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ABSTRACT The stability of the Escherichia coli populations in the human gastroin-
testinal tract is not fully appreciated, and represents a significant knowledge gap re-
garding gastrointestinal community structure, as well as resistance to incoming
pathogenic bacterial species and antibiotic treatment. The current study examines
the genomic content of 240 Escherichia coli isolates from 30 children, aged 2 to
35 months old, in Tanzania. The E. coli strains were isolated from three time points
spanning a six-month time period, with and without antibiotic treatment. The result-
ing isolates were sequenced, and the genomes compared. The findings in this study
highlight the transient nature of E. coli strains in the gastrointestinal tract of these
children, as during a six-month interval, no one individual contained phylogenomi-
cally related isolates at all three time points. While the majority of the isolates at any
one time point were phylogenomically similar, most individuals did not contain phy-
logenomically similar isolates at more than two time points. Examination of global
genome content, canonical E. coli virulence factors, multilocus sequence type, sero-
type, and antimicrobial resistance genes identified diversity even among phylog-
enomically similar strains. There was no apparent increase in the antimicrobial resis-
tance gene content after antibiotic treatment. The examination of the E. coli from
longitudinal samples from multiple children in Tanzania provides insight into the
genomic diversity and population variability of resident E. coli within the rapidly
changing environment of the gastrointestinal tract of these children.

IMPORTANCE This study increases the number of resident Escherichia coli genome
sequences, and explores E. coli diversity through longitudinal sampling. We investi-
gate the genomes of E. coli isolated from human gastrointestinal tracts as part of an
antibiotic treatment program among rural Tanzanian children. Phylogenomics dem-
onstrates that resident E. coli are diverse, even within a single host. Though the E.
coli isolates of the gastrointestinal community tend to be phylogenomically similar
at a given time, they differed across the interrogated time points, demonstrating the
variability of the members of the E. coli community in these subjects. Exposure to
antibiotic treatment did not have an apparent impact on the E. coli community or
the presence of resistance and virulence genes within E. coli genomes. The findings
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of this study highlight the variable nature of specific bacterial members of the hu-
man gastrointestinal tract.

KEYWORDS Escherichia coli, diversity, microbial genomics

Escherichia coli in the human gastrointestinal tract is often recognized as an impor-
tant source of disease (1, 2). As the causative agent of over 2 million deaths annually

due to diarrhea (3, 4), as well as millions of extraintestinal infections (5), its categori-
zation as a pathogen is not unwarranted. Particularly in developing countries, the
consequences of diarrheal E. coli are substantial among children under 5 years old, who
incur the majority of infections and deaths (3) and whose rapidly developing micro-
biomes can be impacted by frequent bouts of disease and subsequent treatment (6, 7).
Yet, E. coli is a dominant organism in the human gastrointestinal tract, identified in
greater than 90% of humans, and many other large mammals, often reaching concen-
trations up to 109 CFU per gram of feces (8) without causing disease. In this role as a
resident organism in healthy hosts, it is thought to have critical roles in digestion,
nutrition, metabolism, and protection against incoming enteric pathogens (9–12).
Despite the importance and involvement of E. coli in human health, studies of its role
as a native, nonpathogenic member of the human gastrointestinal microbiome are
poorly represented among genome sequencing, comparative analysis efforts and
functional characterization.

Investigations into E. coli strain diversity and persistence in the human gastrointes-
tinal tract are nothing new. In fact, studies going back to 1899 (13) have reported on
fecal E. coli diversity and persistence. Additional studies have continued to probe this
question with the advent of new microbiological technologies beginning with anti-
genic techniques (13, 14), electrophoresis (15, 16), and PCR (17), to name a few. Today,
thanks to the ready access of whole-genome sequencing, we have an unprecedented
opportunity to explore E. coli diversity and persistence at the genomic level. Most
studies of bacterial genomics have focused on pathogenic isolates over a limited time
frame. E. coli genomic studies are no exception, having concentrated on sequencing
single isolates, from single time points, and on samples related to a clinical presenta-
tion, such as diarrhea or urinary tract infection (10, 18–22). There have been fewer than
five closed genomes sequenced of nonpathogenic E. coli, in addition to a limited
number of draft genomes from isolates obtained from the feces of individuals who do
not have diarrhea (10, 22–25). To date, the genomic examination of longitudinal
isolates is lacking, thus hindering the ability to explore the diversity of E. coli isolates
both within host and across time. With the exception of Stoesser et al. (23), which
identified multiple isolates in single-host samples using single nucleotide polymor-
phism (SNP)-level analyses, most studies of resident E. coli were completed prior to
ready access to sequencing technologies (11), leaving much to be learned about E. coli
genomic diversity within and between human hosts over longitudinal sampling.

A population-based longitudinal cohort study, PRET� (Partnership for the Rapid
Elimination of Trachoma, January to July 2009), provided a unique opportunity to
examine both the diversity and dynamics of the E. coli isolates in the human gastro-
intestinal tract among children in rural Tanzania (26, 27). In the PRET� study, Seidman
et al. investigated the effects of mass distribution of azithromycin on antibiotic resis-
tance of resident E. coli (26, 27). E. coli bacteria were isolated from fecal swabs obtained
from 30 children aged 2 to 35 months old living in rural Tanzania, half (15 children) of
whom were given a single oral prophylactic azithromycin treatment for trachoma (an
infection of the eye caused by Chlamydia trachomatis). E. coli isolates from this cohort
were selected for genome sequencing and comparative analyses to investigate the
within-subject and longitudinal diversity of E. coli isolates in children (see Table S1 in
the supplemental material). Up to three isolates per individual, from each of three time
points spanning six months, were collected in the PRET� study, providing up to nine
potential isolates from each subject for examination (Fig. 1).

Samples from the current study provide insight into E. coli diversity within a subject
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over several time points. While other studies have examined resident E. coli in children
in developing countries, they limited their focus to using PCR and in vitro lab tech-
niques to identify a limited set of canonical virulence genes and determine resistance
profiles of the isolated strains (28–30). In addition to the virulence- and resistance-
associated gene content, the current study demonstrates previously uncharacterized
diversity among E. coli isolates from the human gastrointestinal tract on a whole-
genome level within and across sampling periods. This work represents the most
comprehensive longitudinal genomic study of resident E. coli within the human gas-
trointestinal tract and expands knowledge of the nonpathogen gut flora by increasing
the available genome sequences of resident E. coli and highlighting the dynamic nature
of the E. coli community.

RESULTS
Selection of E. coli strains for genome sequencing. A total of 247 E. coli isolates

from 30 subjects (17 male and 13 female as shown in Fig. 2) in the study by Seidman
et al. (26, 27) were selected for DNA extraction and genome assembly, based on the
criteria that these subjects contributed the most complete longitudinal collection of
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MDA Treatment with Azithromycin
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FIG 1 Overall study design. The overall design of the study highlighting the sampling of up to three
distinct colonies on three time points, one of which, termed the baseline, occurs prior to the adminis-
tration of antibiotics in half of the subjects.
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FIG 2 Isolate metadata. Summary of metadata showing time point of isolation, treatment group, host sex, clinical presentation, and the identification of
pathogenic markers for ETEC, EAEC, or EPEC pathotypes for each isolate by subject. Further details in Table S1.
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isolates (i.e., the greatest number of subjects with the greatest number of possible
isolates). Of these, 240 isolates provided acceptable sequence quality to generate
genome assemblies with a genome size and GC content that is characteristic of E. coli
to be analyzed using comparative genomics. The average genome size was 5.17 Mb
(range 4.46 to 5.81 Mb) with a 50.69% GC content (range 50.21 to 51.04%), similar to
other known E. coli genomes (see Table S1 in the supplemental material). Of the 240
isolates, 120 isolates were from the subjects who received the antibiotic treatment of
a single oral dose of prophylactic azithromycin, and 120 isolates were from subjects in
the nontreatment (control) group (Table S1 and Fig. 2).

Subject clinical state and E. coli pathotype identification. There were 17 in-

stances in which subjects had active diarrhea at the time of sample collection (12
instances occurred at the baseline time point), yielding 46 isolates from diarrheal
conditions (26, 27), 23 each from the antibiotic treatment and control groups. All cases
of diarrhea were identified in children under the age of 2. Only 10 of these isolates
(21.7%) contained canonical virulence factors belonging to the EPEC (3 isolates), ETEC
(6 isolates), or EAEC (1 isolate) pathotypes (Fig. 2), as determined by sequence homol-
ogy searches of canonical virulence genes in the assembled genomes. In most cases,
observed diarrhea could not be associated with a prototypically virulent E. coli strain in
this data set. Other sources of diarrhea were not investigated.

An additional 61 isolates from 19 individuals contained canonical E. coli virulence
factors, but were not obtained from samples taken during an active diarrheal event.
These data indicate that the presence of a potentially virulent E. coli strain does not
necessarily result in clinical presentation of diarrhea. Overall, in our data set association
between diarrheal cases and incidence of isolates containing canonical E. coli virulence
factors was rare.

Phylogenomic analysis. Phylogenomic analysis of the isolates identified a diverse

population of E. coli within the gastrointestinal community of these children. A phylo-
genetic tree of the 240 isolates from this study plus 33 reference E. coli and Shigella
genomes (Table S2) was used to assess the genomic similarity of the isolates from a
single subject both within and across time points, as well as between subjects over
the study period (Fig. 3). The SNP-based phylogenomic analysis of the draft and
reference genomes identified 304,497 polymorphic single nucleotide genomic sites.
The isolates from the current study were identified in the established E. coli
phylogroups: A (132 isolates), B1 (62 isolates), B2 (24 isolates), D (17 isolates), and
E (2 isolates) (Fig. 3 and Table S1). Additionally, three isolate genomes (isolates
1_176_05_S3_C2, 2_011_08_S1_C1, and 2_156_04_S3_C2) fell into cryptic clades
located outside the established E. coli phylogroups. The distributions of the E. coli
isolates in each of these phylogroups were not associated with any of the clinical
parameters associated with these isolates.

To further investigate the E. coli diversity of an individual subject at a given time, we
analyzed the phylogenetic groupings of isolates from each subject at each time point.
Most isolates from an individual at a single time point group together within a single
phylogenomic lineage, where a lineage is defined as a terminal grouping of isolates
(54.4%; 49 of the 90 same-subject time points). One-third (35.5%; 32/90 of the same-
subject time point isolates) fell into two distinct lineages, and in 10% (9/90 time points),
all isolates belonged to a distinct lineage (Table 1). Overall, these data suggest that
while there is considerable diversity among the isolates from many of the subjects, in
over half of them, the population of E. coli at a given time point displays limited
phylogenomic variation. The relatedness of co-occurring isolates was further confirmed
by comparing the total gene content of the genomes from each subject. Those
genomes found in the same phylogenetic clade had fewer divergent genes when the
genomes were compared (average of 147.9 � 120.1) than those found in different
clades (average of 2,629.1 � 339.4) (Table S3), further confirming the relatedness of the
isolates within each clade.
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These E. coli populations were variable over time, demonstrating increased E. coli
diversity in each subject when observed over the multiple time points. Same-subject
isolates from different time points resided in distinct phylogenomic lineages in 93.3%
(28/30) of subjects, whereas more than half of the isolates from any individual at a
single time point grouped together in a single lineage. Only two subjects had isolates
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from multiple time points that occupied the same lineage (subjects 4_203_08 and
8_415_05) (illustrated in Fig. 3 and detailed in Table S4). In contrast, all isolates from
subject 3_475_03 were phylogenomically distinct (Fig. 3). These examples of the
phylogenomic distributions of isolates represent the extremes of conservation or
diversity that are observed with this study. Additional sampling will most likely reveal
that the isolates within these individuals are not conserved or diverse as this initial
sampling would suggest, but they do represent the possible distributions of the isolates
within a subject over time.

Multilocus sequence typing and molecular serotyping. The genomes in this
study comprise a combined total of 87 sequence types (STs) (Table S1). The most
common ST was ST10, which was represented by 40 of the E. coli genomes, while 40
additional STs occurred only once (Table S1). Only five isolates were from ST131, which
has been demonstrated to be associated with the spread of antimicrobial resistance
(31). There were, on average, 1.5 (range 1 to 3) STs among isolates from a subject at a
single time point, and an average of 4.4 (range 2 to 7) STs per subject across all time
points. Since the total number of available isolates per subject varied, the values were
normalized per the number of isolates, revealing an average of 2 (range 1 to 4) isolates
per sequence type and mimicking the diversity observed in the phylogenomic analyses
(Fig. 4 and Table S4).

Similar to MLST, serotype analyses (32) reflect the diversity observed in the phylog-
enomic analysis (Table S4). The 240 isolates represent a combined total of 106 O:H
serotypes, with 54 of them occurring only once in the data set, making serotype a
finer-scale measure of diversity than MLST. There is an average of 1.63 (range 1 to 3)
different serotypes in isolates from the same time point and 4.7 (range 2 to 7) serotypes
in a subject across all time points. The O, H, or either serotype could not be predicted
in 33 isolates (Table S1). In silico analyses were unable to distinguish between some
serotypes in an additional 58 isolates (Table S1). This left 149 isolates that could be
unambiguously assigned a single serotype (Table S1).

Nearly all isolates that shared a serotype also shared an MLST sequence type and
phylogroup (Table S1). There are five examples (excluding those isolates in which the
serotype could not be unambiguously differentiated) where MLST, serotype, and
phylogroup were not congruent (Table S5), suggesting molecular variation and strain
differentiation could not be detected by a single method alone. The combination of
these detailed molecular methods could add nuance to diversity measurements in
closely related strains.

8 415 05

4 203 08

3 475 03

1 182 04

73 226

unknown 

5318 10
1421 29

43
200 328 

757 

5372 
5257 

1286 

216 

FIG 4 Phylogenomic distribution of sequence types of isolates from select subjects. A cladogram of the phylogeny highlighting relative positions of genomes
of isolates from selected subjects with MLST sequence types shown in colored blocks corresponding to the sequence type as shown in the legend. Selected
example subjects highlight low diversity within time points but high diversity across time (subject 1_182_04), high diversity within and across time (3_475_03),
intermediate diversity across time (4_203_08), and low diversity across time (8_415_05).
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Genome content determined using LS-BSR. Variations in genome content further
demonstrated the diversity of the E. coli isolate genomes both within and between time
points. Using the LS-BSR analysis (33) and an ergatis-based annotation pipeline, a gene
content profile was determined which identified 32,950 genes in the pangenome of the
240 isolate genomes. More than 3,000 genes in any single genome were comprised of
genes that vary between genomes, leaving only approximately 2,000 genes in the
conserved core, as has been previously identified (10, 22). This level of variation is true
even among the isolates from subject 8_415_05 in which the isolates from the 3-month
and 6-month time points group together phylogenomically, and are of the same MLST
sequence type. In this case, each isolate contains an average of 220 (range 95 to 259)
variable genes. Given the level of diversity suggested by the variability of the gene
content, more detailed SNP analyses, as previously performed by Stoesser et al. (23),
were deemed unnecessary.

Antibiotic resistance-associated gene profiles. The antibiotic treatment of half of
the children in this study provided a unique opportunity to investigate the impact of
antibiotic treatment on the prevalence and maintenance of antibiotic resistance genes
in the E. coli community at 3 and 6 months after administration. Antibiotic resistance
genes were investigated in the isolate genomes using 1,371 genes from the Compre-
hensive Antibiotic Resistance Database (CARD) (34). The resistance gene profiles (as-
sortment of present/absent genes) for each isolate were used to create a cladogram to
investigate the relationships among isolates by time and by subject (Fig. S2). These
relationships were then compared to those in the phylogenomic groupings as well as
in the cladogram of virulence gene profiles (Table S6 and Fig. S3). Similar clustering
patterns were identified between the whole-genome phylogeny or virulence gene
presence and resistance gene-based analysis 74% of the time at each time point, and
37% (phylogeny) or 27% (virulence) of the time for each subject as a whole (Table 1).

There was no significant change in number or type of resistance-associated genes
over time, regardless of antibiotic treatment or isolation time point. As subjects were
treated with azithromycin, a macrolide, genes conferring resistance to macrolides were
investigated in greater detail (Table S7). Macrolide resistance genes were identified in
only 19% (46 of the 240) isolates (Table 2), and based on a logistic regression model,
there is no evidence to suggest that either time point or antibiotic treatment was
significantly associated with macrolide resistance genes (P � 0.05 for antibiotic treat-
ment adjusted for time point, for time point adjusted for antibiotic treatment, and
overall antibiotic treatment). Isolates from nearly half of the subjects had no known
macrolide resistance genes (46.67% antibiotic treatment, 40% control). Based on these
results, exposure to a single large dose of azithromycin did not lead to a significant
change in the number of known antimicrobial resistance genes or macrolide resistance
genes among these E. coli populations.

DISCUSSION

This study represents a detailed examination of the genomic diversity of Escherichia
coli isolates obtained from longitudinal samples from the gastrointestinal tract of
children in rural Tanzania. An overall trend identified in this study is that the identified
E. coli isolates from the gastrointestinal tract are diverse not just between these
subjects, but within the same subject over time. The E. coli genomes sequenced in this
study were selected based on the greatest number of longitudinal isolates per subject
and include members of all five of the traditional E. coli phylogroups, as well as 87
different MLST sequence types, and 106 serotypes. The isolates in this study were most
frequently of the A or B1 phylogroups, unlike a previous study by Gordon et al. (17) in
which greater than 70% of the isolates obtained were from either phylogroup B2 or D.
Other studies, featuring isolates from Europe and South America, have similarly iden-
tified phylogroup A as a dominant phylogroup in the human gastrointestinal tract (35,
36). This observed difference may be due to differences in sample acquisition (stool
swab versus biopsy), differences in the study participants, or geography. The Gordon et
al. (17) study obtained samples from adults, the majority (72.5%, 50/69) of whom were

Richter et al.

November/December 2018 Volume 3 Issue 6 e00558-18 msphere.asm.org 8

msphere.asm.org


diagnosed with either Crohn’s disease or ulcerative colitis, which would also likely
impact the immune status of the gastrointestinal tract, and potentially alter the
bacterial community structure. In contrast, our study participants were children under
the age of 5, and, other than a few who displayed diarrhea of an unknown source, were
considered to be relatively healthy. This study, by using a combination of molecular
methods, including whole-genome sequencing, enhances the understanding that E.
coli in the human gastrointestinal tract is variable and diverse in the studied population.

Previous studies of the variability of E. coli, using non-genome sequencing methods,
have also identified multiple isolates within a single host, reporting up to an average
of 4 E. coli genotypes in adult human gastrointestinal studies (17, 23). The findings in
this study are similar in that it has identified a number of E. coli isolates that are
genomically and molecularly different in the subjects at each time and between time
points. This study examines the relatedness of E. coli isolates in an individual over time
using two independent methods, phylogenomics of the genome core and whole-
genome content. We find that approximately half of E. coli isolates in an individual
appear phylogenomically and phenotypically similar at any given time point; however,
between time points, the prevalent E. coli clones from individual subjects were variable.
While it is possible, and likely, that in the current study less prevalent E. coli isolates
were not captured at some of the sampling time points, we assume that the relative
isolate abundance in culture reflects the relative abundance in the feces at the time of
sampling. The current study likely still underestimates the E. coli diversity in the
examined subjects with the relatively small number of isolates collected per time point.

Dynamic populations within the human gastrointestinal tract have been previously
suggested as an explanation for observations of variable clones in E. coli diversity
studies (35), but the necessary longitudinal genomic studies were lacking. This study
begins to address that deficiency, with the potential caveats outlined below. The
observed within-patient and longitudinal diversity of E. coli isolates could be a function

TABLE 2 Summary of macrolide resistance gene presence by treatment group and time pointa

Time point(s)
in which
macrolide
resistance
genes found

Treatment No treatment

Subject

% of isolates by time
point (mo)

% (no.
positive/no.
total) Subject

% of isolates by time
point (mo)

% (no.
positive/no.
total)1 2 3 1 2 3

No macrolide
resistance
genes

3_073_06 0 0 0 46.67 (7/15) 2_052_05 0 0 0 40 (6/15)
3_373_03 0 0 0 2_156_04 0 0 0
3_475_03 0 0 0 2_177_06 0 0 0
4_203_08 0 0 0 2_222_05 0 0 0
6_175_07 0 0 0 2_474_04 0 0 0
6_319_05 0 0 0 8_415_05 0 0 0
6_537_08 0 0 0

Only in 3 mo 1_176_05 0 0.5 1 13.33 (2/15) 2_005_03 0 0.66 0 33.33 (5/15)
1_182_04 0 0.66 0 2_011_08 0 0.66 0

2_210_07 0 0.33 0
5_366_08 0 0.66 0
7_233_03 0 0.66 0

Only in 6 mo 1_110_08 0 0 1 13.33 (2/15) 2_316_03 0 0 0.66 13.33 (2/15)
1_392_07 0 0 0.66 2_427_07 0 0 0.66

Pre- and
posttreatment

1_250_04 1 1 1 13.33 (2/15) 2_460_02 0.66 0 1 6.67 (1/15)
3_105_05 0.33 0.33 0.33

3 and 6 mo 3_020_07 0 1 0.66 13.33 (2/15) 0.00
3_267_03 0 0.5 0.5

Only baseline 0.00 5_172_05 1 0 0 6.67 (1/15)
aThe proportion of isolates in which a macrolide resistance gene was identified is shown for each time point. Subjects are separated in to treatment groups and
categorized based on the time points in which macrolide resistance genes were identified. Percentages reflect the proportion of subjects who fall into each
macrolide resistance gene category within treatment groups.
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of age, as all of the subjects in this study were less than 3 years of age, and thus, the
diversity could be a result of natural introduction of new exposure to foods, as well as
immune system and microbiome development (37, 38). It has been demonstrated that
intrahost E. coli diversity is greatest in tropical regions where hygiene may play a role
and that E. coli density in the gastrointestinal tract is altered most significantly in the
first 2 years of a child’s life (11, 39). Therefore, it is unclear how well these results
correlate with E. coli diversity in adults or in other geographic regions, but they provide
a starting point for the comparisons of studies in diverse subject populations and
geographic locations. It is thought that the infant microbiome is not established until
about 3 years of age (40); however, the detailed longitudinal infant microbiome studies
are currently lacking. Furthermore, changes in health status may have impacted the
strain variability, as some subjects displayed symptoms of diarrhea during sampling,
with the possibility of other unreported occurrences between samples, leading to
additional fluctuations in the E. coli community, as well as the potential emergence of
otherwise rare, resident strains. Future longitudinal studies that include sampling
subjects from multiple age groups will be necessary to fully appreciate levels of
bacterial population diversity and dynamics present across host populations of all age
groups.

Virulence and resistance-associated gene analyses in this study confirm that
genomic analyses of single isolates are imperfect predictors of clinical phenotypes, as
several isolates harbored canonical E. coli virulence genes, classically identifying them
as enteric pathogens, but were present in subjects not displaying clinical symptoms.
The converse is also possible, in that E. coli strains may not contain traditional virulence
factors, but be obtained from a diarrheal sample, as has been highlighted in the recent
GEMS studies (41, 42). While diarrheagenic E. coli is often the dominant strain when
causing diarrhea (43), the fact that these pathogenic strains may have been missed due
to undersampling in the diarrhea samples cannot be discounted. There are many
potential explanations for these observations which include the following: (i) the
subjects have been previously exposed to these bacteria, and thus, have an established
immunity; (ii) the organisms are not pathogenic in the context of other host factors,
including the host microbiota; (iii) additional necessary virulence factors are absent in
these isolates; or (iv) the virulence factors are present but not expressed by the
bacterium. Unfortunately, detailed immunological, microbiota, or transcriptional data
are not available on the current samples, so the impacts of these factors on pathoge-
nicity cannot be determined conclusively. Whole-genome analyses have led to increas-
ing recognition that virulence genes and phylogeny are associated attributes in micro-
bial pathogen genomes and suggest that there may be an optimal combination of
chromosomal and virulence-associated features that results in maximal virulence,
survival or transmission (44–47). This may also be true of the success of a commensal
isolate in the community in these subjects (48).

In contrast to Seidman et al. (26), from which the samples were originally obtained,
our genome analyses did not demonstrate an increase in the presence of macrolide
resistance genes among isolates from children treated with azithromycin. This obser-
vation may be due to the selection of isolates for this genomic study. Subject samples
sets with the greatest number of longitudinal isolates were chosen for sequencing.
Additionally, genome sequencing did not include any samples from the first month
after azithromycin treatment, which Seidman et al. found to demonstrate the greatest
increase in phenotypic macrolide resistance (26). The examination of the 23S rRNA gene
for SNPs associated with macrolide resistance is not possible due to the incomplete
nature of the genomes and the genetic redundancy of the multiple copies of this gene
cluster (49). This study, once again, highlights the discrepancies between genotypic and
phenotypic assessment of resistance and other traits.

This study adds significantly to the number of available E. coli genomes that were
not selected for based on pathogenic traits, a group that has been traditionally
underrepresented in the sequencing of this species. The scientific community is still in
the early stages of understanding gastrointestinal tract microbial ecology and the role
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that the resident bacteria, including E. coli, play in microbiome stability and function.
The current study demonstrates that at the genomic level, the community of E. coli in
the gastrointestinal tract of this population of children is diverse and variable over time.
Further studies on human populations from different geographic areas, as well as other
age groups, are required to determine if E. coli communities would stabilize as a person
approaches adulthood, or whether the community diversity of E. coli regularly changes
depending on the development of the immune system, as well as many other expo-
sures within the gastrointestinal tract.

MATERIALS AND METHODS
Isolate selection. E. coli isolates in this study were selected from isolates collected in Seidman et al.

(26). The PRET� study was a 6-month study designed to assess the ancillary effects on pneumonia,
diarrhea and malaria in children following mass distribution of azithromycin for trachoma control. The
study was conducted in 8 communities in the Kongwa, a district located in rural central Tanzania on a
semiarid highland plateau with poor access to drinking water. The district has a total population of
approximately 248,656, comprising mostly herders and subsistence farmers. The Tanzanian government
stipulates that villages with trachoma prevalence �10% receive annual mass distribution of azithromy-
cin. On survey, 4 villages found eligible for antibiotic treatment became the PRET� treatment villages
and 4 neighboring ineligible communities were included as controls. The study methods and results
detailing the impact of antibiotic treatment on pneumonia and diarrhea morbidity and antibiotic-
resistant Streptococcus pneumoniae carriage were published previously (50–52).

The selected E. coli isolates were chosen to represent individuals with the most complete longitudinal
sample sets from the PRET� E. coli substudy. Isolates were obtained from 30 individuals between 2 and
35 months of age, living in 8 villages in the same rural area of Tanzania. Half of these individuals received
antibiotic treatment, while the other half (control) received no antibiotic treatment. These isolates were
cultured from fecal samples collected at three time points (Fig. 1 and Table S1): a baseline prior to
antibiotic treatment, three months posttreatment, and six months posttreatment, with corresponding
time points in the untreated controls. A single treatment of 20 mg/kg of body weight of azithromycin
was given 2 days after the baseline sample was collected. At each time point, up to three E. coli colonies
per individual were selected for sequencing and subsequent comparative analyses. Isolates were labeled
with a three-number subject ID (i.e., 1_110_08), the sample (time point) from which the isolate was
obtained (i.e., S1), and the number of the colony isolated from the sample (i.e., C1).

Bacterial growth and isolation. E. coli colonies were obtained as described in Seidman et al. (26, 27).
Briefly, fecal swabs were streaked on MacConkey agar (Difco) and grown overnight at 37°C. Three lactose
fermentation (LF)-positive colonies were inoculated on nutrient agar stabs and grown overnight at 37°C.
E. coli isolates were identified as those colonies which were LF-positive, indole-positive (DMACA Indole
Reagent droppers, BD), and citrate-negative (Simmons citrate agar slants). Isolates were transferred to
Luria broth for overnight growth at 37°C with shaking. E. coli cultures were frozen with 10% glycerol and
stored at �80°C.

Genome sequencing and assembly. Genomic DNA was extracted using standard methods (21) and
sequenced on the Illumina HiSeq 2000 platform at the Genome Resource Center at the University of
Maryland School of Medicine, Institute for Genome Sciences (http://www.igs.umaryland.edu/resources/
grc/). The resulting 100-bp reads were assembled as previously described (44, 46) using the Maryland
Super-Read Celera Assembler (MaSuRCa version 2.3.2) (53). Contigs of fewer than 200 bp were excluded
from assemblies. Assembly quality was determined based on number of contigs (less than 500), and
genome size and G�C content compared to known E. coli genomes. Two genomes had G�C content
divergent from that of E. coli (55.61%) and were excluded from further analysis. The assembly details and
corresponding GenBank accession numbers are provided in Table S1.

Identification of predicted pathogen isolates. Isolate genomes were interrogated for the presence
of pathotype-specific virulence factor genes using LS-BSR and are derived from a similar E. coli typing
schema used in the MAL-ED studies (54). The nucleotide sequence for each factor or resistance gene was
aligned against all sequenced genomes with BLASTN (55) in conjunction with LS-BSR (33). Genes with a
BSR value �0.80 were considered highly conserved and present in the isolate examined. The targeted
virulence factors are as follows: ETEC heat-stable enterotoxin (estA147) or ETEC heat-labile enterotoxin
(eltb508), identifying the isolate as being enterotoxigenic E. coli (ETEC); the aggR-activated island C
(aic215) or EAEC ABC transporter A (aata650) genes, which are common diagnostic markers for entero-
aggregative E. coli (EAEC) (56, 57); and the major subunit of the bundle-forming pilus (bfpA) (bfpa300) or
intimin genes (eae881), which are indicative of enteropathogenic E. coli (EPEC) (44).

Phylogenomic analysis. A total of 273 genomes were used in the phylogenomic analyses: the 240
assembled in this study, in addition to a collection of 33 E. coli and Shigella reference genomes from
GenBank (Table S2). Single nucleotide polymorphisms (SNPs) in all genomes were detected relative to
the completed genome sequence of commensal isolate E. coli HS (phylogroup A) using the in silico
genotyper (ISG) v.0.12.2 (58), which uses MUMmer v.3.22 (59) for SNP detection. Analysis with ISG yielded
701,011 total SNP sites that were filtered to a subset of 304,497 SNP sites present in all of the genomes
analyzed. These SNP sites were concatenated and used for phylogenetic analysis as previously described
(60). A maximum-likelihood phylogeny with 1,000 bootstrap replicates was generated using RAxML
v.7.2.8 (61) and visualized using FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) and interactive
tree of life (62). Phylogenomic lineages were assigned based on visual determination of groupings. Three
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genome outliers (1_176_05_S3_C2, 2_011_08_S1_C1, and 2_156_04_S3_C2 were removed from the tree
figures for visualization purposes.

Serotype identification. In silico serotype identification was performed on the assembled genomes
using the online SerotypeFinder 1.1 (https://cge.cbs.dtu.dk/services/SerotypeFinder/) and an LS-BSR
analysis using the serotype sequences compiled for the SRS2 program (https://github.com/katholt/srst2/
tree/master/data) (20, 32).

Multilocus sequence typing (MLST). In silico MLST was performed on the assembled genomes
using the Achtman E. coli MLST scheme (63). Gene sequences were identified in the isolate genomes
using BLASTn, and MLST profiles were determined by querying the PubMLST database (http://
pubmlst.org).

Variations in gene distributions. The gene content across all genomes was identified and com-
pared using the large-scale BLAST score ratio (LS-BSR) with default settings, as previously described (33).
Genes with a BSR value �0.80 are considered to be highly conserved and present in the isolate examined
at this level of homology. Those genes that are conserved in all genomes were removed from further
analyses. The predicted protein function of each gene cluster was determined using an Ergatis-based (64)
in-house annotation pipeline (65).

Pairwise gene content comparisons were performed for all of the isolates for each subject to
determine the number of genes that differed between the isolates. The numbers of differing genes were
used to calculate the average number (and standard deviation) of genes that differed between isolates
from the same phylogenomic clade and those from differing phylogenomic clades for each subject.

Virulence factor and antibiotic resistance gene identification. The list of compiled common E. coli
virulence factors genes was used for interrogation of the study genomes (Table S2). Antibiotic resistance
genes were compiled from the Comprehensive Antibiotic Resistance Database (CARD; http://arpcard
.mcmaster.ca, downloaded 24 June 2015) (34). The nucleotide sequence for each factor or resistance
gene was aligned against all sequenced genomes with BLASTN (55) in conjunction with LS-BSR (33).
Genes with a BSR value �0.80 were considered highly conserved and present in the isolate examined.

Statistical analysis of macrolide resistance gene distributions. A logistic regression on the
probability of a macrolide gene being present in an E. coli isolate was run against 2 covariates: time point
(excluding the baseline) or antibiotic treatment. For each individual, the two to three isolates were
considered replicates for that time point, and the time points were far enough apart to be considered
independent. Therefore, gene presence was collapsed as presence in at least one of the replicates at a
given subject and time point. Each subject by time combination was considered an independent
observation. Genes in this analysis with P values �0.05 were considered significant. If the covariate was
dichotomous, then the Wald chi-square test statistic was used to determine significance.
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