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B I O C H E M I S T R Y

Deciphering and engineering  
chromodomain-methyllysine peptide recognition
Ryan Hard1*, Nan Li1*, Wei He1*†, Brian Ross2,3, Gary C. H. Mo2, Qin Peng4, Richard S. L. Stein1‡, 
Elizabeth Komives1, Yingxiao Wang4, Jin Zhang2,5, Wei Wang1,6§

Posttranslational modifications (PTMs) play critical roles in regulating protein functions and mediating protein- 
protein interactions. An important PTM is lysine methylation that orchestrates chromatin modifications and 
regulates functions of non-histone proteins. Methyllysine peptides are bound by modular domains, of which 
chromodomains are representative. Here, we conducted the first large-scale study of chromodomains in the hu-
man proteome interacting with both histone and non-histone methyllysine peptides. We observed significant 
degenerate binding between chromodomains and histone peptides, i.e., different histone sites can be recognized 
by the same set of chromodomains, and different chromodomains can share similar binding profiles to individual 
histone sites. Such degenerate binding is not dictated by amino acid sequence or PTM motif but rather rooted in 
the physiochemical properties defined by the PTMs on the histone peptides. This molecular mechanism is con-
firmed by the accurate prediction of the binding specificity using a computational model that captures the struc-
tural and energetic patterns of the domain-peptide interaction. To further illustrate the power and accuracy of our 
model, we used it to effectively engineer an exceptionally strong H3K9me3-binding chromodomain and to label 
H3K9me3 in live cells. This study presents a systematic approach to deciphering domain-peptide recognition and 
reveals a general principle by which histone modifications are interpreted by reader proteins, leading to dynamic 
regulation of gene expression and other biological processes.

INTRODUCTION
Protein-protein interactions, particularly those involving post-
translational modifications (PTMs), play critical roles in the majority 
of biological processes, and many diseases are caused by disruption 
of these interactions (1). In particular, PTMs on histone tail pep-
tides, such as lysine methylation (2, 3), dictate chromatin structure 
remodeling and orchestrate gene expression, which is at the heart of 
epigenetics (4, 5). These PTMs are normally recognized by modular 
domains (6, 7). For instance, methylated peptides can be recognized 
by chromodomains (8, 9), and acetylated peptides by bromodomains 
(10). Understanding the recognition mechanisms and building 
models to predict the binding specificity of domain-peptide inter-
actions is crucial for revealing the biophysical principles governing 
protein-protein interactions in general. Furthermore, mechanistic 
characterization could allow for engineering useful mutants of pro-
tein domains for various applications, such as proteomics (11) or 
live-cell imaging of histone modifications (12).

Computationally predicting the specificity of domain-peptide 
recognition remains a great challenge because of the weak binding 
and peptide flexibility. In particular, the recognition of methylated 
peptides is largely understudied owing to the lack of high-throughput 
binding data in vitro and the difficulty of proteomic experiments to 

identify methylation events in vivo (13). Methylation has been re-
cognized as an important PTM not only on histone proteins but also 
on non-histone proteins as illustrated by their critical roles in epi-
genetics [e.g., presence of monomethylation of H3 Lys4 (H3K4me1) 
and lack of H3 Lys27 trimethylation (H3K27me3) mark active en-
hancers; (14)] and tumorigenesis [e.g., the tumor suppressor p53 is 
methylated at Lys372, which restricts p53 to the nucleus and enhances 
p53 stability; (15)]. Furthermore, it has been recognized that his-
tone PTM–specific antibodies suffer from significant off-target 
binding defects and lot-to-lot variability (16) and that histone reader 
domains can serve as legitimate alternatives to histone PTM anti-
bodies in chromatin immunoprecipitation–sequencing applications 
(17). There is an urgent need to understand the recognition mecha-
nisms of methylated peptides and a computational model to engi-
neer probes for use in epigenetics research.

We chose the chromodomain-methyllysine recognition as a 
model system to investigate the underlying mechanisms (Fig. 1A). In 
human and other mammalian cells, conserved chromodomains have 
been identified across a wide range of proteins involved in chroma-
tin remodeling, and they exhibit diverse binding preferences toward 
methylated lysine sites on the histone tails (3, 8, 9, 18). Chromo-
domains are 50 to 70 amino acid residues long and frequently re-
cognize histone peptides with methylated lysine, such as K4, K9, K27, 
and K36 on H3 and K20 on H4 (2). We have generated a large amount 
of binding data between 29 chromodomains encoded in the human 
proteome and 457 methylated peptides (including 232 non-histone 
peptides). To our knowledge, this is the first large-scale binding spec-
ificity study of chromodomains against a significant number of po-
tential non-histone targets. We have developed a computational model 
to accurately predict the binding specificity between chromo-
domains and methylated peptides. Furthermore, we used the model 
to engineer the chromodomain of CBX1 to bind to the H3K9me3 mark 
with significantly higher affinity than the wild-type (WT) domain 
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without sacrificing its specificity. The engineered domain labeled 
H3K9me3 in living cells more effectively than the WT domain.

MATERIALS AND METHODS
Peptide microarray experiments, data acquisition,  
and analysis
A total of 29 WT chromodomains and two CBX1 mutants were ex-
pressed as glutathione S-transferase (GST) fusion proteins using pGEX- 
KG vector in Escherichia coli strain BL21(DE3) based on a previously 

described protocol (19). A total of 467 unmodified and modified pep-
tides [selected by a bioinformatics pipeline previously developed and 
described in (19, 20) and in the Supplementary Methods and Mate-
rials] were synthesized by Sigma-Aldrich (desalted, mass spectrom-
etry checked). The peptides were then printed as triplets onto glass 
slides (ArrayIt). The CBX1 mutant was screened against an Active 
Motif MODified Histone Peptide Array. Binding of the peptide 
microarray and the chromodomain proteins was performed and an-
alyzed using a previously described protocol [see (19) and Supple-
mentary Methods and Materials for details].

Domain H3K9me3 signal H3K27me3 signal Kd H3K9me3 Kd H3K27me3

CBX1 4.20 0.07 5 ± 2(9) N/B(9)

CBX2 1.57 2.77 >500(9) 185 ± 20(9)

CBX3 7.23 -0.03 15 ± 8(9) N/B(9)

CBX4 2.39 3.62 70 ± 7(9) 205 ± 20(9)

CBX5 4.45 0.03 30 ± 5(9) N/B(9)

CBX6 2.55 3.11 >500(8) 330 ± 120(8)

CBX7 4.98 3.73 55 ± 5(9) 110 ± 17(9)

CBX8 1.62 1.97 >500(8) 165 ± 20(8)

A B

C

Fig. 1. Pipeline of the chromodomain-peptide interaction screening experiments. (A) Workflow of comprehensive screening for chromodomain recognition profiling. 
The screened peptides (combinatorial modification library) were composed of 153 possible single trimethylated histone peptides in the human proteome and 72 histone 
peptides that include up to three modifications at sites K4, K9, K27, K36, K56, and K79 of the H3 histone protein and 232 non-histone peptides in the human proteome 
(selected by various filters) that are likely bound by the chromodomains [proteome-wide methylation filters; see the Supplementary Methods and Materials and details in 
(19,  20)]. The peptides were printed on a microarray to test their binding to 29 human chromodomains (peptide microarray screening of chromodomain). The chromo-
domain-peptide recognition specificity can be predicted using a quantitative model (chromo-methyl recognition model) that captures the structural and energetic features 
at the binding interface (complex structure construction/MD, MIEC-SVM model, and feature selection). (B) Chromodomain-peptide binding intensities on the microarray 
(shown as z scores; red, binding; green, nonbinding). The z scores were calculated by standard normalization using all the signal intensities for each chromodomain. For any 
data point x, z score = (x − mean)/SD. Three categories of chromodomains and six clusters of peptides with different chromodomain binding preferences (the size and the 
composition of peptide sequences for each peptide cluster are shown on the right) were identified by hierarchical clustering. (C) Literature comparison of H3K9me3 and 
H3K27me3 z scores to reported Kd values (in M) of interactions of the CBX chromodomains. Green color indicates consistent with previous study, and yellow is inconsistent.
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Fluorescence polarization (FP)
Fluorescein-labeled methylated histone peptides (Karebay) were 
used for dissociation constant (Kd) determination by serial dilu-
tion in triplicate. The peptides used were H3K9me3 [NH2- 
ARTKQTARK(me3)STGG-minipeg-K(5-fam)-NH2] or H3K27me3 
[Ac-QLATKAARK(me3)SAPA-minipeg-K(5-fam)-NH2] at a con-
centration of 1 nM. Serial dilutions were prepared in tris-buffered 
saline buffer [25 mM tris and 125 mM NaCl (pH 8)]. FP (fluorescence 
polarization) values were read on a DTX 880 Multimode Detector 
Beckman Coulter plate reader with excitation filter at 485 nm and two 
emission filters at 535 nm equipped with polarizers. Data were fit to 
a nonlinear regression equation using GraphPad Prism 4 software.

Building the molecular interaction energy  
component–support vector machine model
Template construction and conformational sampling
The template chromo-peptide complex structures for 13 chromo-
domains (CBX1–8, MPP8, CDYL1, CDYL2, SUV91, and SUV92) 
were obtained from either the Protein Data Bank or homology 
modeling based on a previously described method (19, 20). The 
peptide in each chromo-peptide structure contains nine residues 
(truncated if more than nine) with trimethylated lysine on the 
eighth position. For each chromo-peptide template, molecular dy-
namics (MD) simulation was performed for conformational opti-
mization and sampling. Binding interface residue backbone root 
mean square deviation (RMSD) was evaluated for the 13 chromo-
domains to verify the equilibrium. After the production run, eight 
snapshots were evenly selected from the trajectory between 3 and 5 ns 
as chromo- peptide binding complex templates for each system. The 
chromo- peptide binding complex templates were mutated in silico 
to each of the 457 peptides. Restrained by the computational cost, 
we performed 5000 steps of energy minimization instead of MD simu-
lation to optimize all the complex structures obtained through muta-
tion (see Supplementary Methods and Materials for details).
Calculation of molecular interaction energy components
Residue pairwise energy decomposition on minimized structures was 
performed by mm_pbsa.pl in the Assisted Model Building with Energy 
Refinement (AMBER) package (21–23) (see Supplementary Methods 
and Materials for details), and a molecular interaction energy compo-
nent (MIEC) profile was generated on the basis of the energy decom-
position result consisting of chromo-peptide MIEC profile and peptide 
internal MIEC profile. For chromo-peptide MIEC profile, the energy 
contributions from eight snapshots are averaged, and all residue pairs 
less than 10 Å were included to reflect binding characteristics of the 
chromo-peptide interactions. The sequences of chromodomains were 
aligned using sequence and structural information to match residues 
from different domains. For peptide internal MIEC profile, MIECs of 
the adjacent peptide residue pairs were calculated to represent the con-
formational preference of the peptide. MIEC profile for each chromo- 
peptide interaction contains 158 chromo- peptide residue pairs and 
eight peptide-peptide pairs (664 energy components in total) (see 
Supplementary Methods and Materials for details).
Construction, training, and testing of the MIEC–support vector 
machine model
LASSO (least absolute shrinkage and selected operator) logistic re-
gression method (24) was applied to the MIEC profile to select in-
formative features to construct the MIEC–support vector machine 
(SVM) model (see table S4). All SVM training and tests were con-
ducted using the Library for Support Vector Machines (LIBSVM) 

package (25). The polynomial kernel function was used. A nested cross- 
validation was performed to exclude an overfitting issue in the training 
process (see the Supplementary Material for details and table S5). Both 
threefold cross- validation and leave-one-domain-out (LODO) test 
were performed to evaluate the prediction accuracy of the MIEC-SVM 
model (see Supplementary Methods and Materials for details).

Selection of candidate sites to randomize on the  
CBX1 chromodomain
To select for sites to randomize in the CBX1 library to enhance its 
binding affinity toward H3K9me3, we used two different strategies. 
The first was to identify residues important for binding H3K9me3 
compared with nonbinding peptides. Comparison of MIEC com-
ponents of H3K9me3 binding to nonbinder components, along 
with avoiding choosing residues that were too conserved among 
chromodomains, we constructed a ranked list of candidate sites that 
showed the largest energetic difference between binders and non-
binders. The second strategy was essentially the same as the first 
strategy except that we selected sites generally important for CBX1 
binding by comparing all CBX1 binder MIECs to a representative 
nonbinder (H3K27me3). Again, a conservation filter was applied to 
prevent selection of structurally important residues on the chromo-
domain (see Supplementary Methods and Materials for a more de-
tailed description along with table S6).

Yeast surface display library construction and screening
The five sites selected for randomization on the CBX1 chromo-
domain [residues 22, 25, 59, 60, and 62 of National Center for Bio-
technology Information (NCBI) P83916.1] were fully randomized 
using primers containing NNK degenerate codons, where the WT 
domain was used as template for polymerase chain reaction (for-
ward: 5′-acaattcgtctcggtaccagaatatNNKgtggaaNNKgttctcgaccgtc-
gagtggtaaagggcaaagtggagtac-3′; reverse: 5′-ataattcgtctcctcgagt-
gttttctgtgactgcagaaactcagcaatgagMNNgggMNNMNNcaggttctcttct-
ggc-3′ (N is any base, K is g/t, and M is c/a). The library was ligated 
into a modified pYD1 vector, followed by transformation into 
EBY100 yeasts using the LiAc/ssDNA/PEG-3350 method (26), re-
sulting in approximately 106 transformants. The yeast surface display 
library was screened using biotin-Y-ahx-RTKQTARK(me3)S-NH2 
(ahx, aminohexanoic acid) as the antigen. Yeast was sorted on a BD 
FACSAria II (Moores Cancer Center, University of California San 
Diego). Random hits were sequenced by dideoxy sequencing.

Live-cell imaging of the H3K9me3 mark
Molecular cloning, cell culture, transfection,  
and immunocytochemistry
The CBX1 chromodomain (either WT or the triple mutant) was 
cloned into a pcDNA3 vector and fused to the N terminus of the 
photoactivatable mCherry (PAmCherry) protein. HeLa and mouse 
embryonic fibroblast (MEF) cells were cultured using standard pro-
tocols and plated on 3.5-cm glass-bottom dishes for imaging. For 
live-cell photoactivated localization microscopy (PALM) imag-
ing, HeLa and MEF cells were transiently transfected using either 
Lipofectamine 2000 (Thermo Fisher Scientific) or Polyjet (SignaGen). 
For fixed-cell stochastic optical reconstruction microscopy (STORM) 
imaging, cells were fixed with 4% paraformaldehyde (PFA) for 
20 min and then washed with 100 mM glycine in Hanks’ balanced 
salt solution (HBSS) to quench the free PFA. Cells were permeabi-
lized and blocked in a permeabilization solution with 0.1% Triton 
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X-100, 0.2% bovine serum albumin, 5% goat serum, and 0.01% 
sodium azide in HBSS. The cells were then incubated overnight at 
4°C with an anti-H3K9me3 antibody (Abcam, ab8898) at a 1:500 
dilution, followed by 1 to 2 hours with goat anti-rabbit Alexa 647–
conjugated antibodies at 1:1000 dilution. The cells were then post-
fixed again in 4% PFA, quenched with 100 mM glycine in HBSS, 
and washed with HBSS to prepare for imaging. Immediately before 
imaging, the medium was changed to STORM-compatible buffer 
[50 mM tris-HCl (pH 8.0), 10 mM NaCl, and 10% glucose) with 
glucose oxidase (560 g/ml), catalase (170 g/ml), and mercapto-
ethylamide (7.7 mg/ml).

For the two-color STORM imaging, the cells were incubated 
overnight at 4°C with a mouse anti-FLAG antibody (for detection of 
FLAG-tagged CBX1; Sigma, F1804) at a 1:200 dilution and with a 
rabbit anti-H3K9me3 antibody (Abcam, 8898) at a 1:500 dilution. 
They were then incubated 1 to 2 hours with goat anti-rabbit and 
anti-mouse antibodies, labeled with Alexa 647 and Alexa 568, re-
spectively, at a 1:1000 dilution.
Super-resolution imaging and image analysis
STORM and PALM images were obtained using a Nikon Ti total 
internal reflection fluorescence (TIRF) microscope with N-STORM, 
an Andor IXON3 Ultra DU897 EMCCD, and a 100× oil immersion 
TIRF objective. Photoactivation was driven by a Coherent 405-nm 
laser, while excitation was driven either with a Coherent 561-nm 
laser or a 647-nm laser. Illumination was done in a “near-TIRF” 
format, in which the TIRF angle was adjusted so that molecules in 
the nucleus were illuminated. All image analysis and image recon-
struction were performed using the Localizer software (27) in the 
Igor Pro 6.3 environment. STORM and PALM images were seg-
mented using the GLRT algorithm (27), and localizations were fit 
using Gaussian fitting. Reconstructed bitmap images were created 
in which intensity corresponds to the number of localizations in 
each box in a 0.2 pixel wide grid. For two-color STORM imaging 
colocalization analysis, the protocol can be found in the Supplemen-
tary Methods and Materials.

RESULTS
To have a comprehensive view of how modified histone peptides 
are recognized by chromodomains, we have studied the binding be-
tween 29 chromodomains encoded in the human proteome (table 
S1) and 153 nine–amino acid–long histone peptides with a single 
trimethylated lysine. To examine the combinatorial effect of PTMs, 
we studied an additional 72 H3 histone peptides with multiple 
modifications, which includes up to three possible combinations of 
modifications adjacent to K4, K9, K27, K36, K56, and K79 of the H3 
histone protein. The sequences were designed to include reported 
modifications of adjacent arginine (symmetric or asymmetric dimeth-
ylarginine), serine (phosphoserine), threonine (phosphothreonine), 
and lysine (monomethyl or trimethyl). Because sites surrounding 
K4, K9, and K27 are known to be heavily modified, up to four mod-
ifications in total were included in the peptides, while for the other 
sites located in less modified regions of the histones, up to two mod-
ifications are included in the sequence. To further illuminate the 
importance of PTMs that encode the recognition specificity beyond 
amino acid sequence, we also included 232 non-histone peptides from 
the human proteome with a single trimethylated lysine but other-
wise diverse sequences (table S2). The inclusion of diverse non- 
histone peptides provides a unique opportunity to examine whether 

there exist sequence motifs dominating the recognition of histone 
modifications by the reader proteins, which cannot be studied using 
histone peptides only due to their sequence similarity. We also in-
cluded 10 proline-rich peptides without any modifications that do 
not bind to chromodomains as negative controls on the microarray 
to bring the total number of peptides to 467.

Validation of the binding detected by microarray
To investigate binding interactions between the 29 chromodomains 
and 467 peptides, a high-throughput assay was needed, and we chose 
to use peptide microarray technology (19, 20). The detection accu-
racy and efficiency of the peptide microarray platform were con-
firmed by two independent lines of evidence (Fig. 1, A to C).
Overall microarray performance: Correct categorization  
of chromodomains
The 29 chromodomains encoded in the human proteome can be classi-
fied into three categories based on their methyllysine-binding mode 
(Fig. 1B). The available crystal or solution structures show that chromo-
domains have two general types of structures: (i) a single binding mode 
where one single chromodomain forms a binding pocket to accommodate 
the histone peptide (such as CBX proteins), and (ii) a potential tandem 
binding mode in which two chromodomains are linked through a loop 
and both domains may interact with the peptide [such as chromodomain- 
helicase DNA binding (CHD) proteins]. For the first binding mode, 
the chromodomains can be further divided into two subgroups: 
HP1-like proteins and Polycomb- like proteins (from Drosophila 
melanogaster HP1 and Pc chromodomains).

We performed hierarchical clustering on the fluorescence inten-
sities (represented as z scores) detected by the peptide microarray 
(Fig. 1B and fig. S2) and found that the overall binding profiles can 
correctly group chromodomains with similar structural features: 
Polycomb-like CBX members (CBX2, CBX4, CBX6, CBX7, and 
CBX8) were clustered together with some other single chromo-
domains such as MYST1 and CDYL2, but separated from the HP1-
like CBX members CBX1, CBX3, and CBX5, and further separated 
from CHD proteins. This clustering result is consistent with the 
known or possible chromodomain binding modes (Fig. 1B), sug-
gesting that our microarray can correctly discriminate different 
structural characteristics and binding modes of the chromodomains. 
Although the clustering of the domains was mostly consistent, we 
observed certain noticeable outliers. Notably, SUV92 and CDYL1 
seemed to cluster somewhat with the CHD tandem domains. This 
may suggest a CHD tandem-like binding mode for these domains, 
where SUV92 and CDYL1 could form dimers/multimers, thereby 
allowing them to use more than one chromodomain to recognize 
their targets. It has been reported that CDYL1 forms multimers to 
recognize heterchromatin in vivo (28). Another outlier was MS3L1, 
which unlike the other HP1-like chromodomains lacked significant 
interaction with cluster 3 yet showed some interaction with cluster 
5. It has been shown that binding to double-stranded DNA (dsDNA) 
facilitates the binding of the MS3L1 chromodomain to H4K20me1 
(29). Our data did not show interaction with this mark, but our ar-
ray screens did not include dsDNA in the binding buffer. It would 
be interesting in a future study to include dsDNA when screening 
chromodomains against arrays to see if that could alter or enhance 
their binding specificity/affinity for the array peptides.
Further validation with literature evidence
Literature-reported H3K9 and H3K27 binding by CBX1–8 were sat-
isfyingly reproduced on the microarray (see comparison summary 
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in Fig. 1C and table S3): CBX1, 3, and 5 behaved like HP1 and 
bound predominantly to all three methylated H3K9 peptides (9, 18); 
much worse binding of the HP1-like CBXs toward H3K27 was ob-
served. For Polycomb-like CBX2, 4, 6, 7, and 8, binding to both 
methylated H3K9 and H3K27 was confirmed, with trimethylation 
as the state most favorable for binding. CBX2 was more Polycomb- 
like with higher H3K27 signal intensity compared with those of 
H3K9. For CBX6 and CBX8, reported as the weakest binders in the 
literature (8, 9), the peptide microarray showed signals with di- and 
trimethylated peptides at both sites. Contrary to previous reports, we 
found that the CBX4 chromodomain seemed to prefer H3K27me3 
over H3K9me3. One possible explanation is that the binding studies 
in (8, 9) used longer peptides (at least 15 residues), whereas H3K9/
H3K27 on our array were only nine residues, suggesting that CBX4 
may make binding contacts to residues C-terminal to S10 of H3K9 
to define its specificity for this mark. Together, the microarray re-
sults of the control peptides show that the array data are largely con-
sistent with previous findings in the literature.

Chromodomain-methyllysine recognition is degenerate  
in two dimensions
Obviously, there is significant redundancy of chromodomain- 
methylated peptide recognition (columns and rows in Fig. 1B and 
fig. S2), i.e., one peptide may be recognized by different chromo-
domains, and one chromodomain may recognize a variety of meth-
ylated sequences regardless of the surrounding context. The 457 
peptides can be clustered into six groups based on their chromo-
domain binding preferences. Notably, the histone and non-histone 
peptides are mixed in five of six clusters, suggesting that the recruit-
ment of a reader protein (complex) to a certain histone site may be 
facing not only competition from other histone reader proteins but 
also competition from binding of the reader domain toward other 
modified non-histone proteins, especially those component proteins 
in the same complex or neighboring complexes within spatial proxim-
ity. For example, the histone acetyltransferase MYST1 and RBBP5 
co-occur in some MLL1/MLL complexes to methylate and acetylate 
histones H3 and H4 (30), and binding between the MYST1 chromo-
domain and a methylated RBBP5 sequence was indeed observed 
in our result. Similarly, H3K9 methyltransferase SUV91 chromo-
domain showed binding to a methylated SIRT1 sequence, both of 
which serve as core component proteins in the eNoSC complex that 
represses ribosomal RNA transcription for cellular survival (31).

Recognition mechanism is beyond sequence or  
modification motif
When investigating the mechanisms governing the chromodomain 
recognition, we could not find any sequence motif in any of the six 
peptide clusters. No significant amino acid enrichment was ob-
served at any of the eight nonmethyllysine positions in the peptides, 
except for the special case of cluster 3 composed of a set of H3K9 
peptides with different PTMs that strongly prefer the HP1-like 
chromodomains (Fig. 2A). This observation suggests that there is 
no definitive sequence motif for methyllysine recognition by differ-
ent chromodomains. Consistently, the binding peptides identified 
for each individual chromodomain contain no significant sequence 
motif either (Fig. 2B and table S3).

Furthermore, no definitive PTM combination patterns could be 
found in the 72 H3 multiply modified peptides to dictate the chromo-
domains’ binding preference. The peptides with multiple modifi-

cations were integrated in the microarray, including methylated 
arginine, phosphorylated serine, and threonine in addition to the 
target methyllysine, in order to study the impact of their coexistence 
in the chromodomain recognition sequence (table S2 and fig. S2). 
We observed that the same histone peptides with different PTM com-
binations often distribute to several clusters that exhibit different 
preferences to chromodomains (e.g., multiply modified H3K9 pep-
tides were found in clusters 2, 3, and 6). This phenomenon also holds 
for different histone peptides with the same PTM combination pat-
tern (e.g., H3R26me2/K27me3 in cluster 4 versus H3R8me2/K9me3 
in cluster 3, H3T22ph/K27me3 in cluster 4 versus H3S31ph/K36me3 
in cluster 6). Together, these observations suggest an absence of 
PTM patterns that govern chromodomains’ binding specificity.

A quantitative model to predict the chromo-peptide  
binding specificity
The absence of either primary sequence or modification motif pat-
tern for the chromodomain-peptide recognition, together with the 
fact that many histone peptides show similar binding behavior to 
non-histone peptides, strongly suggests that the multiple modifi-
cations have altered the property of the peptide sequence in a 
profound way. Therefore, the commonly used sequence-based bio-
informatics methods are unable to delineate the binding specificity. 
To reveal the underlying mechanisms, we constructed a MIEC-
SVM model (19, 20, 32) to capture the structural and energetic pat-
terns critical for the chromodomain-peptide binding (Fig. 3A). We 
focused on 13 HP1- and Polycomb-like proteins that bind to pep-
tides with a single chromodomain as their binding modes are simi-
lar (fig. S3). The model showed excellent performance in predicting 
the binding specificity between these 13 chromodomains and all the 
457 peptides, as indicated by the average area under the receiver 
characteristic curve (AUC-ROC) of 0.832 in 500 threefold cross- 
validations. Furthermore, satisfactory results of LODO (AUCLODO = 
0.766) tests demonstrate MIEC-SVM’s generalization ability, i.e., 
MIEC-SVM can be used to predict interactions of new chromo-
domains or new peptides (Fig. 3B). This observation confirmed that 
the binding specificity of chromodomain-peptide interactions is 
encoded in the structural and energetic characteristics despite the 
lack of sequence or PTM motifs.

To further illuminate this point, we assessed the prediction per-
formance of models trained on either singly or multiply modified 
peptides and predicted the remaining peptides. There were 385 
single-Kme3 peptides with only trimethylated lysine on positions 8 
and 72 non–single-Kme3 peptides including multiple modifications 
and unmodified lysine on position 8. Since the 385 single- Kme3 
peptides provided sufficient training data, we tested whether MIEC-
SVM model trained from these single-Kme3 peptides would be able 
to predict the binding of multiply/nonmodified Kme3 peptides (Fig. 
3B). The satisfactory performance (AUC-ROC = 0.742) indicated 
that the structural and energetic characteristics of chromodomain- 
peptide recognition are shared between singly and multiply modi-
fied peptides. As the number of multiply modified peptides tested 
in the microarray was small, it was insufficient to train the MIEC-
SVM model on them to predict singly modified peptides.

Furthermore, we observed similar distribution of singly and mul-
tiply modified binders in the MIEC-SVM feature space. We extracted 
the SVM decision values for each of the following four classes: 
single-Kme3 binders, multiply modified binders, single-Kme3 non-
binders, and multiply modified nonbinders. An obvious separation 
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between binders and nonbinders was observed, which is not unex-
pected given the satisfactory performance of MIEC-SVM (Fig. 3C). 
Furthermore, the decision value distributions of the singly and mul-
tiply modified binders were significantly overlapped (Fig. 3, C and 
D), which confirmed the similar binding patterns of the singly and 
multiply modified peptides. This observation further confirmed that 
PTMs provide additional diversity of physiochemical properties at 
the binding interface but all binders share the same MIEC patterns.

MIEC-SVM model applied to chromodomain engineering
We next sought to use our trained model to enhance the binding 
affinity of the chromodomain of human CBX1 toward its preferred 
binder, the H3K9me3 mark. We chose the CBX1 chromodomain 
over the other chromodomains for several reasons. First, CBX1 
showed a good MIEC-SVM prediction performance. Second, its 
chromodomain already binds fairly tightly and selectively to the 
H3K9me3 peptide [Kd of 5 M; (9)]. Last, the other two chromo-
domains we felt were good candidates (SUV92 and MPP8) showed 
poor expression on the yeast surface.

After selection of the appropriate chromodomain, we performed 
computational analysis to select potentially important sites on the 
CBX1 chromodomain to enhance the binding affinity to H3K9me3 
(see Fig. 4A). We constructed a list of sites that were most import-
ant for recognition of H3K9me3 compared with nonbinding pep-
tides. Second, we constructed a list of sites important for binding to 
all CBX1 binders compared with H3K27me3 (a nonbinder) to select 
residues generally important for binding. Residues that were too 
conserved among chromodomains or contributed little to the bind-
ing energy difference of binding versus nonbinding peptides were 
filtered out. From the two lists of sites, we selected three sites from 
the K9me3 list (sites 59, 60, and 62) and three from the general list 

(sites 22, 25, and 59; see table S6 and the Supplementary Methods 
and Materials for a more detailed description of the site selection) of 
the CBX1 protein (UniProt ID: P83916).

Upon selection of the positions deemed most critical for enhanc-
ing binding affinity toward H3K9me3, we randomized CBX1 chro-
modomain positions 22, 25, 59, 60, and 62 using degenerate codons 
(NNK) and introduced the DNA library into the pYD1 vector for 
yeast surface display library selections (26). A fairly low diversity li-
brary (about 106 clones) was screened using a biotin-labeled H3K9me3 
peptide. The selected CBX1 chromodomain mutants, upon purifi-
cation as GST fusions from E. coli, were tested for their binding af-
finity toward H3K9me3 by fluorescence polarization binding assay 
(see Fig. 4B). The two mutants selected from the H3K9me3 sorts 
(V22E/K25S/D59F and V22E/K25E/D59S) showed superior bind-
ing to H3K9me3 than the WT domain (Kd values of 0.32 and 0.21 M 
versus 2.78 M of the WT domain), yet showed very weak bind-
ing to the similar H3K27me3 peptide. To our knowledge, the V22E/
K25E/D59S mutant has the strongest binding affinity of any human 
chromodomain toward H3K9me3, even over that of MPP8. To ver-
ify that the mutant binds specifically toward H3K9me3, we screened 
it against a MODified Histone Peptide Array (Active Motif), which 
contains 384 various histone peptide marks. Analysis of the devel-
oped array revealed that the mutant retained the specificity of WT 
CBX1 toward H3K9me3 (Fig. 4C).

Application of the engineered CBX1 chromodomain in 
live-cell histone imaging
We aimed to test whether we could use the V22E/K25E/D59S 
chromodomain to label the H3K9me3 modification in the nuclei 
of living cells. Using PALM imaging (33), we used PAmCherry 
(34)– chromodomain fusions to visualize H3K9me3 in live cells, 

A B

Fig. 2. Chromodomain binding sequence motif analysis from the peptide array screens. (A) No significant sequence motif was observed in the sequences for each 
peptide cluster. Peptides were aligned such that methylated lysine was set as the eighth amino acid position. (B) Alignment of sequence motifs for each individual chromo-
domain shows a lack of any strong binding motif, consistent with (A).
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A

B C

D

Fig. 3. Construction and validation of the chromodomain MIEC-SVM model. (A) Flowchart of MIEC-SVM that predicts binding specificity between chromodomains and 
methyllysine peptides. Complex structures between 13 chromodomains and 457 peptides were constructed by computationally mutating peptide sequence from a template 
complex for each chromodomain (virtual mutagenesis). From the modeled complex structures, MIEC terms between peptide-protein residues at the binding interface were 
computed. The MIECs and the binding/nonbinding label (obtained from microarray experiments) for each domain-peptide pair were input to a LASSO logistic regression 
model to select most predictive MIECs (LASSO feature selection). These selected MIEC features were then used to train an SVM model to discriminate binding from non-
binding events. VDW, Van der Waals forces; ELE, electrostatic forces; GB, polar contribution to the desolvation energy; SA, nonpolar contribution to the desolvation energy. 
(B) Performance of MIEC-SVM model on three different peptide groups (all peptides, singly modified peptides, and multiply modified peptides). The MIEC-SVM model showed 
consistent performance regardless of the number of modifications on the peptides, indicating that chromodomain-peptide recognition share the same MIEC features for singly 
and multiply modified peptides. (C) SVM decision value distribution of the four classes of peptides (binders/nonbinders with single or multiple modifications). Binders and non-
binders are well separated regardless of the modification number. (D) Pairwise Jensen-Shannon (JS) divergences between the SVM decision value distributions of the four 
classes. The differences between any binder class and nonbinder class (regardless of the PTM number) are large (larger JS divergence value) singly modified binder–singly modi-
fied nonbinder, JS = 0.468 (P < 1.0 × 10−20); singly modified binder–multiply modified nonbinder, JS = 0.396 (P < 1.0 × 10−19); multiply modified binder–single modified non-
binder, JS = 0.704 (P < 1.0 × 10−20); and multiply modified binder–multiply modified nonbinder, JS = 0.603 (P < 1.0 × 10−20). In contrast, binder (or nonbinder) peptides are similar 
to each other regardless of the PTM numbers: JS values of 0.113 for binders (P = 7.0 × 10−15 for statistical similarity) and 0.027 for nonbinders (P = 6.1 × 10−10). All P values were 
calculated on the basis of the background distributions of JS divergence of randomly selected decision values for the same number of binders or nonbinders as the foreground.
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compared with either the WT CBX1 chromodomain or an anti- 
H3K9me3 antibody (Abcam, ab8898). Upon transient expression in 
either HeLa or MEF cells, we observed punctate structures with very 
dense labeling as well as a meshwork pattern of moderately high 
localization density interspersed with regions with lower labeling 
(Fig. 4D).

Overall, the mutant showed a very high level of nuclear localiza-
tion (approximately 85% in MEF and 95% in HeLa cells) (Fig. 4D), 
which is impressive given the lack of a nuclear localization sequence 
(NLS) tag in the construct. This was an obvious improvement over 
the WT domain and comparable to fixed-cell images created using 
Abcam (ab8898). Furthermore, we tested the degree of colocaliza-

tion of the triple mutant with the antibody in two-color fixed STORM 
imaging in HeLa cells (fig. S4). The extent of colocalization was de-
termined using a published method based on Getis and Franklin’s 
local point pattern analysis (35). We measured that an average of 
63% of localizations of the CBX1 mutant coclustered with the 
H3K9me3 antibody, and 94% of H3K9me3 antibody localizations 
coclustered with mutant CBX1 (V22E/K25E/D59S). These data are 
consistent with the peptide array data and confirm the CBX1 mu-
tant’s specificity for the H3K9me3 mark within the cellular environ-
ment. We also created movies using PALM imaging of both the WT 
and mutant CBX1-PAmCherry labeling H3K9me3 in both HeLa 
and MEF cells (movies S1 to S4). Again, the mutant showed greater 

A

Mutant Kd to H3K9me3 Kd to H3K27me3

WT CBX1 2.78 ± 0.60 µM >25 µM

V22E/K25E/D59S (CBX1) 0.21 ± 0.04 µM >50 µM

V22E/K25S/D59F (CBX1) 0.32 ± 0.07 µM >25 µM

WT MPP8 0.50 ± 0.12 µM >50 µM

B

DC
Mutant CBX1-PAmCh Anti-H3K9me3 antibody
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Fig. 4. Application of the chromodomain MIEC-SVM model to engineering the CBX1 chromodomain. (A) Selection of key sites to randomize for the yeast display 
experiment with the CBX1 chromodomain. Sites “A” and “B” are just two representative residues being analyzed for site selection for demonstration purposes. The other 
strategy of selecting residues to randomize on CBX1 (comparing H3K27me3 to CBX1 binders) used the same procedure. (B) Kd values obtained from fluorescence polar-
ization binding studies between the WT CBX1 and MPP8 chromodomains, along with the V22E mutants isolated from yeast surface display selections. The Kd values were 
derived from a nonlinear regression equation after performing experiments in triplicate against 1 nM H3K9me3 [NH2-ARTKQTARK(me3)STGG-mini-PEG-K(5-fam)-NH2] 
and 1 nM H3K27me3 [Ac-QLATKAARK(me3)SAPA-mini-PEG-K(5-fam)-NH2] peptides. Kd values toward H3K27me3 are based on visual approximation from unsaturated 
binding curves; for the V22E mutants, up to 180 M of each protein was used in an attempt to get a binding curve to H3K27me3. (C) Peptide array screening of the 
V22E/K25E/D59S CBX1 chromodomain mutant. An Active Motif histone peptide array, containing 384 peptide spots printed in duplicate, was screened against 1 nM 
GST-CBX1 mutant. Spots were visualized by chemiluminescence, and the spot intensities were analyzed by Active Motif array analysis software. The height of the y axis 
(specificity factor) represents the ratio of the average intensity of all array spots containing the mark (listed on the x axis) over the average intensity of spots not containing 
the mark. (D) Left: Representative reconstructed PALM image of HeLa cells (top row) and MEF cells (bottom row) transiently transfected with CBX1 (V22E/K25E/D59S)–
PAmCherry (left) WT CBX1-PAmCherry (center), or immunostained with Alexa 647–labeled anti- H3K9me3 antibody (right). Scale bars, 10 m. Right: Quantification of 
fraction of PALM localizations located within the nuclear region for HeLa cells (top) and MEF cells (bottom) (unpaired two-tailed t test). Mut: V22E/K25E/D59S triple mutant.
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nuclear localization than the WT and resulted in a noticeably better 
signal-to-noise ratio in the images.

CONCLUSION
We conducted the first comprehensive survey of chromodomain- 
methyllysine recognition using an integrated experimental and 
computational procedure. We found great degeneracy of chromo-
domain proteins binding to modified histone peptides in that one 
chromodomain can bind to diverse modifications at different his-
tone sites, while one histone modification pattern can be bound by 
different reader proteins. We found this recognition degeneracy is 
not associated with amino acid sequence or PTM patterns, but rather 
is rooted in the same physiochemical properties of the binding in-
terface that are defined by the PTMs.

Our studies have demonstrated that the MIEC-based model 
can accurately characterize chromodomain-peptide recognition by 
capturing the physiochemical features rather than the amino acid 
sequence or PTM pattern of the binding peptides. We also demon-
strated the model to be applicable in the prediction of interaction 
between new peptides and chromodomains. Our finding suggests a 
general principle governing the recognition of histone modifications 
by reader proteins and provides a model to quantify such recognition. 
It not only extends our knowledge of the role of chromodomains in 
protein-protein interaction networks but also can be applied to en-
gineering chromodomains to perform useful functions. In this study, 
we demonstrated the power of our model by accurately predicting 
residues to be randomized in a small chromodomain library and en-
hanced the binding affinity of the CBX1 chromodomain by 13-fold 
compared with the WT domain without sacrificing its binding speci-
ficity. The improved CBX1 chromodomain performed significantly 
better at labeling H3K9me3 in live HeLa and MEF cells and could 
be used to image the dynamics of H3K9 methylation in real time, 
which is not possible with anti-histone antibodies.
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content/full/4/11/eaau1447/DC1
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Fig. S4. Getis-Franklin single-molecule coclustering analysis (35) of H3K9me3 and the CBX1 
(V22E/K25E/D59S) chromodomain.
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Table S3. Sequence and averaged signal intensities of identified binders from the peptide 
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