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Abstract Measurements and Main Results: The composition of the

lower airway transcriptome in the patients with cancer was

Rationale: In lung cancer, upregulation of the PI3K (phosphoinositide
3-kinase) pathway is an early event that contributes to cell
proliferation, survival, and tissue invasion. Upregulation of this
pathway was recently described as associated with enrichment

of the lower airways with bacteria identified as oral commensals.

significantly different from the control subjects, which included
up-regulation of ERK (extracellular signal-regulated kinase) and
PI3K signaling pathways. The lower airways of patients with lung
cancer were enriched for oral taxa (Streptococcus and Veillonella),
which was associated with up-regulation of the ERK and PI3K

signaling pathways. In vitro exposure of airway epithelial cells to
Veillonella, Prevotella, and Streptococcus led to upregulation of
these same signaling pathways.

Objectives: We hypothesize that host-microbe interactions in the
lower airways of subjects with lung cancer affect known cancer pathways.

Methods: Airway brushings were collected prospectively from
subjects with lung nodules at time of diagnostic bronchoscopy,
including 39 subjects with final lung cancer diagnoses and 36 subjects
with noncancer diagnoses. In addition, samples from 10 healthy
control subjects were included. 16S ribosomal RNA gene amplicon
sequencing and paired transcriptome sequencing were performed
on all airway samples. In addition, an in vitro model with airway
epithelial cells exposed to bacteria/bacterial products was performed.

Conclusions: The data presented here show that several
transcriptomic signatures previously identified as relevant to
lung cancer pathogenesis are associated with enrichment of the
lower airway microbiota with oral commensals.
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At a Glance Commentary

Scientific Knowledge on the
Subject: Lung cancer prevalence is
increasing among never smokers,
suggesting that other environmental
factors are relevant for lung cancer
pathogenesis. Emerging evidence
indicates that the lung microbiome
plays an important role in lung disease.
A detailed assessment of the lung
microbiome in subjects with lung
cancer may help us understand the
contribution of the host-microbe
interaction to the pathogenesis of this
disease.

What This Study Adds to the
Field: In this cross-sectional study,
we identified transcriptomic and
microbiomic signatures in the lower
airways of subjects with lung cancer.
Enrichment of the lower airway
microbiota with oral commensals was
associated with upregulation of the
PI3K (phosphoinositide 3-kinase)-
signaling pathway in this disease.
These data highlight host-microbe
interactions in patients with lung
cancer and may provide a novel target
for lung cancer prevention and/or
treatment.

Lung cancer is the leading cause of cancer
deaths worldwide and exceeds the combined
total deaths for breast, colon, prostate, and
kidney cancers (1). Although smoking is a
well-established risk factor for lung cancer,
only 15% of smokers will develop lung cancer
(2). Similarly, chronic obstructive pulmonary
disease (COPD)/emphysema, a risk factor
for lung cancer independent of smoking,
develops in only 15% of smokers (3). Both
COPD and lung cancer development are
characterized by chronic inflammation, with
overlapping pathogenic pathways (4).

Evidence is mounting that the lung
microbiome may play a role in cancer
pathogenesis. Lung cancer is associated
with diseases, such as COPD, HIV, and
Chlamydia infections, where chronic
airway infection is common (5-7). In
experimentally challenged germ-free rats,
lung cancer development is less frequent
than in conventional control rats (8).
Chronic administration of LPS in mice leads
to lung tumorigenesis (9). Disruption of

commensal bacterial growth with antibiotics
in a mouse model affects the y8T17 cell
response, leading to aggressive metastatic
pulmonary tumor development (10).

The use of culture-independent
techniques for sequencing bacterial 16S
ribosomal RNA (rRNA) genes has led to an
increased awareness that the lower airway
microbial environment (collectively called
the lung microbiome) may play an
important role in the pathogenesis of lung
diseases. In a small cohort study, Veillonella
and Megasphaera were found to be
enriched in the lower airways of subjects
with lung adenocarcinoma (11). Distinct
lung microbiota identified in the lower
airways was found to have an impact on
the host immune phenotype (12-15).

We have also reported that the enrichment
of the lower airway microbiome with

oral anaerobic taxa, including Veillonella
species, is associated with increased
infiltration with inflammatory cells (Th17
cells) and upregulation of the ERK
(extracellular signal-regulated kinase)/PI3K
(phosphoinositide 3-kinase) pathway in
bronchial epithelial cells (16). Importantly,
PI3K pathway upregulation was previously
shown to be an early pathogenetic event in
non-small-cell lung carcinoma, regulating
cell proliferation, survival, differentiation,
and cell invasion (17). Current evidence
suggests that a dysbiotic lower airway
microbiota could affect lung carcinogenesis
through different mechanisms, including
induction of host inflammatory pathways,
production of bacterial toxins that alters
host genomic stability, and release of
cancer-promoting microbial metabolites
(18). In this study, we tested the hypothesis
that disruption of the lower airway
microbiota is associated with an altered
airway transcriptome affecting signaling
pathways, such as PI3K, that are related to
lung cancer pathogenesis. Some of the
results in this study have been previously
reported in the form of an abstract (19).

Methods

Subjects

All subjects signed informed consent

to participate in this study, which was
approved by the institutional review board
of New York University. Participants included
patients who had suspicious nodules

on chest imaging and underwent clinical
bronchoscopy. The histopathological
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diagnosis separated these subjects

into the “lung cancer” group (n=39) or

the “disease control” group (n=36). In
addition, a “healthy control” group (n = 10),
which consisted of never smokers without
respiratory symptoms, abnormalities on chest
X-ray, or known lung disease, underwent
research bronchoscopy. We excluded
subjects with a prior history of cancer or
recent (<1 mo) antibiotic use.

Bronchoscopic Procedure

Both background and supraglottic (buccal)
samples were obtained before the procedure
(see Figure E1A in the online supplement).
The background sample was obtained by
passing sterile saline through the suctioning
channel of the bronchoscope before the
procedure. In cases with suspicious nodules,
lower airway samples were collected via
cytology brush of: I) the “involved” airway
leading to the segment containing the lung
nodule, and 2) the “uninvolved” airway
leading to a segment that was spared of
disease, usually in the lobe contralateral to the
suspicious nodule (Figure E1B). In healthy
control subjects, research bronchoscopy
obtained only one lower airway brushing,
labeled as “uninvolved” segment. See the
online supplement for details.

Transcriptome of Bronchial Epithelial
Cells

RNA sequencing was performed on
bronchial epithelial cells obtained by airway
brushing, as described (20-22), using the
Hi-seq/Illumina platform at the New York
University Genomic Technology Center
(data available at Sequence Read Archive:
#PRJNA412846). Kyoto Encyclopedia

of Genes and Genomes annotation was
summarized at levels 1 to 3. Genes with
an false discovery rate (FDR)-corrected
adjusted P value < 0.15 were considered
significantly differentiated, unless otherwise
specified. Pathway analysis using differentially
regulated genes (FDR < 0.15) was done using
Ingenuity Pathway Analysis (IPA; QIAGEN
Inc.) (23). Gene set enrichment analysis
(GSEA) was performed with differential genes
(FDR < 0.1) for dataset comparison (R package
fgsea v1.4.1) (24).

Bacterial 16S rRNA-Encoding Genes
Sequencing

High-throughput sequencing of bacterial
16S rRNA-encoding gene amplicons
(V4 region) (25) was performed (data
available at Sequence Read Archive:
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#PRJNA397867). Reagent control samples
and mock mixed microbial DNA were
sequenced and analyzed in parallel. The
obtained 16S rRNA gene sequences were
analyzed with the Quantitative Insights into
Microbial Ecology (QIIME) 1.9.1 package
(26). Operational taxonomic units were
not removed from upstream analysis.
Permutational multivariate analysis of variance
(PERMANOVA) testing was used to compare
the compositional differences of groups.
Sample clustering of metacommunities
was based on Dirichlet multinomial
mixtures modeling (27). Sparse Correlations
for Compositional data (SparCC) was used
to evaluate cooccurrence between taxa
(28). Genera cooccurring significantly
(P < 0.05), with rho greater than 0.7
or rho less than —0.7, were included in
network analyses. Random forest supervised
learning (QIIME) was used to determine
genera that were most discriminant between
cancer and noncancer (29, 30).

In Vitro Epithelial Cell Line Exposure
A549 cell lines, and cells of the bacterial
strains Prevotella melaninogenica (ATCC
#25845), Streptococcus mitis (ATCC #49456),
and Veillonella parvula (ATCC #10790) were
used to assess interactions. Each well with
airway epithelial cells (1 X 10° in 2 ml of
media) was exposed to each of the following
conditions for a total of 4 hours: BAL 100 pl,
LPS 10 ng/ml, 50 pl bacterial supernatant, and
10 pl heat-killed bacteria, or dilution buffer
alone (control). Cigarette smoke condensate
(40 pg/ml) (Murty Pharmaceuticals) was
added with or without bacterial products. A
detailed description of the in vitro experiments
can be found in the online supplement.

Statistical Analysis

Analysis was performed comparing samples
from three different groups: lung cancer,
disease control, and healthy control. For
association with discrete factors, we used
either the Mann-Whitney test or the
Kruskal-Wallis ANOVA. Paired statistics
(Wilcoxon signed rank test) were used

for paired comparison of continuous
parameters. To evaluate transcriptome and
16S rRNA gene sequencing data differences
between cancer, disease control, and healthy
control groups, we used linear discriminant
analysis effect size (LEfSe) (31). To examine
associations between specific operational
taxonomic units and the differential expression
of host genes in the context of lung cancer, we
used the compositionally robust sparse partial
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least squares (compPLS) framework, as
described (32, 33).

Results

Subjects and Clinical Characteristics
Eighty-five subjects participated in this
study, and 39 subjects were eventually
diagnosed with lung cancer. Subjects
without lung cancer were separated into two
groups: 1) a disease control group (n = 36),
with a benign pulmonary nodule; and 2)

a healthy control group (n =10), which
included volunteer subjects with no lung
disease. The mean age of the total cohort
was 61.2 years, with 66% men, 52.9% white,
and 88.9% smokers, with a mean history
of 30.9 pack-years (Table 1). The lung
cancer group had a higher pack-year
history (41.8 vs. 29.3 pack-years) than the
disease control group, a difference that did
not reach statistical significance. The
healthy control group consisted of never
smokers. Adenocarcinoma occurred in 22
of 39 (56.4%) subjects with lung cancer.

Evaluation of the Lower Airway
Transcriptome

After quality control, RNAseq data were
obtained on 94 lower airway samples. A
principal coordinate analysis (PCoA) on the
basis of the Bray-Curtis dissimilarity index
showed that the global patterns of gene
expression were significantly different
between involved and uninvolved airway
samples (Figure E2; PERMANOVA P=
0.001). We therefore examined for
differences between cancer and the two
control groups in each of these two
different types of samples. Because of the
diversity of diagnoses in the disease group,
we used the noninvolved segments as the
control samples (Figure E1B). PCoA
analysis showed significant differences
between involved-cancer airway samples,
disease control samples, and healthy
control samples (PERMANOVA P < 0.05;
Figure 1A). Level 3 summarized Kyoto
Encyclopedia of Genes and Genomes
pathway evaluated for differences in
functional pathways in involved-cancer,
disease control, and healthy control samples
(Figure 1B). Compared with both control
groups, involved-cancer samples had
significantly upregulated signaling pathways,
including Hippo, MAPK (mitogen-activated
protein kinase), TNF (tumor necrosis factor),
toll-like receptor, T-cell receptor, B-cell

receptor, bacterial invasion of epithelial cells,
colorectal cancer, and epithelial cell signaling
with Helicobacter pylori pathways.

We then evaluated functional
enrichment of transcriptomic data between
cancer, disease control, and healthy control
samples, focusing on differentially expressed
genes (FDR < 0.15). Compared with
disease controls and healthy controls, the
cancer group showed strong induction of
the PI3K/AKT (protein kinase B) and
ERK/MAPK signaling pathways (Figures
1C and E4, Table E1). Detailed analyses
with uninvolved-cancer samples and
involved disease samples are shown in
Figure E3 and Figure E5, respectively.

Using GSEA with FDR less than 0.1, we
compared the transcriptomic signature (lung
cancer vs. disease control) to prior published
datasets (34-36), which showed significant
overlap in gene expressions, reproducing prior
observations that p53, PI3K, EGF (epidermal
growth factor) receptor, and Ras signaling
pathways are induced in lower airways of
subjects with lung cancer (Figure 1D).

16S rRNA Gene Sequence Data

A total of 190 airway samples (buccal and
lower airway) were used for analysis of 16S
rRNA gene sequences. Of the 120 lower
airway samples, 62 were obtained from
airways leading to the involved segments,
and 58 were from airways spared of disease.
Unsupervised hierarchical clustering for all
190 airway samples and 72 background
samples (Figure E6) showed some airway
samples were enriched with oral anaerobes
Prevotella, Streptococcus, and Veillonella,
whereas others were enriched with taxa
commonly found in background samples;
this unsupervised hierarchical clustering
based on relative abundance of most abundant
taxa did not correlate with cancer status in
either lower airway or buccal samples. PCoA
did show significant differences in 3-diversity
by sample location type (P << 0.001,
PERMANOVA) (Figure E7A).

Next, we analyzed data on the basis of
cancer status. There were no differences
(- and B-diversity) seen in the buccal
samples between cancer and noncancer
(Figure E8A). However, in the lower
airway samples, cancer (involved) and
noncancer (disease and healthy) samples
differed significantly in B-diversity
(PERMANOVA P < 0.05) (Figure 2A).
LEfSe identified several taxonomic differences
between cancer versus the two control
groups (Figure 2B). Compared with disease
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Table 1. Demographic and Clinical Characteristics of the Cohort

All Subjects (n =85)

Age, yr 61.2+13.6
Sex, male 63 (48)
Race
White 52.9 (45)
Black 17.6 (15)
Asian 10.6 (9)
Hispanic 11.8 (11)
Other 5.9 (5)
Smoking status
Current smoker 28.9 (22)
Past smoker 56.6 (43)
Never smoker 14.5 (11)
Pack-years 30.9 = 30.0
Diagnosis
Non-lung cancer 54.1 (46)
Healthy
Benign NOS*
Infection
Lymphoma
Organizing PNA
Sarcoidosis
B
Other
Lung cancer 45.9 (39)
Adeno
Squamous
Small cell

Carcinoma NOS

Healthy (n = 10)

421+13.6 60.7 = 12.2
90 (9) 56 (20)
50 (5) 56 (20)
30 (3) 5.6 (2)

0 8.1 (3)
10 (1) 222 (8)
10 (1) 8.1 (3)

0 30.6 (11)

0 50.0 (18)

100 (10) 19.4 (7)

0 29.3 =252
100 (10)
66.7 (24)

6.5 (3)
4.3 (2)
2.2 (1)
2.2 (1)
6.5 (2)
2.2 (1)

Disease (n =36)

Lung Cancer (n =39) P Value*
66.2 + 9.2 ns’
69.2 (27) ns
51.3 (20) ns
25.6 (10) 0.0247
15.4 (6) ns'
5.1 (2) 0.024"
2.6 (1) ns’
30.8 (12) ns
66.7 (26) ns’
2.6 (1) 0.0197
41.83 +32.1 ns’
56.4 (22)
25.6 (10)
12.8 (5)
5.1 (2)

Definition of abbreviations: NOS = not otherwise specified; ns = not significant; PNA = pneumonia; TB = tuberculosis.

Data are presented as % (n) or mean = SD.

*P values based on Mann-Whitney U or chi-square (continuous or categorical variables, respectively) comparing lung cancer versus disease control.

TSignificant (P value < 0.05) differences on the basis of Kruskal-Wallis test comparing all three groups.

*NOS indicates clinically diagnosed as non-lung cancer; however, no specific diagnosis made.

and healthy controls, involved cancer airway
samples were enriched with Strepfococcus and
Veillonella. Disease control samples were
enriched with Streptophyta, Moraxellaceae,
and Stenotrophomonas, whereas healthy
control samples were enriched with
Acholeplasma and Acidocella. Analyses of
uninvolved cancer airway samples shared
many similar findings compared with the
involved cancer airway samples (Figure E9).

Multi-omic Analysis

To better characterize host-microbe
interaction in this cohort, we used a
multi-omic analytical approach combining
microbiome and host epithelial transcriptomic
data. First, using a Dirichlet multinomial
model, we established that two clusters
were optimal for the 16S rRNA gene
sequence data (Figures E11A and E11B).
LEfSe identified taxa most differentially
enriched in these two distinct clusters
(Figure E12A). In one cluster, oral

taxa such as Streptococcus, Prevotella,

Veillonella, and Rothia were enriched
(Figure E12B), and we called it “cluster
SPT” (for supraglottic-predominant taxa,
which is in agreement with our prior
publication) (16). In the other cluster,
Xanthomondaceae, Staphylococcus,
Corynebacterium, Methylobacterium, and
Granulicatella (taxa found most abundantly
in background samples) were enriched,
and this was called “cluster BPT” (for
background-predominant taxa). The lower
airway samples from subjects with lung
cancer were more commonly characterized
as SPT-type microbiota than BPT-type
microbiota (chi-square P =0.026; Figure
E11C). We then examined differences in
the transcriptome associated with these two
distinct microbiota clusters. Of the 2,458
differentially expressed genes (FDR < 0.15)
between SPT and BPT, 1,605 (65.3%) were
upregulated in SPT. Functional enrichment
analysis using IPA showed that the most
differential networks generated were the
ERK1/2 and PI3K signaling pathways
(Figure E12C and Table E3).

Tsay, Wu, Badri, et al.: Lung Microbiome and Lung Cancer

Next, we used SparCC to generate a
cooccurrence network of taxa found in the
lower airways (at the genus level). This
analysis demonstrated two distinct taxa
clusters: one dominated by oral commensals
and the other dominated by taxa commonly
found in background environmental
controls (Figure E13). A random forests
classifier identified that among the taxa
predictive for lung cancer, the most abundant
genera were Prevotella, Veillonella, and
Streptococcus.

compPLS was used to identify
associations between abundant genera from
cluster SPT and signaling pathways related
to lung cancer. This analysis was adjusted by
smoking status and for paired samples
obtained in subjects. Significant (adjusted
P value [FDR < 0.1], on the basis of empirical
P value calculated over 5,000 bootstraps)
positive associations were identified
between several oral commensals and
ERK/MAPK, PI3K/AKT, transforming
growth factor-B, p53, nuclear factor-«B,
and other cancer-related signaling pathways

1191



A B C > F

Enriched in: Hippo

Infection
M Lung cancer Influenza
LC vs DC p=0.002 HCM
LCvs H Po 001 M Disease control Focal *g:ye;g: g
vs H p=0.
P Healthy control Rap1

DC vs H p=ns Osteoclast diff.
Bacterial invasion epi. cell

Shigellosis _}
MAPK
Dilatd Card.

Platelet Actitvati
NF |
Thyroid hormone
Hepatitis B _|
Leukeyte mirgration
Adherens Jxn
Vibrio cholerae
Cytokine-cytokine receptor
Toll- like receptor
Epi. Cell signaling in H. pylori
ine add.

14-3-3-mediated
Angiopoietin
Apoptosis

Colorectal Cancer Met
ERK/MAPK

HER-2 (Breast Cancer)
HIPPO

IL-17

IL-17A (Airway Cells)
Inflammasome B 2

Insulin Receptor p
JAK/Stat
LPS-stimulated MAPK | [}
Mole. Mech. of Cancer

mTOR .

Myc (Apoptosis) I ©
NF-xB

NSCLC

NRF2 (O2 Stress)
Ovarian Cancer

p53

PI3K (B Lymphocytes)
PI3K/AKT

PTEN

Small Cell Lung Cancer
STAT3

VEGF

PC2 (15.8%)

MicroRNA in cancer |
_______ - T-cell receptor
Disease control Colorectal ca

l Renal cell ca |
—

| Healthy control
—

Z-score

NFxB

Cocaine add. ]

Pluripotency of stem cell ]
RNA

B-cell receptor
ErbB
Prolactin
Bladder ca
PC1 (24.6%) o syrapse
p53

CML

Wnt

Cholinergic synapse
oocyte

maturation |

Renin secretion -
Huntingon 39 —
Parkinson 39 —

|

1'

°

1000 10000 100000 1000000

log read counts.

GSEA

Tsay et al. 10
Beane et al. *
Kadara et al. *

Spira et al. *

1 10 100 1000 10000
Signature Genes
* FDR adjusted significant p values < 0.1 Top 25 signaling pathways

Common Genes
Chemkine/cytokine

FGF
G-protein (Gg/Go)

Integrin
Endothelin

T-Cell

G-protein (Gi/Gs)
p53 feedback
PI3 kinase

-gulation

Catherine
EGFR
Angiogensis
PDGF
Huntington
Interluekin
Apoptosis
Oxidative stress

GnRH
P53

CCKR
Wnt
TGF-B
Ras
VEGF

Figure 1. Differences in airway transcriptome between cancer, disease control, and healthy control. (A) Transcriptomic differences between involved
airway of subjects with cancer (red, LC), disease control (dark green, DC), and healthy control (light green, H) were explored using principal coordinate
analysis on the basis of Bray-Curtis dissimilarity index. Disease control samples were defined as airway samples from segments without disease from
subjects with benign lung nodules. Significant differences were identified in B-diversity of transcriptome data in involved airways of subjects with cancer
compared with both control subjects (permutational multivariate analysis of variance P value < 0.05). (B) Linear discriminant analysis (LDA > 2) detected
significant differences in transcriptome (summarized L3 data) between involved cancer airway and both control groups. (C) Ingenuity pathway analysis was
used to identify canonical pathways dysregulated in lung cancer when compared with the two control groups (differential gene FDR < 0.15). ERK and PI3K
pathways were among those identified as upregulated in lung cancer airways when compared with control groups. (D) Gene set enrichment analysis of
transcriptomic differences identified between lung cancer versus disease control (false discovery rate [FDR] < 0.15) was compared with transcriptomic
differences previously published in three studies (34-36). Histogram on the left shows the number of transcriptomic signature genes identified in each study
(84-36), with the genes in common with our current investigation highlighted in red. Histogram on the right shows signaling pathways shared between
the current investigation and the other three prior studies. AKT = protein kinase B; CCKR = cholecystokinin receptor; CML = chronic myeloid leukemia;
EGFR = epidermal growth factor receptor; ERK = extracellular signal-regulated kinase; FGF = fibroblast growth factor; HCM = hypertrophic cardiomyopathy;
HER-2 = human epidermal growth factor receptor 2; GnRH = gonadotropin-releasing hormone; GSEA = gene set enrichment analysis; Inv. = involved;
JAK/Stat = Janus kinase/signal transducer and activator of transcription protein; MAPK = mitogen-activated protein kinase; mTOR = mammalian target of
rapamycin; NF-kB = nuclear factor-kB; NRF2 = nuclear factor (erythroid-derived-2)-like 2; NSCLC = non-small-cell lung cancer; PC = principal component;
PDGF = platelet-derived growth factor; PI3K = phosphoinositide 3-kinase; PTEN = phosphatase and tensin homolog; STAT3 = signal transducer and activator
of transcription 3; TGF-B = transforming growth factor-@; TNF = tumor necrosis factor; VEGF = vascular endothelial growth factor; Wnt = wingless/integrated.

(Figures 3, E14, and E15). Variance significantly associated with cancer- To further explore the relationship
decomposition to adjust for the effects of  relevant pathways were Megasphaera and  between Veillonella and lung cancer, we
smoking status did not change the Veillonella, which we have described as performed 16S rRNA gene sequencing of
taxa-pathway associations in the model. characteristic oral commensals and found  surgically obtained lung tissue on a separate
The most abundant taxa identified as in pneumotypespr (12, 16). cohort of five subjects with adenocarcinoma.
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Figure 2. Differences in airway microbiota between cancer, disease control, and healthy control. (A) B-diversity comparisons of microbiota composition
were explored using principal coordinate analysis on the basis of Bray-Curtis dissimilarity index between cancer (involved lung segments) and noncancer
of airways. The microbiome of involved airways of subjects with cancer (red, LC) was significantly different when compared with disease control

(dark green, DC) and healthy control (light green, H) (permutational multivariate analysis of variance P value < 0.05 for all comparisons). (B) Linear
discriminant analysis (LDA > 2) detected differential taxonomic enrichment in involved airways from subjects with cancer when compared with both
control groups. PC = principal component; u.g. = undetermined genus.

This analysis showed that Veillonella was
more highly enriched in the involved lung
tumor tissue than in the uninvolved lung
(P =0.04) (Figure E16), suggesting that a
relationship may exist with lung cancer.

In vitro Coculture of Airway Epithelial
Cells with Bacterial Products

To explore possible causal relationships
between exposure to bacteria and airway
epithelial cell transcriptomic changes
identified in the human cohort, we
performed three in vitro experiments using
cultured A549 cells exposed to microbial
products (Figure 4A). For in vitro
experiment 1, we used microbiota present
in whole BAL available from a subgroup
of control subjects (n =8, uninvolved
segments). These BAL samples were
characterized as 1) samples enriched with
BPT, 2) samples enriched with SPT with
low bacterial load (SPT),,), and 3) samples
enriched with SPT with high bacterial
load (SPThn) (Figure 17C; see online
supplement for more details). Then, A549
cells were exposed in triplicate to the above-
mentioned conditions (BPT, SPTj,., and
SPThign, as compared with PBS control) for
4 hours, followed by harvest for RNA.

Compared with PBS, BPT did not alter
the transcriptome. However, in SPT (low
and high), IPA showed upregulation of
upstream networks in the ERK, IL17,
PI3K, and VEGF (vascular endothelial
growth factor) signaling pathways and
downregulation of the PTEN (phosphatase
and tensin homolog) signaling pathway
(FDR < 0.15), which is a known negative
regulator of PI3K signaling (Figures 4B and
4C). This suggested that the transcriptomic
changes were predominantly driven by
microbial products found in a microbiota
enriched with supraglottic taxa.

We next exposed airway epithelial cells
to supernatants from viable or heat-killed
bacteria found in SPT (in vitro experiment
2). In addition, LPS was added as an
experimental condition to explore TLR4
(Toll-like receptor 4) signaling. Each
condition was performed in triplicate or
quadruplicate. Exposure to supernatant
from Veillonella or exposure to heat-killed
bacteria led to upregulation of ERK,

PI3K, and IL17A signaling pathways
(Figures 4B and 4D). LPS and supernatant
from Prevotella or Streptococcus did not
upregulate PI3K, suggesting differences

in pathways of activation and that TLR4

Tsay, Wu, Badri, et al.: Lung Microbiome and Lung Cancer

signaling is not responsible for the observed
transcriptional changes. Interestingly,
Veillonella supernatant, heat-killed
Veillonella, and heat-killed Prevotella
upregulated IL-13, IL-18, CASP1 (caspase-
1), and NLRP1 (NACHT, LRR, and PYD
domains-containing protein 1), suggesting
that the inflammasome might be recognizing
some immune-active microbial product
in these conditions (Figure 4B).

Finally, we explored the effects of
microbes in conjunction with cigarette
smoke condensate (CSC, in vitro
experiment 3). First, addition of CSC alone
led to upregulation of the aryl hydrocarbon
receptor signaling (37, 38) and ERK1/2 and
PI3K signaling pathways (Table E3). The
addition of bacterial products to CSC-
exposed A549 epithelial cells led to further
upregulation in genes related to the ERK1/2
and PI3K signaling pathways (Figures 4B
and 4E). Taken together, these findings
suggest that exposure to oral commensals
may further augment transcriptomic
signaling changes beyond the effects of
cigarette smoke. GSEA analysis showed the
degree of overlap between the cancer
transcriptome signature identified in the
human cohort and in vitro transcriptome
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data. Several of the in vitro experimental
conditions shared regulation of more than
100 genes with human transcriptome
changes seen in lung cancer (FDR < 0.1)
(Figure 4F). These changes included p53,
apoptosis, p38 MAPK, and EGFR (epidermal
growth factor receptor) signaling pathways
(Figure E18).

Discussion

This investigation uncovered significant
associations between the lower airway
microbiota and transcriptional changes in
epithelial cells that may be relevant for lung
cancer pathogenesis. The results presented
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here extend our prior report of the
association between the lower airway
microbiota and the host immune endotype
in healthy subjects (16) by identifying
enrichment of the lower airways with
several taxa commonly recognized as part
of the oral commensal microbiota in lung
cancer. Importantly, the transcriptional
changes (identified using RNA sequence)
associated with the lower airway microbiota
and adjusted by multiple covariates
occurred in several previously reported
cancer pathways (as demonstrated by our
GSEA analysis). Some of these associations
occurred within the airway mucosae of lung
segments proximal to the cancerous lesions
as well as in uninvolved lung segments,

which were previously described as the field
of cancerization (39). Although multiple
taxa were identified as enriched in lung
cancer, the genus Veillonella was among the
most abundant and was most strongly
associated with transcriptomic changes.
Using a multi-omic approach adjusted for
relevant covariates (e.g., smoking status and
paired samples), this genus was significantly
associated with transcriptomic pathways
known to participate in the development
or progression of lung cancer. Using

an in vitro model, we further validated
that the PI3K signaling pathway is
activated in airway epithelial cells exposed
to Veillonella. The ERK and PI3K
signaling pathways, previously shown to
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be upregulated in the lung field of
cancerization (17, 35, 40, 41), consist of
kinase cascades, which participate in
regulating cell proliferation, survival, and
differentiation (42). Specifically, PI3K/Akt
activation in bronchial airway epithelium is
an early event in lung tumor development
(17), its deregulation is associated with
disease progression (43), and, hence, it may
be a therapeutic target (44). New evidence
has shown that manipulation of the gut
microbiome augments the antitumor
immunity of checkpoint inhibitors, a class
of drugs recently approved for treatment of
lung cancer (45, 46). In light of these
observations, the data presented here
support a potential role for novel
therapeutic strategies in lung cancer that
target the lung microbial-host interface.

Using a multi-omic analysis, we noted
interesting bacterial cooccurrence and
identified specific taxa associated with lung
cancer. Using cooccurrence network
analysis (SparCC) we identified several
members of the oral microbiota that, when
present in the lower airways, were predictive
for lung cancer. The most abundant of these
oral commensals were Streptococcus,
Prevotella, and Veillonella. Using compPLS
analysis, Veillonella and Megasphaera were
associated with upregulating cancer
signaling pathways. These two organisms
were previously identified as present in
high relative abundance in BAL of
patients with lung cancer (11, 47). Our
experiments confirm and extend these
observations.

To explore the directionality of the
significant associations identified by this
cross-sectional human study, we exposed
malignant bronchial epithelial cell line to
Streptococcus, Prevotella, and Veillonella.
The observed upregulation in the PI3K and
ERK1/2 signaling pathways in the in vitro
model suggests a possible pathogenic
mechanism of these common oral microbiota
constituents. These bacteria may affect
the host by shedding different microbial
bioactive molecules. Because LPS did not
upregulate the PI3K and ERK1/2 signaling
pathways of airway epithelial cells in vitro,

other immune-active microbial products
are likely interacting with host epithelial
cells through different pattern recognition
receptors (such as the inflammasome)
and are responsible for host responses.
Interestingly, a novel therapy targeting
specific components of the inflammasome
pathway has recently been reported for
non-small-cell lung cancer (48).

In addition, it is also possible that
microbes such as Veillonella support the
growth of other taxa with well-recognized
pathogenic potential. For example, in a
murine model to evaluate the tumor
environment, Veillonella significantly
increased the cell numbers of Pseudomonas
aeruginosa in the tumor tissue (49).
Cigarette exposure, along with bacterial
exposure, on airway epithelial cells in the
in vitro experiment showed further
upregulation of the PI3K, ERK1/2, and
VEGEF signaling pathways, suggesting a
synergistic combination that may drive
carcinogenesis. Although transcriptome
signature in the CSC experiment
(experiment 3) showed large overlap
between CSC alone and human data
(GSEA), analysis of CSC/Veillonella
exposure to the in vivo data showed less
transcriptome overlap and nonsignificant
enrichment analysis. It is possible that
CSC exposure may have overshadowed the
effect of the bacteria on a global level.
However, through analysis with IPA at a
targeted level for known relevant cancer-
specific pathways, we were able to show
Veillonella/CSC had an additional effect on
upregulation of ERK, PI3K, and VEGF
when compared with CSC alone. Overall,
future investigations will need to identify
relevant microbial molecules and host
intermediate pathways responsible for the
PI3K and ERK1/2 signaling activation, as
well as to optimize the CSC concentration
to reflect true in vivo conditions.

The current investigation has several
limitations. Although we observed several
statistically significant differences in
transcriptomic and microbiomic analyses
associated with cancer, the clinical
significance of these findings cannot be

assessed with the current investigation. We
consider these findings as exploratory and
hypothesis generating. The cross-sectional
design of the human cohort prevents us
from determining the directionality of the
associations between microbes and host
endotype. For example, changes in the
airway transcriptome reflective of a
proinflammatory host endotype related to
lung cancer may exert distinct pressure on
the airway microbiota. Conversely, the
observed association could support the
hypothesis that enrichment of the lower
airway microbiome with oral commensals,
probably through microaspiration, leads
to upregulation of airway epithelial
pathways that promote inflammation and
affect cell apoptosis, dysplasia, and the
development of nascent malignant cells.
Although the in vitro model presented
here supports the plausibility of the
latter, the association between microbes
and host is likely bidirectional. Further
studies using longitudinal human cohorts
and in vivo experimentation are needed.
The differences noted in both the
airway transcriptome and airway microbiota
in subjects with cancer were less clear when
involved-cancer airway samples were
compared with involved-diseased
(non-lung cancer) airway samples (Figures
E5 and E10). Given the multiple diagnoses
in the control group, it is possible that other
lung diseases might also affect both the
transcriptome and the microbiome,
confounding these measurements. The
host-microbe interaction evaluated in
involved and uninvolved segments also may
reflect temporal differences of oncogenic
field-of-injury development (50). Another
limitation of the study is the lack of
direct sampling of the lung tumor/tumor
microenvironment. However, the
Veillonella enrichment in the small
cohort of surgically obtained cancer
tissue samples suggests that the tumor
microbiota may share features found in
the airway microbiota. In addition,
multiple lines of investigation have
found anaerobic conditions within the
tumor microenvironment, which favors

Figure 4. (Continued). mitis (both culture supernatant, heat-killed bacteria). Experiment 3: exposure to cigarette smoke condensate (CSC) and V. parvula
(heat-killed and supernatant). Each experiment was done in triplicate or quadruplicates. (B) Ingenuity Pathway Analysis (IPA) was used to identify canonical
pathways dysregulated in each in vitro experiment (false discovery rate [FDR] < 0.15). (C-E) IPA network analysis for transcriptomic changes (FDR < 0.15)
annotated to ERK (extracellular signal-regulated kinase) or PISK (phosphoinositide 3-kinase) pathways from one representative condition from each in vitro
experiment. (F) Gene set enrichment analysis (GSEA) of transcriptomic signatures (FDR < 0.15) comparing in vitro experiment to in vivo human data. Bar
chart compares transcriptomic changes for conditions identified in vitro with transcriptomic changes identified as associated with lung cancer on the basis

of our human data. Overlapping signature genes are shown in red. PBS = phosphate-buffered saline.
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colonization with anaerobes such as
Veillonella (51). It is important to note that
although we focused on the enrichment

of the lower airway microbiota with
Veillonella, other oral commensals, such as
Streptococcus, tend to cooccur and were
also enriched in the lower airways of
patients with lung cancer. Varying bacteria
may differentially contribute to the host
microbial interactions; future investigations
will be needed to dissect the nature of each
of these associations. Much less certain is
the role of the bacteria found negatively
associated with lung cancer. Although a
“protective” role is possible, it is important
to highlight that, for the most part, the taxa
identified as negatively associated with
cancer are commonly found in background
samples (e.g., bronchoscope) and may
represent bacterial DNA from nonviable
bacteria. We used immortalized airway
epithelial cells to explore whether exposure
to microbial products could elicit the
transcriptomic changes observed in vivo.
Although our data showed that some of
the bacteria associated with lung cancer
could induce pathways identified as
upregulated in lung cancer, we found

variability between different bacterial
products. We also acknowledge that we
cannot establish whether or not this is
specific to the bacteria studied or related
to the presence of viable bacteria in the
lower airways, because microbial

products present in BAL samples with BPT
did not lead to similar changes. Evaluating
bacteria viability is also challenging,

given the lack of well-defined culture
conditions for many of the organisms.
Future investigations should consider
alternative approaches in evaluating the
activation of these pathways. Using a
broad range of cell lines as well as ex

vivo bronchial epithelial cells obtained
from patients, such approaches will
increase the confidence in the observed
associations.

In conclusion, we determined that
enrichment of the lower airway microbiome
with oral commensals such as Veillonella
was associated with transcriptomic changes
of airway epithelial cells, including the
ERK/PI3K pathways relevant to lung
cancer. These findings shape our
understanding of how microbes present in
the lower airways may affect initial events

in the malignant transformation of airway
epithelial cells, the immune surveillance
needed to control nascent malignant cells,
and the tumor’s ability to proliferate and
metastasize. Our work complements recent
findings that antibiotic use affects lung
tumor size and survival and that changing
the gut microbiome affects immunotherapy
outcomes (10, 45, 46). This study improves
our understanding of the effects of the
lower airway microbiota on the host
endotype and provides a framework for
future investigations that may uncover
novel therapeutic microbial targets for lung
cancer.
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