

CORRECTION

Correction: Biologically anchored knowledge expansion approach uncovers *KLF4* as a novel insulin signaling regulator

Annamalai Muthiah, Morgan S. Angulo, Natalie N. Walker, Susanna R. Keller, Jae K. Lee

<u>S2 Table</u> is incomplete. The bottom part of <u>S2 Table</u> is missing. The full <u>S2 Table</u> can be viewed below.

Supporting information

S2 Table. L_0 and L_1 genes. L_0 represents genes that were differentially expressed between DW16 and DC16 adipocytes. L_1 represents genes in L_0 for which expression profiles significantly correlated with expression of insulin signaling pathway genes (L_{path}) in adipocytes using data for all four conditions DC8, DW8, DC16 and DW16 (marked L_1 in table). (PDF)

Reference

 Muthiah A, Angulo MS, Walker NN, Keller SR, Lee JK (2018) Biologically anchored knowledge expansion approach uncovers KLF4 as a novel insulin signaling regulator. PLoS ONE 13(9): e0204100. https://doi.org/10.1371/journal.pone.0204100 PMID: 30240435

Citation: Muthiah A, Angulo MS, Walker NN, Keller SR, Lee JK (2018) Correction: Biologically anchored knowledge expansion approach uncovers *KLF4* as a novel insulin signaling regulator. PLoS ONE 13(11): e0207325. https://doi.org/10.1371/journal.pone.0207325

Published: November 7, 2018

Copyright: © 2018 Muthiah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.