15.2 −19.8 41.4 14.9 3.2

R5345-2 15.5 −19.5 41.6 15.0 3.2

R5345-3 15.6 −19.5 41.3 14.9 3.2

R5345-4 15.1 −19.7 41.5 15.0 3.2

R5345-5 14.0 −19.8 41.1 14.7 3.3

R5345-6 12.6 −19.8 41.3 14.8 3.2

R5345-7 12.2 −19.9 41.4 14.9 3.2

R5345-8 11.3 −19.9 41.9 15.3 3.2

R5345-9 10.8 −19.9 41.4 14.9 3.2

R5345-10 10.9 −19.8 42.1 15.3 3.2

13.3

R5125-1 15.0 −18.9 22.7 8.3 3.2

R5125-2 15.8 −18.7 41.5 15.4 3.2

R5125-3 16.4 −18.6 41.8 15.4 3.2

R5125-4 16.4 −18.6 40.0 14.7 3.2

R5125-5 15.8 −18.6 41.3 15.4 3.1

R5125-6 15.2 −18.7 41.4 15.3 3.2

R5125-7 14.8 −18.8 41.6 15.4 3.2

R5125-8 14.5 −18.9 41.5 15.3 3.2

R5125-9 14.3 −19.2 42.0 15.6 3.1

R5125-10 13.2 −19.3 41.4 15.3 3.2

R5125-11 12.7 −19.4 41.8 15.2 3.2

R5125-12 12.7 −19.7 41.6 14.9 3.3

R5170-1 14.1 −18.8 42.0 15.5 3.2

R5170-2 14.5 −18.6 41.3 15.1 3.2

R5170-3 15.1 −18.4 40.3 15.0 3.1

R5170-4 15.5 −18.4 41.4 15.3 3.2

R5170-5 15.6 −18.7 41.4 15.2 3.2

R5170-6 15.6 −18.8 41.4 15.2 3.2

R5170-7 14.9 −19.1 41.3 15.1 3.2

R5170-8 14.3 −19.2 40.7 14.9 3.2

R5170-9 14.1 −19.2 41.2 15.2 3.2

R5170-10 13.9 −19.3 40.5 14.8 3.2

R5170-11 13.7 −19.4 40.9 14.9 3.2

R5170-12 13.3 −19.4 40.7 14.5 3.3
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TABLE 2 (Continued)

Skeletal number δ15N‰ δ13C ‰ Amt%N Amt%C C:N

R5273-1 13.2 −18.8 42.5 15.6 3.2

R5273-2 13.9 −18.6 41.2 15.2 3.2

R5273-3 14.0 −18.6 41.2 15.2 3.2

R5273-4 14.4 −18.7 41.4 15.3 3.2

R5273-5 14.8 −19.0 41.7 15.4 3.2

R5273-6 14.4 −19.4 41.1 15.1 3.2

R5273-7 14.1 −19.5 41.5 15.2 3.2

R5273-8 14.2 −19.5 41.5 15.3 3.2

R5273-9 13.2 −19.9 41.2 15.0 3.2

R5273-10 12.2 −20.1 41.3 14.8 3.3

R5273-11 11.9 −20.3 41.7 14.9 3.3

R5292-1 13.8 −19.8 40.8 14.7 3.2

R5292-2 14.2 −19.3 41.2 15.2 3.2

R5292-3 14.8 −19.3 41.2 15.2 3.2

R5292-4 15.2 −19.4 41.0 15.1 3.2

R5292-5 15.4 −19.5 40.9 15.0 3.2

R5292-6 15.5 −19.7 40.9 15.1 3.2

R5292-7 15.3 −19.7 41.2 15.2 3.2

R5292-8 15.4 −19.8 41.2 15.2 3.2

R5292-9 15.1 −19.9 41.1 15.2 3.2

R5292-10 14.6 −20.0 40.9 15.0 3.2

R5292-11 14.0 −20.1 40.8 15.1 3.2

R5292-12 13.2 −19.9 41.2 15.2 3.2

R5187-1 13.6 −19.0 14.4 40.3 3.3

R5187-2 12.4 −19.0 14.8 40.2 3.2

R5187-3 11.7 −19.3 14.8 40.3 3.2

R5187-4 12.0 −19.4 14.8 40.1 3.2

R5187-5 11.4 −19.4 15.1 40.8 3.2

R5187-6 10.6 −19.5 15.5 41.0 3.1

R5187-7 9.9 −19.5 15.4 41.4 3.1

R5187-8 9.4 −19.5 15.2 40.6 3.1

R5187-9 9.8 −19.5 15.1 40.4 3.1

R5187-10 9.7 −19.5 15.2 40.8 3.1

R5187-11 9.3 −19.5 14.8 39.9 3.2

R5187-12 9.2 −19.5 14.9 40.2 3.2

R5187-13 9.0 −19.6 14.9 40.5 3.2

R5187-14 9.0 −19.7 15.1 40.6 3.1

R5187-15 9.1 −19.8 15.0 40.4 3.1

R5187-16 9.4 −19.8 15.1 40.8 3.2

R5187-17 9.7 −19.9 14.9 40.0 3.1

R5187-18 12.3 −19.4 14.8 40.4 3.2

R5187-19 9.6 −19.9 15.0 40.2 3.1

R5187-20 9.7 −19.5 14.8 40.1 3.2

R5239-1 13.9 −19.4 15.0 40.4 3.2

R5239-2 12.5 −19.4 15.1 40.2 3.1

R5239-3 11.8 −19.4 15.3 40.9 3.1

R5239-4 11.3 −19.5 15.2 40.7 3.1

R5239-5 11.3 −19.4 15.2 40.9 3.1

R5239-6 11.8 −19.5 15.3 40.8 3.1

R5239-7 12.0 −19.6 15.3 40.9 3.1

R5239-8 12.2 −19.8 15.3 41.0 3.1
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TABLE 2 (Continued)

Skeletal number δ15N‰ δ13C ‰ Amt%N Amt%C C:N

R5239-9 12.2 −19.7 15.2 41.0 3.1

R5239-10 11.9 −19.5 15.2 41.1 3.1

R5239-11 11.6 −19.4 15.1 40.8 3.2

R5239-12 11.5 −19.4 15.0 40.8 3.2

R5239-13 11.3 −19.4 15.2 40.9 3.1

R5239-14 11.3 −19.4 15.2 41.4 3.2

R5239-15 11.6 −19.5 15.3 41.3 3.2

R5239-16 11.5 −19.4 15.0 40.7 3.2

R5239-17 11.7 −19.5 15.2 41.2 3.2

R5239-18 9.6 −19.9 15.1 40.9 3.2

11.7

R5021-1 13.8 −19.5 14.7 41.2 3.3

R5021-2 12.9 −19.9 14.9 41.0 3.2

R5021-3 12.6 −20.2 14.9 41.0 3.2

R5021-4 12.5 −20.4 15.1 41.2 3.2

R5021-5 11.9 −20.0 15.0 40.8 3.2

R5021-6 11.5 −19.7 15.0 40.9 3.2

R5021-7 10.7 −19.6 15.2 41.1 3.2

R5021-8 10.6 −19.7 15.0 40.8 3.2

R5021-9 10.6 −19.9 14.9 40.6 3.2

R5021-10 10.5 −20.0 15.0 41.0 3.2

R5021-11 10.5 −20.1 15.0 40.8 3.2

R5021-12 10.5 −20.1 14.9 41.0 3.2

R5021-13 10.0 −20.1 14.7 40.7 3.2

R5021-14 10.0 −20.1 14.8 40.7 3.2

R5021-15 10.3 −20.1 14.6 40.6 3.2

R5021-16 10.4 −19.9 14.5 40.7 3.3

R5338-1 13.9 −18.6 14.9 40.9 3.2

R5338-2 13.1 −18.5 15.2 41.5 3.2

R5338-3 13.6 −18.6 15.0 40.7 3.2

R5338-4 12.3 −18.7 15.0 40.5 3.2

R5338-5 10.7 −18.9 15.2 41.1 3.2

R5338-6 8.5 −19.6 15.0 40.9 3.2

R5338-7 7.6 −19.7 15.0 40.9 3.2

R5338-8 7.4 −19.6 15.0 41.0 3.2

R5338-9 7.9 −19.6 15.1 40.9 3.2

R5338-10 8.4 −19.8 14.8 40.6 3.2

R5338-11 9.1 −20.1 14.7 40.3 3.2

R5338-12 9.5 −19.7 14.7 40.5 3.2

R5338-13 9.3 −19.6 14.7 40.7 3.2

R5338-14 8.5 −19.8 14.7 40.8 3.2

R5338-15 8.6 −19.5 14.5 40.4 3.3

R5338-16 9.2 −19.6 14.3 39.5 3.2

R5012-1 13.8 −18.4 41.6 15.3 3.2

R5012-2 14.5 −18.4 40.9 14.9 3.2

R5012-3 14.9 −18.5 41.7 15.2 3.2

R5012-4 15.2 −18.7 41.9 15.3 3.2

R5012-5 15.3 −18.8 41.6 15.2 3.2

R5012-6 15.0 −19.1 41.2 15.1 3.2

R5012-7 14.8 −19.3 44.1 15.9 3.2

R5012-8 14.2 −19.4 43.4 15.9 3.2
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TABLE 2 (Continued)

Skeletal number δ15N‰ δ13C ‰ Amt%N Amt%C C:N

R5012-9 14.0 −19.5 45.9 16.9 3.2

R5012-10 13.5 −19.7 41.9 15.4 3.2

R5012-11 13.5 −19.9 42.0 15.4 3.2

R5012-12 13.3 −20.0 43.1 15.9 3.2

R5012-13 13.0 −20.1 42.3 15.5 3.2

R5251-1 12.6 −19.7 41.2 14.8 3.3

R5251-2 12.5 −19.7 43.2 15.6 3.2

R5251-3 12.6 −19.4 41.4 14.8 3.3

R5251-4 12.8 −19.3 42.1 15.1 3.2

R5140-1 15.4 −19.0 40.7 14.8 3.2

R5140-2 15.6 −18.8 43.0 15.8 3.2

R5140-3 15.9 −18.7 40.9 15.1 3.2

R5140-4 16.1 −18.7 40.7 15.0 3.2

R5140-5 16.2 −18.7 40.0 14.7 3.2

R5140-6 16.6 −18.8 41.1 15.1 3.2

R5140-7 17.1 −19.2 42.7 15.5 3.2

R5354-1 15.6 −19.2 41.1 14.9 3.2

R5354-2 16.6 −18.7 40.8 15.1 3.2

R5354-3 17.6 −18.5 40.9 15.1 3.2

R5354-4 17.9 −18.8 41.2 15.2 3.2

R5354-5 17.5 −19.0 41.0 15.1 3.2

R5354-6 17.5 −19.0 41.2 15.2 3.2

R5354-7 16.4 −19.0 41.5 15.2 3.2

R5354-8 14.4 −19.5 41.0 14.6 3.3

R5354-9 12.8 −19.9 41.2 14.6 3.3

R5354-10 11.9 −20.2 40.5 14.4 3.3

R5102-1 14.4 −18.9 35.5 12.8 3.2

R5102-2 15.2 −18.6 41.2 15.2 3.2

R5102-3 15.9 −18.6 41.1 15.2 3.2

R5102-4 16.3 −18.7 41.8 15.5 3.1

R5102-5 16.5 −18.7 41.6 15.1 3.2

R5102-6 16.4 −18.8 41.7 15.1 3.2

R5102-7 16.3 −18.9 41.6 15.1 3.2

R5102-8 16.0 −19.2 41.9 15.0 3.2

R5102-9 15.4 −19.4 41.3 14.8 3.3

R5102-10 14.6 −19.5 41.2 14.7 3.3

R5102-11 14.1 −19.5 41.1 14.7 3.3

R5102-12 12.8 −19.5 41.2 14.8 3.3

R5082-1 13.5 −19.1 30.1 10.8 3.2

R5082-2 14.0 −18.9 40.8 15.1 3.2

R5082-3 14.6 −18.8 40.5 14.8 3.2

R5082-4 15.5 −18.9 39.7 14.3 3.2

R5082-5 16.5 −18.8 39.8 14.5 3.2

R5082-6 17.4 −18.9 40.7 15.1 3.2

R5005-1 14.5 −19.1 43.9 15.9 3.2

R5005-2 14.5 −19.2 41.7 15.3 3.2

R5005-3 15.1 −19.2 41.8 15.3 3.2

R5005-4 15.1 −19.4 41.9 15.2 3.2

R5005-5 14.6 −19.8 41.9 15.1 3.2

R5005-6 14.0 −20.0 41.9 14.8 3.3

R5005-7 13.1 −20.2 42.1 14.9 3.3
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between the two age estimations increased with age suggesting a

cumulative effect with continued survival (this trend was also seen

when Raunds was compared to other archaeological populations

in the study by Lewis (2002)). The largest difference was found

in R5338 with a dental age of 9 years and a skeletal age of only

6 years.

4 | DISCUSSION

4.1 | Isotopic data from comparative sites

Figure 2 shows the mean values for adult bone collagen δ13C and

δ15N for 4 comparative Anglo-Saxon skeletal samples, alongside bone

TABLE 2 (Continued)

Skeletal number δ15N‰ δ13C ‰ Amt%N Amt%C C:N

R5005-8 13.0 −20.3 41.6 14.6 3.3

R5005-9 12.4 −20.3 42.1 14.7 3.3

R5005-10 12.1 −20.5 41.9 14.8 3.3

R5005-11 11.8 −20.2 41.0 14.6 3.3

R5005-12 11.4 −20.2 41.0 14.6 3.3

R5023-1 13.2 −19.4 66.7 23.9 3.3

R5023-2 14.7 −19.1 41.7 15.2 3.2

R5023-3 15.1 −19.0 42.0 15.6 3.1

R5023-4 15.4 −18.9 42.4 15.7 3.1

R5023-5 15.4 −19.0 42.0 15.6 3.1

R5023-6 15.4 −19.0 41.9 15.4 3.2

R5023-7 14.8 −19.1 42.2 15.5 3.2

R5023-8 14.0 −19.4 41.9 15.0 3.3

R5023-9 13.2 −19.8 41.9 14.9 3.3

R5023-10 12.5 −19.9 41.8 14.8 3.3

R5023-11 11.9 −19.8 39.8 14.4 3.2

R5023-12 11.5 −19.8 41.3 14.5 3.3

R5070-1 13.5 −18.8 40.6 14.8 3.2

R5070-2 12.7 −19.3 41.0 14.7 3.3

R5070-3 13.2 −19.1 40.7 14.5 3.3

R5070-4 13.7 −18.9 41.4 14.7 3.3

R5070-5 14.0 −18.9 39.7 14.0 3.3

R5070-6 14.3 −19.0 41.0 14.5 3.3

R5070-7 14.4 −19.1 39.7 13.8 3.3

R5070-8 14.5 −19.0 38.2 13.3 3.4

R5070-9 14.1 −19.1 37.8 13.0 3.4

R5070-10 13.9 −19.3 35.3 12.0 3.4

R5070-11 13.6 −19.5 31.2 10.6 3.4

R5070-12 13.6 −19.6 32.4 10.8 3.5

R5070-13 13.4 −19.5 34.9 11.9 3.4

R5109-1 15.5 −18.7 48.9 17.7 3.2

R5109-2 14.0 −18.7 41.8 15.3 3.2

R5109-3 14.8 −18.5 41.8 15.3 3.2

R5109-4 15.3 −18.4 42.1 15.5 3.2

R5109-5 15.6 −18.5 42.1 15.4 3.2

R5109-6 15.8 −18.4 42.1 15.4 3.2

R5109-7 16.0 −18.1 41.8 15.4 3.2

R5109-8 15.9 −18.2 42.1 15.6 3.2

R5109-9 16.2 −18.1 42.1 15.4 3.2

R5109-10 15.9 −18.0 42.1 15.6 3.2

R5109-11 15.5 −18.0 42.1 15.5 3.2

R5109-12 15.2 −18.1 42.0 15.5 3.2

R5109-13 14.9 −18.3 41.9 15.5 3.2

R5109-14 14.5 −18.5 42.6 15.6 3.2

R5109-15 13.6 −18.6 42.3 15.6 3.2
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collagen data from adults from Raunds Furnells (Haydock et al., 2013)

and the means for both pre-natal and peak dentine measurements of

deciduous dentine from this study. Sites shown are Raunds (n = 20;

Haydock et al., 2013), Early Anglo- Saxons (n = 76; Mays & Beavan,

2012), Wharram Percy (n = 29; Richards, Mays, & Fuller, 2002), Ber-

insfield adults (n = 65; Privat, O'Connell, & Richards, 2002), Yarnton

(n = 9; Lightfoot et al., 2009). The isotopic data from Raunds Furnells

suggests that the adult population were not consuming a different

diet from contemporary populations which could explain the peri-

natal dentine values.

4.2 | Peri-natal and peak dentine collagen data

It can be seen that the dentine collagen δ13C and δ15N are already

higher than the Raunds adult mean by 0.7‰ and 3‰ at birth, which

is equivalent to the differences interpreted as a trophic level shift and

a breastfeeding signal by most studies which measure bulk bone

(e.g., Fuller et al., 2006; Fuller, Richards, & Mays, 2003; Haydock et al.,

2013; Jay, 2005; Figure 2). As this represents the δ13C and δ15N in

utero, it also reflects the maternal values during the third trimester of

pregnancy. This could imply that women during pregnancy were con-

suming foods which differ from the usual inland Anglo-Saxon diet (for

example marine foods). Isotopic evidence from sequentially-forming

tissues such as hair and fingernail show that healthy modern women

during pregnancy generally experience a slight reduction in δ15N

(e.g., Fuller et al., 2006; D'Ortenzio, Brickley, Schwarcz, & Prowse,

2015) due to the anabolic state induced by the pregnancy. The

women of Raunds Furnells could also have been experiencing physio-

logical and/or nutritional stress resulting in a catabolic state, as seen

in the case of severe morning sickness in a modern pregnancy by

Fuller, Fuller, Sage, Harris, and O'Connell (2005), and thus the high

δ15N values found in the in utero dentine, (and see discussion in Reit-

sema (2013) although this does not explain the raised δ13C). However,

maternal physiology changes during pregnancy as a result of fat stor-

age and transfer to the fetus (and see above) which may explain the

perinatal δ13C. If these maternal changes in δ13C and δ15N are short-

term (during pregnancy and breastfeeding) they will not be visible in

the bone collagen at a population level because of the effect of aver-

aging and bone turnover.

The peak dentine δ13C and δ15N (which in the bone collagen

weaning model by Millard (2000) would represent the age at which

exclusive breastfeeding ceased and weaning began) is 4.1‰ higher

for δ15N and 1‰ higher for δ13C than the Raunds adult mean. This

difference is considerably more than the 2–3‰ increase in bone colla-

gen δ15N during exclusive breastfeeding reported in the review by

Tsutaya and Yoneda (2015), which suggests that this is not a simple

“trophic level” effect. The offset between the paired juvenile bone col-

lagen data (Haydock et al., 2013) and the highest dentine data ranges

from 0.3 to 4.5‰, with the dentine values for each individual higher

than the bone.

When comparing peak δ15N of dentine and bulk juvenile bone

collagen, it appears the collagen is recording different values in the

two tissues of the same individual. To explore this offset, the dentine

profile data are discussed further in the next section.

4.3 | Dentine profiles

The dentine profiles were very variable. For four of the five adults

there was an identifiable drop in δ15N with a co-varying drop in δ13C

from the earliest age measured, which could be interpreted as a wean-

ing curve. R5093 was the exception, with a short 0.8 per mil drop in

δ15N between the first and second sections (at about 18 months of

age), but with the δ13C values rising from the earliest section until the

age of 4 years. In all the adult profiles, there was overlap between the

juvenile (dentine) δ15N values and the adult bone collagen values, sug-

gesting some continuity between the diet and physiology throughout

life (see Supporting Information Figures).

Most of the juvenile δ15N profiles also showed a pattern consis-

tent with a weaning curve, with the δ15N rising from the in utero sec-

tion, reaching a peak and then dropping back, generally to a lower

value than at birth. In some cases, the δ13C values fall much earlier

than the δ15N. Two (R5070, R5109) have a drop in the δ15N from the

in utero value to the first post-natal value, and then follow a weaning

curve pattern. R5140, R5082, R5251 (a neonate) and R5264 all have

very flat or diverging δ13C and δ15N profiles.

Four main patterns have been identified in these data (Figure 3

shows exemplars), for which interpretations based on dietary and

physiological status can be provided as follows:

4.4 | Pattern 1: Weaning curve (R5023)

In these individuals, the δ13C and δ15N values in the dentine profiles

co-vary and match the weaning curve model proposed by previous

papers based on the assessment of bone collagen (e.g., Jay, 2005;

Millard, 2000). This is interpreted as a dietary signal consistent with

the expected pattern of breastfeeding, complementary feeding and

weaning, with no evidence for overlying physiological effects on

δ15N. (this pattern also seen in R5135, R5125, R5354).

FIGURE 2 Biplot showing the carbon (δ13C) and nitrogen (δ15N)

isotope ratios for mean bulk bone collagen for 5 Anglo-Saxon British
sites compared with prenatal dentine collagen and peak dentine
collagen mean δ13C and δ15N. Sites shown are Raunds (n = 20;
Haydock et al. 2013), early Anglo Saxons (n = 76; Mays and Beavan
2012, Wharram Percy (n = 29; Richards et al. 2002), Berinsfield adults
(n = 65; Privat et al., 2002), Yarnton (n = 9; Lightfoot et al., 2009)
[Color figure can be viewed at wileyonlinelibrary.com]
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4.5 | Pattern 2: Weaning curve with overlying
physiological effects (R5012)

The dentine collagen profiles show a smooth weaning curve in the

δ13C values, but the δ15N remains high for an extended period. This

suggests that there is a secondary factor which is affecting the δ15N

values. This factor is not likely to be dietary, as any rise in trophic level

arising from dietary protein input would also result in a comparable

elevation of δ13C (also seen in R5005, R5102, R5170, R5212, R5273,

R5292, R5345). There could be an unknown factor affecting the δ13C

but a viable explanation for the rise in δ15N without δ13C is the effects

of physiological stress.

4.6 | Pattern 3: Sharp drop in δ13C and δ15N values
followed by pattern 1 or 2 (R5070)

These infants (R5070 and R5109) experience δ15N and δ13C

values prior to birth that are elevated in comparison to their

post-natal values. The former, which reflect in utero experience,

could arise from maternal physiological stress impacting on the

developing fetus. The initially elevated levels would then fall after

birth as the infants’ dietary input becomes the main source of

δ15N and δ13C.

4.7 | Pattern 4: Flat or rising δ13C and δ15N profiles
(R5140)

In these individuals (R5140, R5082, R5251, R5264), the flat δ13C and

δ15N profiles suggest that they had little or no breastmilk. R5264 (see

Supporting Information figures) has opposing covariance of the δ13C

and δ15N values, resembling the starvation patterns seen in the incre-

mental dentine of children from the Great Irish Famine (Beaumont &

Montgomery, 2016) and Sumburgh cist (Montgomery et al., 2013).

In the case of R5251, aged as a fetus/neonate, the sections of

dentine lining the enamel-dentine junction were all co-forming in

utero with no overlap/averaging and because they did not survive

birth, no dietary signal.

4.8 | Comparison of bone collagen and dentine
collagen δ13C and δ15N

One of the aims of this study was to explore the relationship between

bone and dentine collagen values from single individuals. As bone is

constantly turning over during life, there will be a time-averaging of

isotope values over the remodeling period. This averaging also occurs

in infant bone collagen where turnover is rapid, albeit to a lesser

extent than in adult bone where turnover is slower. In comparison,

FIGURE 3 Incremental dentine carbon (δ13C) and nitrogen (δ15N) isotope ratio profiles by estimated age for deciduous teeth from Raunds,

R5023, R5012, R5070, and R5140 as exemplars of main patterns seen in deciduous dentine profiles at this site [Color figure can be viewed at
wileyonlinelibrary.com]
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the averaging of isotope values in the dentine sections is much less,

and the first 0.5 mm sample should reflect the in utero period.

Figure 4 shows both the bone collagen values from the study by

Haydock et al. (2013), and the peak dentine values from this study,

using the same individuals. If the model by Millard (2000) is applied,

then the bone collagen δ15N values suggest that exclusive breastfeed-

ing in the population ceases at about 2 years. The peak dentine δ15N

values (which should therefore represent the commencement of

weaning in each individual using the same model) suggest that these

individuals are in fact reaching that point between 6 and 18 months

of age, with two commencing weaning at the age of 2 years. The peak

δ13C values in the dentine (Figure 4) suggest an even earlier introduc-

tion of cereal-based weaning foods with all individuals peaking before

18 months of age. The δ13C should be a more robust representation

of the diet as the trophic level shift would be much smaller, and values

are potentially less affected by nutritional stress.

These data call into question the validity of certain interpretations

of the bone collagen data. If the dentine collagen data reflects

diet alone, then they must be more accurate measures of the actual

commencement of weaning in an individual. The two collagen data-

sets do not match, and there is a much higher difference between

most of the dentine collagen δ13C and δ15N values and the maternal

mean than in the bone collagen data.

As can be seen from the dentine profiles, in some cases the bone

collagen δ15N values do not overlap with the dentine collagen profile.

This is especially marked with R5251, the neonate: the bone and den-

tine must have been co-forming in utero and yet the bone collagen

δ15N is over 1‰ lower (Figure 5). Figure 6 shows the difference

between the bone collagen and the mean dentine δ15N for all individ-

uals in this study. As the bone represents an average value for δ13C

and δ15N over the same period as tooth formation in the younger

juveniles it could be assumed that the values for the two tissues

should be the same. However, the youngest eight individuals have

mean dentine δ15N values which are higher than their bone by 0.3

to 3.3‰.

Although there are very few comparisons of deciduous incremen-

tal dentine and bone collagen, this offset has been recorded in other

datasets. Eight out of nine deciduous teeth analyzed from 19th cen-

tury Lukin Street, London (Beaumont, 2013) have no overlap and an

offset with dentine collagen δ15N higher than the bulk bone collagen.

The datasets from late Medieval Fishergate House, York, (thought to

be a low status population) show similar patterns to the Raunds Fur-

nells data (Burt, 2013, 2015). Of the juveniles sampled at Fishergate

House, 23 were under 3.5 years of age and had measurements for

late-forming dentine which should be co-forming with their rib colla-

gen. A comparison of the measurements shows that 6 of the 23 had

δ15N rib collagen values which do not overlap with any of their den-

tine values and are between 2.2 and 0.2‰ lower than the latest-

forming dentine. This offset was also evident in the data from the

recent publication by King et al. (2018) where five of the eight

matched dentine/bulk bone pairs have δ15N values that do not over-

lap: four have higher dentine collagen δ15N and one lower. This

appears to contradict the conclusions of King et al. (2018) that bulk

bone collagen can be used to reconstruct breastfeeding and weaning

behavior.

One potential explanation is that there is an offset between colla-

gen in dentine and bone or that the bone is not recording the highest

δ15N values. There is no evidence to suggest that there is any differ-

ence in the proteins in type 1 collagen between dentine and bone and

so these values must be reflecting the δ13C and δ15N in new tissue

laid down by dentinoblasts or osteoblasts although the routing of the

amino acids to create the new collagen protein may be different. An

alternative explanation is that there is a threshold of stress above

which osteoblasts do not produce any new bone collagen, while denti-

noblasts continue to produce dentine which records different values

for δ13C and δ15N. This would fit well with the concept that bone and

thus skeletal growth is salutatory and the gaps between episodes of

growth are initiated by nutritional, physiological and emotional stress

followed by periods of catch-up growth once the stress is reduced,

thus recording δ13C and δ15N at these lower levels only (Lampl, 2012).

Neonate R5251 demonstrates this offset which must be caused by

high levels of maternal and/or fetal stress in utero. The relationship

between high δ15N and stunting is explored below.

Where weaning studies have been produced from bone collagen

isotope data alone, conclusions are most often supported by the δ15N

data, while the δ13C values are either unreported or not discussed in

FIGURE 4 Carbon (δ13C) and nitrogen (δ15N) isotope ratio of bone

collagen and peak dentine collagen from Raunds juveniles plotted
against mean age in years. Solid lines are the mean, and dashed lines
1 standard deviation of bone collagen δ13C and δ15N values of Raunds
adult females of child-bearing age (bone collagen data from Haydock
et al. 2013)
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as much detail. The dentine collagen profiles presented in this study

suggest that, while the magnitude of changes in values are small, δ13C

appears to reflect a breastfeeding and weaning profile in more cases.

The δ13C values are also less affected by any physiological changes

than δ15N and thus a more robust measure of the expected changes

seen during breastfeeding and weaning (although δ13C may fall if body

fat is being recycled during periods of starvation; Beaumont & Mont-

gomery, 2016). A further tentative explanation is that maternal physi-

ology in the later stages of breastfeeding includes the mobilization of

fat stores and a fall in the δ13C of breastmilk and thus the infant tis-

sues as seen in the example by Herrscher et al. (2017).

In all 18 juveniles, the dentine profiles have reached their peak

δ13C values by the age of 1.3 years (�3 months) and, where individ-

uals survive past the age of 3, match their bulk bone collagen values

by the age of 2.5–3 years. This results in agreement with the interpre-

tations based on bone collagen for the same population in Haydock

et al. (2013): an exclusive breastfeeding period of about 1 year and

cessation of breastfeeding at about 2.5–3 years. However, nearly half

of the peak dentine collagen δ15N (8/18) values are later than 1 year

of age, and the peaks for two individuals are at the age of 2 years.

Interpreting these high values using the bone collagen model, the

δ15N data would imply that exclusive breastfeeding had continued

until the age of 2, which would have been both unlikely and

unhealthy. However, we could hypothesize that the δ15N values are

also reflecting increased stress at this period of life, so recording the

diet plus recycled nitrogen. Thus, while we appear to have identified a

period of breastfeeding and weaning in this population, we know that

4/18 apparently did not receive breastmilk, and 8/18 have isotopic

evidence for physiological stress after the proposed introduction of

FIGURE 5 Incremental dentine carbon (δ13C) and nitrogen (δ15N)

isotope ratio profile for neonate Raunds5251 [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 6 Plot showing mean dentine collagen nitrogen (δ15N) isotope ratios – bulk bone collagen nitrogen (δ15N) isotope ratios per mil (‰) for

Raunds juveniles and adults in age order [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Estimated skeletal age, dental age, and stature for juveniles

from Raunds–Furnell

Skeletal
number

Skeletal
age
(in years)

Dental
age
(in years)

Estimated
stature
(in cm)

WHO standard
-measured
stature (in cm)

R5005 3.5 4.5 84.6 21.0

R5012 2.0 3.5 77.0 22.4

R5023 3.0 5.0 91.9 17.3

R5102 2.0 4.5 84.3 21.3

R5109 2.5 3.5 80.4 19.0

R5140 0.5 1.0 65.0 9.8

R5233 4.0 5.5 93.5 19.0

R5251 2.0 1.0 67.7 7.1

R5271 3.5 4.5 86.2 19.4

R5273 2.0 5.0 87.3 21.9

R5292 2.5 4.0 83.6 18.9

R5302 1.0 3.5 84.0 15.4

R5310 1.5 3.0 75.7 19.8

R5329 3.0 4.0 92.0 10.5

R5338 0.5 1.0 61.0 13.8

R5354 3.0 4.5 89.5 16.1
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weaning foods. This means that 2/3 of the juveniles analyzed do not

appear to have had a weaning curve that matches the model (Jay,

2005; Millard, 2000) reinforcing the view that this is not a satisfactory

way of estimating this aspect of cultural behavior.

4.9 | The relationship between stunting and δ13C
and δ15N

For the purposes of this study, we estimated skeletal and dental ages

(see results and Table 3) and also used long bone measurements to

estimate stature of nine of the juveniles. Figure 7 compares the

achieved stature for the re-assessed Raunds juveniles, and demon-

strates the cumulative effect of stunting, that is the Raunds juveniles

diverge more from the WHO growth stature standards as age

increases. Figure 8 shows the difference between current WHO data

(Cole, Freeman, & Preece, 1998) and the measured stature at Raunds

Furnells plotted against the peak values recorded in the dentine for

both the δ13C and δ15N. As stated above, the difference between

dental and skeletal age rose with overall age and this cumulative

stunting was also evident in the stature differences. There is a positive

correlation between the level of stunting and δ15N (R2 = 0.1981)

which is not evident in the δ13C (R2 = 0.0006).

It must be borne in mind that the peak values for δ13C and δ15N

occurred during the formation of the teeth, before the age of 3 years

in all nine cases, yet the level of stunting recorded related to the age

at death which for many of the individuals was several years later.

This suggests that stress during the first years of life is a predictor of

stunting that continues later into childhood. This helps to corroborate

the earlier finding that the dentine collagen values appear to record

higher short-term δ15N than is visible in the bone collagen δ15N, and

supports the hypothesis that bone is not laid down during periods of

high stress which results in a long-lasting effect on the stature of the

individual.

5 | CONCLUSIONS

This study is the first to compare isotopic data from bone and dentine

collagen in the same individuals to investigate the relationship

between diet, physiology, and stunting in the early years of life. The

improved temporal resolution achieved using incremental dentine,

already seen in previous studies, has now been reinforced by the pos-

sibility that bone is not forming during extreme stress and thus is not

a reliable source of dietary OR physiological information in a stressed

juvenile. However, it may be useful to consider the δ13C values for

estimation of breastfeeding and weaning patterns as these appear

more robust especially as most weaning foods appear to be cereal-

based, low trophic-level proteins (although the recent paper by

Herrscher et al. (2017) hints at a possible physiological explanation

here too). This confirms earlier work (e.g., Beaumont et al., 2015) that

suggested that bulk bone collagen is not the right tissue to utilize

when investigating the breastfeeding and weaning period because of

the influence of physiology, particularly on the δ15N values. These

data also reinforce the need to consider the “osteological paradox”

(DeWitte & Stojanowski, 2015; Wood et al., 1992) before interpreting

the isotope ratios from juvenile tissues.

The relationship between maternal and infant in utero δ13C and

δ15N values requires further investigation to establish whether the dif-

ferences between these are related to a special pregnancy diet, stress

of mother or fetus, or another factor of which we are not aware.

Finally, there is a need to investigate the potential for δ15N as a

tool to measure the effect of stress in early life on growth and stunt-

ing during childhood and adolescence, and to develop methods which

can collect data from bone with increased temporal resolution match-

ing that of the dentine collagen.
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