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Visual processing is largely organized into ON and OFF pathways that signal stimulus increments and decrements, respectively. These
pathways exhibit natural pairings based on morphological and physiological similarities, such as ON and OFF �-ganglion cells in the
mammalian retina. Several studies have noted asymmetries in the properties of ON and OFF pathways. For example, the spatial receptive
fields (RFs) of OFF �-cells are systematically smaller than ON �-cells. Analysis of natural scenes suggests that these asymmetries
are optimal for visual encoding. To test the generality of ON/OFF asymmetries, we measured the spatiotemporal RF properties of multiple
RGC types in rat retina. Through a quantitative and serial classification, we identified three functional pairs of ON and OFF RGCs. We
analyzed the structure of their RFs and compared spatial integration, temporal integration, and gain across ON and OFF pairs. Similar to
previous results from the cat and primate, RGC types with larger spatial RFs exhibited briefer temporal integration and higher gain.
However, each pair of ON and OFF RGC types exhibited distinct asymmetric relationships between RF properties, some of which were
opposite to the findings of previous reports. These results reveal the functional organization of six RGC types in the rodent retina and
indicate that ON/OFF asymmetries are pathway specific.
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Introduction
The division of sensory signals across neurons that respond to
stimulus increments (ON) or decrements (OFF) is a common
processing motif. Examples abound, as follows: olfactory recep-
tor neurons in the cockroach respond to either increments or
decrements in odor concentration (Burgstaller and Tichy, 2011);

neurons in auditory cortex respond to increments or decrements
of sound intensity (Scholl et al., 2017); neurons in the fish elec-
trosensory system signal increasing or decreasing contrasts in
amplitude modulations of an electromagnetic field (Berman and
Maler, 1998; Clarke et al., 2014); and neurons from retina to
visual cortex respond to increments or decrements of light inten-
sity (Hartline, 1938; Hubel and Wiesel, 1962). Thus, understand-
ing how and why ON and OFF pathways partition sensory input
is central to an understanding of sensory processing.

In vision, the division of sensory processing between ON and
OFF pathways is elaborate. The division originates at the first
retinal synapse between photoreceptors and bipolar cells. Within
one additional synaptic layer, the retina partitions visual scenes
into 30 – 40 different channels, each instantiated by a distinct
retinal ganglion cell (RGC) type (Field and Chichilnisky, 2007;
Sanes and Masland, 2015). Many of these RGC types respond to
either increments or decrements of light in their receptive field
(RF) center (Hartline, 1938; Kuffler, 1953; Wässle and Boycott,
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Significance Statement

Circuits that process sensory input frequently process increments separately from decrements, so-called ON and OFF responses.
Theoretical studies indicate that this separation, and associated asymmetries in ON and OFF pathways, may be beneficial for
encoding natural stimuli. However, the generality of ON and OFF pathway asymmetries has not been tested. Here we compare the
functional properties of three distinct pairs of ON and OFF pathways in the rodent retina and show that their asymmetries are
pathway specific. These results provide a new view on the partitioning of vision across diverse ON and OFF signaling pathways.
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1991). Furthermore, many of these ON and OFF RGC types form
pairs, such as ON and OFF �-cells in cats and other mammals
(Cleland and Levick, 1974; Cleland et al., 1975; Watanabe and
Rodieck, 1989; Wässle and Boycott, 1991). These pairings have
been established on both morphological and functional grounds.
Morphologically, these pairs have dendritic fields that are similar
in size and branching patterns, but that ramify in different depths
of the inner plexiform layer (Wässle and Boycott, 1991; Dacey,
2004). Functionally, these pairs exhibit similar receptive fields
with a polarity reversal. However, more recent multineuron mea-
surements have identified systematic “asymmetries” between
some paired ON and OFF RGC types (Chichilnisky and Kalmar,
2002; Ratliff et al., 2010). For example, ON parasol RGCs exhibit
larger spatial RFs than their OFF-cell counterparts. Asymmetries
between ON and OFF pathways have also been observed in tem-
poral integration, contrast response functions, absolute sensitiv-
ity, nonlinear spatial integration, and adaptation (Chichilnisky
and Kalmar, 2002; Nirenberg et al., 2010; Pandarinath et al., 2010;
Ala-Laurila and Rieke, 2014; Turner and Rieke, 2016). This has
led to an evolving view of how ON and OFF pathways are orga-
nized with respect to one another. In particular, ON and OFF
pairs exist, but their differences may extend beyond a flip of
polarity.

These asymmetries have been studied mostly in � and parasol
RGCs, which are probably homologs (Crook et al., 2008a). This
raises the question, how ubiquitous are these asymmetries? Anal-
ysis of natural scenes suggests that RF size asymmetries may be an
efficient coding scheme for natural scenes (Ratliff et al., 2010;
Barlow, 1961; Pandarinath et al., 2010; Karklin and Simoncelli,
2011). These results suggest asymmetries may be preserved across
ON and OFF pathway pairs. However, these analyses were agnos-
tic to the particular aspects of the visual image represented by
distinct cell types, which may dictate distinct asymmetries (or
even symmetry) for efficient coding.

The goal of this study was to measure the organization of RFs
across multiple pairs of ON and OFF RGCs to determine the
extent to which asymmetries are general or pathway specific. We
measured the RF properties of hundreds of simultaneously re-
corded rat RGCs using a multielectrode array. We developed a
procedure for functionally classifying RGCs based on their re-
sponses to diverse visual stimuli. This classification yielded six
irreducible cell types � three pairs of ON and OFF RGC types.
Across three pairs of ON and OFF RGCs from these six types, we
found that the relative organization and the presence of func-
tional asymmetries was pathway dependent. Each pair exhibited a
distinct set of asymmetries in spatiotemporal integration and
contrast response functions. These results indicate that asymme-
tries between ON and OFF pairs are common, but that the dif-
ferences between pairs vary with the cell type and their light
response properties.

Materials and Methods
Tissue preparation and multielectrode array recordings
All experiments followed procedures approved by the Institutional Ani-
mal Care and Use Committee of Duke University and the Salk Institute
for Biological Studies. Long–Evans rats were killed by intraperitoneal
injection of ketamine and xylazine. Retinas were removed in darkness
under infrared illumination with infrared converters, as described previ-
ously (Anishchenko et al., 2010; Yu et al., 2017). An �1.5 � 3 mm
segment of dorsal retina, centered 3.5– 4 mm above the optic nerve and
�1 mm along the vertical meridian, was isolated. This region of retina
was targeted to minimize variability across experiments and to target
retinal locations with cones expressing mostly M-opsin. The retina was
placed with the RGC side down on an electrode array consisting of 512

electrodes with 60 �m interelectrode spacing, spanning an area of 0.9 �
1.8 mm (Litke et al., 2004). The voltage trace recorded on each electrode
was bandpass filtered between 80 and 2000 Hz, sampled at 20 kHz, and
stored for off-line analysis (Frechette et al., 2005). Spikes were initially
sorted by an automated algorithm, and the resulting clusters were
checked and corrected manually using custom spike-sorting software
(Shlens et al., 2006; Yu et al., 2017). The autocorrelation function of
sorted spikes was used to validate putative RGCs by checking for a refrac-
tory period (1.5 ms; Field et al., 2007). To track the RGCs across different
visual stimuli, spike shapes were sorted in the same subspace determined
by principal components analysis (PCA) of the spike waveforms. Neuron
identity was further confirmed across different stimuli by checking that
the electrical image (EI; Petrusca et al., 2007) for each neuron matched
across conditions. A matched neuron between two stimulus conditions
was determined by the EI pair with the highest inner product across the
two stimulus conditions (Field et al., 2009). A typical experiment resulted
in recording and tracking the responses of 300 – 400 RGCs across three
visual stimuli.

Visual stimuli and RGC response properties
Visual stimuli from a gamma-corrected CRT video display (Trinitron,
Sony) refreshing at 120 Hz, or an organic light-emitting diode display
(Emagine) refreshing at 60 Hz, were focused on the retina via an inverted
microscope (Yu et al., 2017). Three different stimuli were used to mea-
sure the functional properties of recorded RGCs (Fig. 1A); each was
photopic with a mean intensity of either 3000 or 10,000 photoisomeriza-
tions/rod/s (Field et al., 2009; Yu et al., 2017). First, a checkerboard noise
stimulus was used to estimate the spatiotemporal RF by reverse correla-
tion (Chichilnisky, 2001). Each checker of the noise stimulus was 40 � 40
�m on the retina and noise images were updated at 60 Hz. Second, sine
wave gratings with a spatial period of 320 �m on the retina were drifted
in eight directions at two speeds (150 and 600 �m/s). This stimulus
identified RGCs that were sensitive to motion (Fig. 2A; Yu et al., 2017).
Finally, in a subset of experiments (four of seven), full-field light steps
were presented to the retina. This stimulus consisted of a full-field change
in light intensity that switched every 2 or 3 s from gray (50% monitor
output) to white (100%), to gray to black (1%), and back to gray. This
stimulus cycled through this progression 25 times, and peristimulus time
histograms (PSTHs) were generated from the responses of the recorded
RGCs (Fig. 1; see Fig. 5).

RGC classification
RGCs from seven retinas were classified in this study. The number of cells
identified for each cell type in each retina are provided in Table 1. The
classification approach consisted of the following two stages: a feature
selection process followed by a serial, quantitative classification using
unsupervised learning. The feature selection process identified response
properties that robustly isolated one or a small number of RGC types
from all other types [e.g., isolating direction-selective (DS)-RGCs from
non-DS-RGCs; Fig. 2A]. The quantitative classification clustered neu-
rons using these features by a two-Gaussian mixture model (GMM).

Stage one. The feature selection process was performed using one of the
seven retina recordings in this manuscript. This stage was used to identify
response parameters that distinguished one set of RGCs from all others.
In this initial dataset, high-dimensional data were parameterized and
visualized in a lower dimensional space by PCA. These spaces consisted
of either two or three dimensions, each defined by a response parameter
such as the overall spike rate or the shape of the temporal RF (Fig. 2C).
Limiting the dimensionality facilitated robust clustering of RGCs with
relatively limited data (e.g., a few hundred RGCs). Once a set of response
features was identified that clearly separated one group of RGCs from the
others, the spatial RFs of the grouped RGCs were inspected to check
whether they were regularly spaced. If grouped RGCs were regularly
spaced, the features used were saved for quantitative clustering (see stage
two). Performing feature selection before quantitative classification im-
proved the performance of the unsupervised clustering algorithm by
minimizing misclassification rates.

Stage two. To quantitatively cluster each group of RGCs (Fig. 2), a
two-GMM was fit to the same two- or three-dimensional feature space
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defined above in stage one. The GMM allowed boundaries to be drawn
between clusters according to the maximum likelihood that RGCs be-
longed to one Gaussian distribution or the other. RGC types were classi-
fied one at a time in a serial fashion to prevent overfitting and avoid
ambiguity in choosing the right number of clusters. Each cluster was
tested for statistical significance (Tukey’s range test), and the irreducibil-
ity of each type was verified by testing for a mosaic organization (see Fig.
4). The order of this serial classification and the response parameters that
consistently identified RGCs across recordings is shown in Figure 2.

Verifying RGC types
Clustered RGCs were identified as an irreducible cell type by inspecting
the normalized nearest neighbor distribution (NNND; see Fig. 4; DeVr-
ies and Baylor, 1995; Field et al., 2007). The NNND is defined as 2 R/
(S1 � S2). R is the distance between the spatial RF of each RGC and the
RF of its nearest neighbor. S1 and S2 are SDs of the Gaussian fits for the

spatial RF of each RGC measured along the line connecting the centroids.
If the two spatial RFs “touch” at the 1 SD contour for each cell, then the
NNND will equal 2.

NNNDs indicate a mosaic-like arrangement of RFs when they exhibit
a clear exclusion zone at short nearest-neighbors at distances (Wässle and
Riemann, 1978). To test the null hypothesis that the observed NNND
were consistent with a random sampling of RGCs, we generated 100
NNND distributions from randomly sampled RGCs within each exper-
iment (see Fig. 4A). The number of sampled cells equaled the number of
RGCs in the original mosaic. A two-sample Kolmogorov–Smirnov test
was used to estimate the probability that the observed NNND was con-
sistent with that expected from a randomly sampled set of RGCs. In 38
of 42 mosaics tested, the null hypothesis was rejected with p � 0.05
(see Fig. 4B).

Estimation of linear spatiotemporal RFs
A linear approximation to the spatiotemporal RF of each RGC was ob-
tained by reverse correlation to compute the spike-triggered average
(STA; Chichilnisky, 2001). Frames up to 500 ms preceding a spike were
included in the analysis. The spatial RF was the set of stimulus pixels
(stixels) whose absolute peak intensity exceeded 4.5 robust SDs of all
pixel intensities (Yu et al., 2017). The temporal RF was defined as the
time-dependent average of these significant stimulus pixels. Once the
temporal RF was computed, the dot product between every stixel of
the STA was computed with the temporal RF. This collapsed the STA
across time to a single image, which was used as an estimate of the spatial RF.

This analysis to extract estimates of the spatial and temporal RFs as-
sumes the spatiotemporal RF is separable into a single spatial and tem-
poral filter. The validity of this assumption was examined using singular
value decomposition (SVD; Golomb et al., 1994). SVD factorizes a ma-
trix into a rank-ordered set of vector pairs whose outer products are
weighted and linearly combined to reproduce the original matrix. A
perfectly space-time separable RF will produce a single pair of nonzero
vectors capturing the spatial and temporal RFs, respectively. Before per-
forming SVD, a Gaussian spatial filter was applied to the full spatiotem-
poral RF to reduce noise in the STA. This Gaussian filter was circular with
an SD of 0.75 stixels. After applying this filter, SVD indicated that across
cell types, �90% of the variance in the STA could be captured by the
outer product of a single pair of spatial and temporal filters. This indi-
cates that the linear RF structure was largely consistent with a space—
time-separable model.

Space–time plots
To generate average space–time plots of RGC RFs (see Fig. 7), the entire
spatiotemporal RF was filtered for each cell with a circular Gaussian filter
(SD 	 0.75 stixels). A 21 � 21 stixel (924 � 924 �m) region around the
center of mass of the spatial RF was cropped. The average 3-dimensional
spatiotemporal RF of each RGC type was computed by averaging to-
gether all the cropped and filtered spatiotemporal RFs of all cells of that
type across all recordings. The 3-dimensional spatiotemporal RF was
collapsed to 2 dimensions by extracting the intensities along one spatial
axis.

Estimation of contrast response functions
Contrast response functions were estimated from the static nonlinearity
(SNL) computed by convolving the spatiotemporal RFs with the check-
erboard noise stimulus (Chichilnisky, 2001). This yielded an instanta-
neous generator signal for each frame of the stimulus that was used to
generate a histogram of observed spike counts for each generator signal.
This histogram was fit with a logistic function. The slope (b) and offset
(a) were parameters from the logistic function fit to the SNL: (c/(1 �
exp(�b(x � a))). To check that the static nonlinearity was accurately fit,
simulated spikes were generated from a model linear-nonlinear Poisson
neuron in response to a checkerboard white noise stimulus. A logistic
function was used in the simulation for the nonlinearity. When total
spike counts were matched between simulated and real neurons, the
model fitting produced estimates of the slope and offset within 1% of the
values set in simulation. We also checked that the distribution of stimuli
preceding spikes exhibited a unimodal projection onto the STA: ON and
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Figure 1. Example RGCs with diverse receptive fields and light response properties. A, Illus-
trations of the three stimuli used in this study: checkerboard noise, drifting gratings, and full-
field steps of light intensity. B, Receptive fields and responses of an example RGC. From left to
right: Spatial RF; scale bar, 320 �m. Temporal RF: calibration, 120 ms. PSTH from responses to
eight presentations of a drifting grating (spatial period, 320 �m; temporal period, 2 s). calibra-
tion: horizontal bar, 2 s; vertical bar, 20 Hz. PSTH from 25 response full-field light steps that cycle
from gray (2 s) to white (3 s) to gray (2 s) to black (3 s) every 10 s. Calibration: horizontal bar, 2 s;
vertical bar, 20 Hz. C–G, Same as A from different RGCs. Scales are constant in each column,
unless the calibration bar is redrawn (e.g., right column), in which case the calibration value
remains constant. Note that each RGC is at a different location on the MEA and is subject to a
different phase of the drifting grating, causing the phase relationships across cells to be
arbitrary.
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OFF cells will exhibit this property, whereas ON-OFF cells will exhibit a
bimodal projection. For every cell of each of the six types of cells analyzed
in this study, this projection was unimodal and was well approximated by
a Gaussian distribution.

Accuracy of the linear-nonlinear-Poisson model
An important caveat in the RF measurements
presented here is that they are linear estimates.
These estimates have been shown in some cir-
cumstances to accurately capture the stimulus
features that drive RGC spiking (Chichilnisky,
2001; Keat et al., 2001; Pillow et al., 2005).
However, for some RGC types, stimulus fea-
tures interact nonlinearly in space and/or time
(Hochstein and Shapley, 1976; Schwartz et al.,
2012; Freeman et al., 2015). To determine the
capacity of these linear RF estimates and con-
trast response functions to capture the rela-
tionship between the stimulus and spiking, we
cross-validated the model to a repeated check-
erboard noise stimulus in a subset of experi-
ments (Table 1, retinas 2 and 3). A 10 s
checkerboard noise sequence (40 � 40 �m
stixels, 60 Hz refresh) was repeated 100 times.
For a given RGC, the linear-nonlinear-Poisson
(LNP) model generated from the spatiotempo-
ral RF and the static nonlinearities estimated
from the nonrepeating checkerboard noise
were used to predict the response to the re-
peated checkerboard stimulus (not used in the
original estimate of the STA or static nonlin-
earity). Across cells of all six types, spike trains
generated by the LNP model captured 51–73%
of the explainable variance (data not shown).

Parameterizing stimulus responses
Vector sum for drifting gratings. The total spike
count from RGCs to eight presentations of a
grating drifting in each of eight directions was
calculated and normalized by the maximum
count. This yielded eight vectors that had mag-
nitudes ranging between 0 and 1. The sum of
these vectors identified the preferred direction
of the RGC (Elstrott et al., 2008; Rivlin-Etzion
et al., 2012), and the magnitude of this vector
was used to estimate the strength of tuning and
classify DS-RGCs from non-DS-RGCs in Fig-
ure 2A. The vector sum was not normalized to
1 to allow the vector magnitude to range from
zero to infinity. This allowed the Gaussian mix-
ture model to be fit to the log (base 2) of the
vector sum: these distributions were approxi-
mately log-normal.

Firing rate for drifting gratings and checker-
board noise. The firing rates in response to
drifting gratings were calculated by dividing
the total spike count by the number of stimulus
repeats (8) and directions (8), and the length of
time that the grating was presented to the ret-
ina (8 or 10 s). For checkerboard noise, the
total number of spikes during the presentation
of the checkerboard noise was divided by the
total time.

Parameters of the temporal RF from checker-
board stimuli. The time to peak and time to
trough were taken from the global maximum
and minimum, respectively, in the temporal
RF. The zero crossing was calculated as the
time closest to the spike at which the temporal
RF transitioned from positive to negative val-
ues for OFF cells and vice versa for ON cells.

The maximum and minimum values were taken as the global maximum
and minimum in the temporal RF, respectively. A phasic index (PI) was
calculated from the temporal RF as the absolute value of the sum of the

A

B

C

D

E

Figure 2. Serial classification of RGCs yielded three pairs of ON and OFF cells. A, In step 1 of the classification, DS-RGCs are
segregated from all other cells based on their responses to drifting gratings. Grating responses 1 and 2 are the log [base 2] of the
vector magnitude to a grating with a spatial period of 320 �m drifting at 150 and 600 �m/s, respectively. Gratings were drifted in
eight directions to estimate the vector magnitudes of their tuning. B, In step 2, ON and OFF RGCs were segregated by the value of
the extrema, and the time to trough of their temporal RFs were estimated from their STA. C, In step 3, a pair of ON and OFF RGCs (red
points) were classified from all other ON and OFF cells, respectively. The parameter spaces used to classify these two types were
identical and consisted of the mean spike rates in response to checkerboard noise (stixel size, 40 � 40 �m; 60 Hz refresh) and a
drifting grating (spatial period, 320 �m; speed, 150 �m/s), as well as the trough-to-peak ratio of their temporal RFs. D, In step 4,
ON and OFF RGCs identified in step 3 were removed, and the remaining ON and OFF RGCs were classified in a new parameter space
defined by the mean spike rate to checkerboard noise, RF radius, and the time to zero of the temporal RF. E, In step 5, ON and OFF
RGCs identified in the two previous steps were removed, and the remaining ON and OFF cells were classified in a new parameter space
defined by the phasic index (estimated from the temporal RF; see Materials and Methods), the time to zero of the temporal RF, and the peak
time of the ISI distribution. At each step of the classification, groups of cells were distinguished by a two-Gaussian mixture model.
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positive and negative areas divided by the sum of their absolute values
(e.g., �(a � b)�/(�a� � �b�)). The PI ranges from zero to one: zero corre-
sponds to a biphasic temporal RF, with the area above and below zero
being equal; one corresponds to a monophasic temporal RF. The bipha-
sic index (see Fig. 8D) equaled 1 � PI (Petrusca et al., 2007).

Parameters of the spatial RF from checkerboard stimuli. The spatial RF
diameter (see Fig. 8A) was defined as the diameter of a circle with the
same area as the 1 SD boundary of a two-dimensional Gaussian fit to the
RF center (Chichilnisky and Kalmar, 2002; Gauthier et al., 2009). To plot
the spatial RF mosaics (Fig. 3 A, D), RFs were filtered by convolving with
a two-dimensional Gaussian filter with an SD of 0.75 stixels. Contour
lines were then linearly interpolated in each RF using a fixed contour
equivalent to 1 SD, 0.6065 of the peak (Yu et al., 2017).

Results
Multielectrode array (MEA) measurements from rat retinas yield
RGCs with diverse response properties. Checkerboard noise,
drifting gratings, and full-field light steps illustrate some axes
along which RGC responses vary (Fig. 1). As illustrated in numer-
ous previous studies, RGCs exhibit ON versus OFF responses
(Fig. 1, compare B–D, E–G), differences in spatial and temporal
receptive fields (Fig. 1B–G, two left columns), transient versus
sustained responses (Fig. 1, compare B–D, C–E), and differences
in the number of spikes elicited to gratings and full-field changes
in light (Fig. 1B–G, two right columns; Kuffler, 1953; Cleland and
Levick, 1974; Caldwell and Daw, 1978; Wässle and Boycott,
1991). In the following sections, we show the results of a func-
tional classification applied to the responses of rat RGCs recorded
on a large-scale MEA. This classification yields a natural set of
three pairings between ON and OFF RGC types. We analyze the
spatiotemporal RF properties and gain among these six cell types
and compare the results across ON and OFF pairs.

The rat retina contains at least three functional pairs of ON
and OFF cells
To analyze the RF structure and gain across cell types, we took a
serial approach to classifying RGCs (see Materials and Methods).
In the first step, DS-RGCs were separated from other cells based
on their responses to gratings drifting in different directions and
at different speeds (Fig. 2A). In the second step, non-DS-RGCs
were split into cells with stronger ON or OFF responses (Fig. 2B).
The dominant response polarity was determined from the STA to
a checkerboard stimulus (see Materials and Methods). In the
third, fourth, and fifth steps, ON and OFF RGCs were serially
classified by identifying a small number of response parameters
that clustered RGC types. These response parameters included
information about the mean firing rates, RF size, and duration/
kinetics of temporal integration. This approach yielded three ON
and three OFF RGC types.

Across these six RGC types, the classification approach indi-
cated a natural set of three pairs of ON and OFF cell types. For ON

and OFF types to be paired, they must resemble one another
more than they resemble other cell types, either morphologically
(Wässle et al., 1981a) or functionally (Devries and Baylor, 1997).
This kind of similarity was indicated by two observations. First,
the parameter spaces used to classify ON and OFF RGCs were the
same for each pair (Fig. 2C–E, steps 3–5). Second, the relative
distribution of cells within those parameter spaces was similar for
each pair. These two features ensured that the same response
properties segregated each pair from all other recorded ON and
OFF cells and did so in a similar fashion. These are the core
criteria for defining an ON and OFF signaling pair.

The first pair of ON and OFF RGCs (Fig. 2C, step 3) was
distinguished by their mean spike rate in response to a drifting
grating, the mean response to checkerboard noise, and the ratio
between the trough and peak of their temporal RFs. A low
trough-to-peak ratio indicates relatively monophasic temporal
integration and “sustained” responses to steps of light. Thus, this
first pair of ON and OFF cells exhibited the highest firing rates to
drifting gratings and checkerboard noise, relatively sustained re-
sponses, and weakly biphasic temporal integration.

After removing this first pair of classified cells, the second pair
of ON and OFF RGCs was classified in a new parameter space that
compared spatial RF size, duration of temporal integration
(time-to-zero), and the mean spike rate to checkerboard noise
(Fig. 2D). For both ON and OFF RGCs, groups of cells exhibited
high firing rates in response to checkerboard noise stimuli, large
RFs, and brief temporal integration.

In the final classification step (Fig. 2E), the remaining unclas-
sified RGCs were compared in a parameter space consisting of the
time to zero of the temporal RF, a phasic index calculated on
the temporal RF (see Materials and Methods), and the time of the
peak in the interspike interval (ISI) distribution. Clusters of ON
and OFF cells emerged in these spaces with the briefest ISI
peaks, relatively biphasic temporal RFs, and long time-to-zero
crossings.

These classification results indicated a set of pairings between
ON and OFF RGCs among the cells identified in our MEA mea-
surements. In the subsequent section, we examine whether these
cells form irreducible types and compare their response proper-
ties across a broader range of parameters.

Each identified ON and OFF cell type forms a mosaic
A hallmark of cell types in the retina is that they tile space mor-
phologically with dendritic fields and functionally with spatial
RFs (Wässle and Riemann, 1978; Wässle et al., 1981b; Dacey,
1993; Devries and Baylor, 1997; Novelli et al., 2005; Field and
Chichilnisky, 2007). Thus, we tested whether the clusters of ON
and OFF cells identified in our serial classification tiled space to
form a mosaic-like pattern with their spatial RFs. We measured
RGC spatial RFs from STAs in response to checkerboard noise
(see Materials and Methods; Chichilnisky, 2001; Yu et al., 2017).
Plotting the spatial RFs for each RGC type revealed that all six
types exhibited a mosaic-like organization (Fig. 3A,D). An anal-
ysis of the nearest neighbor distributions for RGCs of each type
revealed nonrandom spatial RF organizations for each type
across most retinas (Fig. 4). Importantly, no information about
the spatial locations of cells was explicitly contained in the re-
sponse parameters used to distinguish cell types. Thus, the obser-
vation of mosaics is a validation that the classification yielded
irreducible cell types.

Another feature of RGC types is that response parameters
should vary less within a type than across types. Thus, we checked
that the temporal RFs (reflecting the temporal integration of vi-

Table 1. RGC counts are provided for the six RGC types identified and examined
across the seven retinal recordings used in this study

RGCs

Retina

1 2 3 4 5 6 7

ON brisk sustained 33 24 20 26 22 25 38
ON brisk transient 51 40 50 39 48 53 37
ON small transient 28 20 23 20 21 30 9
OFF brisk sustained 34 27 26 31 33 33 23
OFF brisk transient 52 30 44 36 37 40 48
OFF small transient 15 10 7 10 14 21 12
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sual input) were more similar within a type than across types.
Temporal RFs were measured from the STA time courses in re-
sponse to checkerboard noise (see Materials and Methods). Plot-
ting the temporal RFs for all six types revealed highly stereotyped
temporal integration within a type and distinct temporal integra-
tion across types (Fig. 3B,E). Finally, we compared (ISI) distri-
butions across types. The ISIs reflect the spiking dynamics of each
RGC. Similar to the temporal RFs, the ISI distributions were
more similar within a type than across types for both ON and
OFF RGCs (Fig. 3C,F).

These features of the six RGC types supported the conclu-
sion that each represented an irreducible cell type. Hence-
forth, we refer to the first pair of classified RGCs (Fig. 2C) as
ON and OFF brisk sustained RGCs based on their short la-
tency, sustained responses to visual stimuli, and previously
used naming conventions (Caldwell and Daw, 1978; Devries
and Baylor, 1997; Girman and Lund, 2010; Heine and Passa-
glia, 2011). Similarly, we refer to the second and third pairs of
classified RGCs (Fig. 2 D, E) as brisk transient and small tran-
sient RGCs, respectively.

A B C

E FD

Figure 3. Classified ON and OFF RGCs exhibit a mosaic-like organization. A, Spatial RFs of ON and OFF brisk sustained (purple), brisk transient (blue), and small transient (orange) RGCs identified
in one retina. Spatial RFs are shown as a contour plotted at 0.6065 of the peak amplitude (equivalent to 1 SD of Gaussian). The rectangle shows the outline of the MEA (900 � 1800 �m). B, Temporal
RFs of all cells shown in A, with ON cells on top and OFF cells on bottom. Thin lines are individual cells, thick lines are the mean. Color conventions are the same as in A. C, ISI distributions for all cells
in A. Color and line conventions same as in A and B. D–F, Same as A–C, but for a second retina.

A B

Figure 4. NNNDs indicate a mosaic-like arrangement of spatial RFs. A, NNNDs for brisk sustained, brisk transient, and small transient cells, with ON cells at the top and OFF cells at the bottom. Data
are from one retina. Black lines show expected NNNDs for randomly sampled cell locations (see Materials and Methods); dashed lines show the 95% CI. B, p Values from a two-sample Kolmogorov–
Smirnov (KS) test for observed NNNDs arising from random cell locations. Fill circles correspond to the data shown in A.
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Distinctions across types persist when
tested with alternative stimuli
We also examined the responses to a stim-
ulus not used in the classification, pre-
sented in a subset of recordings. This
stimulus consisted of full-field steps of
light that cycled through transitions from
gray to white to gray to black and back to
gray every few seconds (see Materials and
Methods). The PSTHs from responses to
this stimulus were distinct between the
identified cell types, and the within-type
variability was small relative to the
between-type variability (Fig. 5; see also
Yu et al., 2017). Furthermore, the PSTHs
confirm that each type is dominated by
either an ON or an OFF response; these
are not ON-OFF cells under the photopic
conditions of this study.

Naive clustering supports pairing these
ON and OFF types
To test whether the pairings of these types
were warranted, we compared the tempo-
ral RFs across all six RGC types in a re-
duced dimensional space defined by PCA.
ON and OFF brisk sustained cells clus-
tered together after accounting for their
difference in response polarity (Fig.
6A,B). Similarly, ON and OFF brisk tran-
sient and ON and OFF small transient
cells were more similar to one another,
respectively, than to the other identified
types. To test that this particular set of
pairings was objectively the best three-
group association across all six types, we
fit a three-Gaussian mixture model to the
data, using the first five PCs (Fig. 6C,D).
The Gaussian mixture model produced an
exact match to the three-group descrip-
tion produced by combining ON and OFF
cells across brisk sustained, brisk tran-
sient, and small transient cells (Fig. 6,
compare A, C, compare B, D). This fur-
ther supports the functional pairings
established in the serial classification
(Fig. 2).

RGCs with larger spatial integration
exhibit briefer temporal integration of
visual input
We next compared the spatial and tempo-
ral integration of visual input across all six
RGC types. Previous studies in primate
and cat examining parasol and midget
RGCs or �- and �-RGCs, respectively,
have indicated that spatial and temporal integration are inversely
related (Frishman et al., 1987; Lee, 1996; Troy and Shou, 2002).
Here we examined whether this trend holds in the rodent retina,
which has become a dominant model of visual processing (Hu-
berman and Niell, 2011; Sanes and Masland, 2015). Space–time
plots of average RFs for each type revealed that types with larger
RFs exhibited briefer temporal integration (Fig. 7A–F). This re-

lationship held across all seven analyzed retinas (Fig. 7G). This
comparison assumes that the spatiotemporal integration per-
formed by each RGC is well captured by a single spatial filter and
a single temporal filter. We checked the degree of independence
between the spatial and temporal RFs, where independence is
defined as the STA being well approximated by the outer product
of a spatial and temporal filter (DeAngelis et al., 1993; Golomb et

Figure 5. Responses to full-field light steps are distinct across the identified cell types. Average PSTHs of field light steps for six
cell types. Shaded regions show the SD. The timing of transitions from gray to white to gray to black are shown in the stimulus
traces between the top (ON cells) and bottom (OFF cells) rows. Cell numbers for each type are given in Table 1 (retina 2).

A B

C D

Figure 6. Temporal RFs of ON and OFF pairs cluster together after accounting for polarity differences. A, PCA applied to the
temporal RFs of brisk sustained, brisk transient, and small transient cells from one experiment. The temporal RFs of OFF cells were
multiplied by �1 to invert their polarity before PCA. Each circle represents one RGC, and circles were colored by the cell type
determined by the classification in Figure 1. B, Same analysis as in A, but for a second retina and weights associated with PC 4 are
plotted instead of PC 2. C, Same data as in A, but a three-Gaussian mixture model was fit to the data in the space defined by the first
five principal components, which captured �99% of the variance in the data. D, Same as C, but for a second retina. This fit finds the
best three-group description of the data (provided that each group is well described by a multivariate Gaussian distribution). The
Gaussian mixture model clustered the temporal RFs identically to the groupings defined by combining ON and OFF pairs together.
Even points that appear outside of their appropriate group (see arrowheads) in the two-dimensional plot are correctly classified by
the Gaussian mixture model when it is fit with access to the first five or more PCs.
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al., 1994; Cai et al., 1997; Cowan et al., 2016). Singular value
decomposition revealed that for each of the six RGC types we
examined, �90% of the variance in the STA was captured by the
outer product of a single spatial and temporal filter (data not
shown). These results indicate that for these RGC types, spatio-
temporal integration was well approximated by a single spatial
and temporal filter. Furthermore, in the rodent retina, as in other
species, larger spatial integration implies briefer temporal
integration.

ON/OFF asymmetries in spatial and temporal integration
depend on cell type
Previous work has highlighted asymmetries in the size of spatial
RFs between ON and OFF cells, with ON cells having larger RFs
(Chichilnisky and Kalmar, 2002; Ratliff et al., 2010). To test
whether this organization is ubiquitous across ON and OFF path-
ways in the rodent retina, we compared the size of spatial RFs for
each pair of ON and OFF RGC types. Across seven retinas, ON
brisk sustained RGCs exhibited larger spatial RFs than OFF brisk
sustained RGCs (Fig. 8A, purple). However, ON and OFF brisk
transient RGCs exhibited the opposite relationship (Fig. 8A,
blue). Furthermore, ON and OFF small transient cells exhibited
nearly identical RF sizes (Fig. 8A, orange). These comparisons
were based on a two-dimensional Gaussian fit to the spatial RF to
identify the radius of a circle with an area equal to that encom-
passed within 1 SD of the RF (see Materials and Methods). To test
that this result did not depend on a parametric description of the
RF, we repeated the comparison for the RF area estimated by the
number of stimulus pixels that drove an appreciable change in
firing rate for each RGC (see Materials and Methods). Qualita-
tively, the results were unchanged by the nonparametric analysis
(Fig. 8B). Thus, previously observed asymmetries do not gener-
alize across cell types.

Previous studies have noted asymmetries in the temporal in-
tegration between ON and OFF pathways (Chichilnisky, 2001;
Pandarinath et al., 2010) Thus, we next compared the duration of
temporal integration between ON and OFF pairs. The duration
of the temporal integration was estimated by the time-to-zero
between the peak and the trough of the temporal RFs. Consistent
with previous results, among brisk sustained RGCs, ON cells ex-
hibited briefer temporal integration than OFF cells (Fig. 8C, pur-
ple). However, the opposite was observed for brisk transient
RGCs (Fig. 8C, orange). Similar to the results obtained for spatial
RFs, ON and OFF small transient cells exhibited similar dura-
tions of temporal integration (Figs. 6, 8, orange).

In addition to the duration of temporal integration, RGCs can
differ in the dynamics of integration. A key measure of their
temporal dynamics is their biphasic index (i.e., degree of tran-
sience). For a shift-invariant linear system, the biphasic index
indicates key properties of temporal filtering (e.g., low-pass vs
bandpass), and it indicates how transient versus sustained the
spiking response will be to a prolonged step in light intensity
(Field et al., 2007; Petrusca et al., 2007). Higher biphasic indices
indicate more strongly bandpass temporal filtering and more
transient light responses. Comparing biphasic indices across ON
and OFF pairs revealed that among brisk sustained RGCs, OFF

A B C

D E F

G

Figure 7. RGC types with larger spatial RFs exhibit briefer temporal RFs. A–F, Average space–time RFs from one retina of ON (A–C) and OFF (D–F ) brisk sustained, brisk transient, and small
transient RGCs. G, Comparison of spatial integration (RF radius) to temporal integration (time to trough). Each point corresponds to one RGC type from one retina; filled (open) symbols are OFF (ON)
RGCs. Brisk sustained RGCs are purple, brisk transient RGCs are blue, and small transient RGCs are orange. Dashed line is the best fit line to the data (slope 	�0.531; y-intercept 	 264.15 ms). Error
bars are the SE.

A B

C D

Figure 8. Comparison of spatial and temporal RF properties between ON and OFF RGC
pairs. A, Spatial RF radii compared between pairs of ON and OFF RGCs. RF radii were
derived from a two-dimensional Gaussian fit to the spatial RF. Brisk sustained RGCs are
purple, brisk transient RGCs are blue, and small transient RGCs are orange. Each point
shows comparison from one retina. Gray error bars show the SD; color error bars show the
SE. B, Same as A, but comparing the RF area estimated nonparametrically from the STA
(see Materials and Methods). C, Comparison of temporal integration estimated from the
time to zero of the temporal RF (see Materials and Methods). D, Comparison of the bipha-
sic index across pairs of ON and OFF RGCs.
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cells exhibited more biphasic temporal integration than ON cells
(Fig. 8D, purple). However, biphasic indices were similar be-
tween ON and OFF cells for brisk and small transient RGCs (Fig.
8D, blue and orange). These results indicate that ON/OFF asym-
metries in the dynamics of temporal integration are present in
some visual pathways, but not all.

Asymmetries in linearity, gain, and signal-to-noise ratio
among ON and OFF RGC types
The analyses described above compare the spatial and temporal
integration of visual input between ON and OFF RGC types.
However, these analyses do not reveal differences in spiking out-
put across cell types. The degree of linearity versus rectification,
gain, and signal-to-noise ratio (SNR) in the spiking output are all
key features dictating the signals provided to downstream brain
areas. Previous work has noted that OFF cells are more strongly
rectified in their spiking output than ON cells (Chichilnisky and
Kalmar, 2002; Zaghloul et al., 2003; Turner and Rieke, 2016);
thus, pathway asymmetries may extend beyond the integration of
sensory input.

To characterize and compare the transformation between vi-
sual input and spiking output, we estimated static nonlinearities
that relate the filtered visual stimulus to the number of spikes
produced by each neuron (Fig. 9A; Chichilnisky, 2001). These
static nonlinearities can be thought of as contrast response func-
tions, where contrast is defined as the similarity between the vi-
sual stimulus and the spatiotemporal RF.

ON and OFF brisk sustained RGCs exhibited the most linear
contrast response functions (Fig. 9A, purple); their spike rates
were modulated relatively symmetrically around zero contrast.
Brisk transient and small transient cells were progressively more
rectified in their spike output (Fig. 9A, blue and orange). ON and
OFF brisk transient cells exhibited the largest changes in spike
rate to large positive or negative contrasts, respectively (Fig. 9A,
blue).

To relate spiking output to RF properties, we compared RF
size to the strength of rectification, as assayed by the nonlinearity
(NL) index, which was computed as the log of the ratios of the
slope at the maximum generator signal to the slope at zero gen-
erator signal (Chichilnisky and Kalmar, 2002). This comparison
revealed that cells with smaller RFs were more rectified in their
spiking output than cells with larger RFs (Fig. 9B). Because tem-
poral integration was inversely related to spatial integration (Fig.
7G), longer temporal integration also implied greater rectifica-
tion in spike output.

To test for asymmetries in the spiking output of ON and OFF
cell types, we first examined NL indices, as follows: the logarithm
of the ratio of the slope at the maximum to the slope at zero. For
brisk sustained and brisk transient RGCs, ON cells had larger NL
indices (greater rectification) than OFF cells (Fig. 9C, purple and
blue). However, this relationship was reversed for small transient
RGCs (Fig. 9C, orange). Gain, the log of the slope of the contrast
response function at zero contrast, was larger among OFF cells
than ON cells for brisk sustained and brisk transient cells (Fig.
9D, purple and blue), but small transient RGCs exhibited the
opposite trend (Fig. 9D, orange). Finally, the SNR was com-
pared between ON and OFF pathways. The SNR was defined as
the gain (Fig. 9E) divided by the SD of the spike rate at zero
contrast (Chichilnisky and Kalmar, 2002). Similar to gain,
OFF brisk sustained and brisk transient cells exhibited higher
SNR than ON cells (Fig. 9E, purple and blue). ON small tran-
sient cells exhibited a weak tendency toward higher SNR than
OFF small transient cells (Fig. 9E, orange). Cumulatively,

these analyses summarize the relationships in spiking output
across three pairs of ON and OFF RGCs and illustrate that
each pair exhibits a distinct relationship among the degree of
linearity, gain, and SNR.

Discussion
In this study, we distinguished three functionally matched pairs
of ON and OFF cells, which provided an opportunity to test the
extent to which ON/OFF asymmetries generalize across a greater
range of cell types. This comparison results in an expansion of the
diversity of asymmetries present in the mammalian retina. Asym-
metries between ON and OFF brisk sustained cells were consis-
tent with previous observations. However, ON and OFF brisk
transient cells exhibited asymmetries of opposite polarity, and
small transient cells exhibited nearly symmetric spatiotemporal
integration. Thus, our work alters the conventional view that ON
and OFF asymmetries are consistent across diverse RGC types.
Below, we comment on the method used to classify RGCs in this
study, we suggest correspondences to morphologically defined
cell types, and we relate the RF organization of RGCs in this study
to that observed in other species.

Functional classifications of rodent RGCs
To functionally classify RGCs, we followed the unsupervised clas-
sification approach adopted by several previous studies of RGC
diversity (Carcieri et al., 2003; Farrow and Masland, 2011; Baden
et al., 2016), with the following differences. The first difference
was that RGCs were classified using data from individual record-
ings instead of pooling data across recordings. This reduced the
impact of interexperiment variability, which can either blur dis-
tinctions between cell types or cause the identification of too
many types. Second, relevant response features that distinguished
each type were identified before classification. This improved the
performance of the Gaussian mixture model because it produced
well separated clusters, thereby minimizing misclassification rates.
Only two or three features were selected at each classification step,
which kept data requirements for classification relatively low. Third,
the classification approach was serial. This mitigated ambiguity in
choosing the right number of clusters because each step consisted of
fitting just two clusters to the collection of ON cells and two more
clusters to the collection of OFF cells (Fig. 2C–E). Finally, because
many RGCs were recorded in each experiment, this allowed the
mosaic arrangement of RFs to provide complementary evidence that
the clustered cells were an irreducible type (Wässle et al., 1981b;
Devries and Baylor, 1997; Cook and Chalupa, 2000; Field and Chi-
chilnisky, 2007; Anishchenko et al., 2010). Cumulatively, this
combination of features facilitated an analysis of the functional or-
ganization of six RGC types.

While this approach was reproducible across recordings, it did
not classify all recorded cells or identify all of the functional types.
Given an RGC density of �1500 cells/mm 2 in the dorsal region of
rat retina targeted in these experiments (Danias et al., 2002),
10 –15% of RGCs over the electrode array had well sorted spikes
and were tracked across multiple stimulus conditions, which
were requirements for the data analyzed here. Among recorded
RGCs, 37 � 3% were not classified because too few cells of other
types were sampled. Each stimulus used in this study was pre-
sented “full field,” which likely attenuated or silenced spiking in
at least some RGC types (e.g., local-edge detectors; van Wyk et al.,
2006; Zhang et al., 2012). Moreover, only six irreducible RGC
types were identified. This falls well short of the �30 (possibly 40)
functionally distinct types that likely exist in the mammalian ret-
ina (Field and Chichilnisky, 2007; Völgyi et al., 2009; Sümbül et
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al., 2014; Sanes and Masland, 2015; Baden
et al., 2016). A more complete functional
classification of RGC types will be facili-
tated by using a wider variety of stimuli
and developing approaches for recording
and spike sorting a higher fraction of
RGCs over the MEA (Segev et al., 2004;
Prentice et al., 2011; Marre et al., 2012;
Yger et al., 2018).

Correspondences to morphologically
defined RGC types
A major goal in retinal research is to gen-
erate a complete catalog of RGCs that
specifies the correspondences among
their function, morphology, and projec-
tions to the brain (Sanes and Masland,
2015). We did not determine the mor-
phology of the recorded RGCs; however,
their RF sizes and response kinetics pro-
vide some plausible correspondences. The
six RGC types examined here all had rela-
tively large RFs and large well isolated
spikes on the MEA. These features indi-
cate large dendritic fields and relatively
large somas, suggesting correspondences
to the A and C groups of RGCs identified
by Sun et al. (2002). The brisk sustained
and brisk transient cells likely correspond
to the �- and �-cells identified by Peichl
(1989). The ON and OFF small transient
cells likely have smaller cell bodies and
dendrites in the interior of the inner plex-
iform layer (IPL) because of their tran-
sient response properties (Borghuis et al.,
2013), suggesting correspondences to the
outer and inner B1 RGCs (Huxlin and
Goodchild, 1997). We emphasize that
these are hypothesized correspondences that
require additional experiments to test.

Diverse contrast response functions
across RGC types
The contrast response functions (i.e.,
static nonlinearities) associated with each
RGC type differed significantly across the
six types we analyzed (Fig. 9). Brisk sus-
tained cells were the most linear, while
small transient cells were the most recti-
fied in their output. This trend was pres-
ent across both ON and OFF types. The
degree of rectification in RGC output has
been largely attributed to rectification in
the excitatory synaptic inputs provided
by bipolar cells (Zaghloul et al., 2003;
Schwartz et al., 2012; Borghuis et al., 2013;
Turner and Rieke, 2016). This predicts
that the different bipolar cells feeding
these distinct RGC types exhibit differing
degrees of rectification in their output.
These differences are likely shaped by in-
hibitory amacrine cells (Franke et al.,
2017). Importantly, differences in this

A

B C

D E

Figure 9. Comparison of contrast response functions across RGC types. A, Contrast response functions estimated from the static
nonlinearities that relate visual stimuli filtered by the spatiotemporal RF to mean spike counts. Left and right show data from two
retinas; top and bottom show ON and OFF RGCs, respectively. B, Comparison of the nonlinearity index to RF radius. Brisk sustained
RGCs are purple, brisk transient RGCs are blue, and small transient RGCs are orange. Filled (open) circles are OFF (ON) cells. C,
Nonlinearity index compared between pairs of ON and OFF RGCs. D, Gain compared between pairs of ON and OFF RGCs. E, SNR
compared between ON and OFF pairs.
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rectification can play a substantial role in tuning how different
cell types respond to natural scenes (Turner and Rieke, 2016).

Mechanisms and downstream implications of
functional asymmetries
Asymmetries between ON and OFF pathways have been observed
across a range of species and contexts. Among primate parasol
RGCs, ON cells exhibit larger RFs, briefer temporal integration,
and more linear contrast response functions than OFF cells (Chi-
chilnisky and Kalmar, 2002). Some of these asymmetries have
been observed in other species and cell types. For example, �-cells
in guinea pigs and brisk sustained cells in rabbits exhibit at least
some overlapping asymmetries (Zaghloul et al., 2003; Ratliff et
al., 2010; Buldyrev and Taylor, 2013).

The mechanisms that produce some of these asymmetries are
clear. For example, systematic differences in spatial RF size likely
reflect systematic differences in dendritic field size between some
ON and OFF RGC types (Peichl et al., 1987; Dacey and Petersen,
1992; Tauchi et al., 1992; Ratliff et al., 2010). Asymmetries in
contrast response functions between ON and OFF �-cells reflect
differences in baseline transmitter release from presynaptic bipo-
lar cells (Zaghloul et al., 2003). Furthermore, differences in in-
trinsic cellular conductances and synaptic inputs conspire to
yield differences in spontaneous firing, spatial nonlinearities, and
other properties (Murphy and Rieke, 2006; Margolis and De-
twiler, 2007; Zhang and Diamond, 2009; Buldyrev and Taylor,
2013; Turner and Rieke, 2016).

One question raised by these observations is the extent to
which these asymmetries meaningfully shape downstream visual
processing and perception. Asymmetries in ON and OFF re-
sponses originating in the retina clearly influence signals in LGN
(Jiang et al., 2015) and shape the responses in primary visual
cortex (Yeh et al., 2009; Jin et al., 2011; Komban et al., 2014; Lee
et al., 2016). Furthermore, these asymmetries likely underlie psy-
chophysical asymmetries between sensing and processing incre-
ments versus decrements of light (Pons et al., 2017).

Why do ON/OFF pathways exhibit diverse contrast response
functions and asymmetries?
Several recent studies have also examined the benefit of distinct
contrast response functions for encoding, and how these func-
tions can be optimized given the constraints imposed by different
sources of noise within the retina. One benefit of diverse contrast
response functions for encoding is that they could serve to decor-
relate a population of neurons responding to complex stimuli.
This decorrelation can reduce redundancy in the population
code, thereby transmitting the same information with fewer
spikes (Barlow, 1961; Vinje and Gallant, 2000; Pitkow and Meis-
ter, 2012). Alternatively, different nonlinearities may reflect com-
pensation for noise at different stages of retinal processing to
achieve efficient coding (Brinkman et al., 2016). For example, if
the dominant source of noise is present before rectification, the
most efficient coding is achieved by relatively linear contrast re-
sponse functions, while more strongly rectified functions are pre-
ferred when noise dominates after rectification. Determining
how the contrast response functions we observed either serve or
constrain the encoding of natural scenes across six parallel pro-
cessing streams is an important direction for future work.

Several studies have also indicated that ON/OFF asymmetries
are optimizations to the statistics of natural scenes. First, a theo-
retical analysis indicates that the division of processing ON and
OFF signals transmits more information with fewer spikes than
alternative encoding strategies (Gjorgjieva et al., 2014). Second,

the observation that at least some OFF pathways have smaller RFs
than ON cells may allow the retina to transmit more information
about natural scenes, which exhibit more regions of relative dark-
ness (Ratliff et al., 2010). Similarly, several asymmetries can be
predicted by applying efficient coding theory to natural scenes
(Karklin and Simoncelli, 2011; Doi et al., 2012).

Given that previous work suggests that natural scenes and
efficient coding can predict one set of asymmetries (e.g., ON cells
having larger spatial RFs than OFF cells), why do different path-
ways exhibit different asymmetries? One possibility comes from a
recent analysis of the spatial frequency distribution of light and
dark asymmetries in natural scenes (Cooper and Norcia, 2015).
This work shows that intensity distributions are skewed toward
darker values at low spatial frequencies, but not at higher spatial
frequencies. This may explain why cell types with the smallest RFs
in this study exhibited nearly equivalent spatiotemporal integra-
tion (Fig. 8). Two other considerations may be important as well.
First, previous analyses of natural scenes have largely focused on
static images, not on natural movies, or movies that consider
head and eye movements. These temporal dynamics may interact
with the differences in temporal integration across RGC types to
cause different asymmetries to be optimal. Second, previous
analyses have largely focused on just two pathways, one ON and
one OFF (Karklin and Simoncelli, 2011). It is unclear that the
conclusions for encoding natural scenes under this context will
generalize if a system has more pathways to use for encoding
visual scenes. To resolve these possibilities, a more complete anal-
ysis of the interactions between natural movies (including head
and eye movements; Wallace et al., 2013) and the spatiotemporal
dynamics of RGC RFs will be required.

References
Ala-Laurila P, Rieke F (2014) Coincidence detection of single-photon re-

sponses in the inner retina at the sensitivity limit of vision. Curr Biol
24:2888 –2898. CrossRef Medline

Anishchenko A, Greschner M, Elstrott J, Sher A, Litke AM, Feller MB, Chi-
chilnisky EJ (2010) Receptive field mosaics of retinal ganglion cells are
established without visual experience. J Neurophysiol 103:1856 –1864.
CrossRef Medline

Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T (2016)
The functional diversity of retinal ganglion cells in the mouse. Nature
529:345–350. CrossRef Medline

Barlow H (1961) Possible principles underlying the transformation of sen-
sory messages. In: Sensory communication (Rosenblith W, ed), pp 217–
234. Cambridge, MA: MIT.

Berman NJ, Maler L (1998) Inhibition evoked from primary afferents in the
electrosensory lateral line lobe of the weakly electric fish (Apteronotus
leptorhynchus). J Neurophysiol 80:3173–3196. CrossRef Medline

Borghuis BG, Marvin JS, Looger LL, Demb JB (2013) Two-photon imaging
of nonlinear glutamate release dynamics at bipolar cell synapses in the
mouse retina. J Neurosci 33:10972–10985. CrossRef Medline

Brinkman BA, Weber AI, Rieke F, Shea-Brown E (2016) How do efficient
coding strategies depend on origins of noise in neural circuits? PLoS
Comput Biol 12:e1005150. CrossRef Medline

Buldyrev I, Taylor WR (2013) Inhibitory mechanisms that generate centre
and surround properties in ON and OFF brisk-sustained ganglion cells in
the rabbit retina. J Physiol 591:303–325. CrossRef Medline

Burgstaller M, Tichy H (2011) Functional asymmetries in cockroach ON
and OFF olfactory receptor neurons. J Neurophysiol 105:834 – 845.
CrossRef Medline

Cai D, DeAngelis GC, Freeman RD (1997) Spatiotemporal receptive field
organization in the lateral geniculate nucleus of cats and kittens. J Neu-
rophysiol 78:1045–1061. CrossRef Medline

Caldwell JH, Daw NW (1978) New properties of rabbit retinal ganglion
cells. J Physiol 276:257–276. CrossRef Medline

Carcieri SM, Jacobs AL, Nirenberg S (2003) Classification of retinal gan-
glion cells: a statistical approach. J Neurophysiol 90:1704 –1713. CrossRef
Medline

9738 • J. Neurosci., November 7, 2018 • 38(45):9728 –9740 Ravi et al. • Asymmetric ON and OFF Processing

https://doi.org/10.1016/j.cub.2014.10.028
http://www.ncbi.nlm.nih.gov/pubmed/25454583
https://doi.org/10.1152/jn.00896.2009
http://www.ncbi.nlm.nih.gov/pubmed/20107116
https://doi.org/10.1038/nature16468
http://www.ncbi.nlm.nih.gov/pubmed/26735013
https://doi.org/10.1152/jn.1998.80.6.3173
http://www.ncbi.nlm.nih.gov/pubmed/9862915
https://doi.org/10.1523/JNEUROSCI.1241-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/23825403
https://doi.org/10.1371/journal.pcbi.1005150
http://www.ncbi.nlm.nih.gov/pubmed/27741248
https://doi.org/10.1113/jphysiol.2012.243113
http://www.ncbi.nlm.nih.gov/pubmed/23045347
https://doi.org/10.1152/jn.00785.2010
http://www.ncbi.nlm.nih.gov/pubmed/21160009
https://doi.org/10.1152/jn.1997.78.2.1045
http://www.ncbi.nlm.nih.gov/pubmed/9307134
https://doi.org/10.1113/jphysiol.1978.sp012232
http://www.ncbi.nlm.nih.gov/pubmed/650447
https://doi.org/10.1152/jn.00127.2003
http://www.ncbi.nlm.nih.gov/pubmed/12966177


Chichilnisky EJ (2001) A simple white noise analysis of neuronal light re-
sponses. Network 12:199 –213. CrossRef Medline

Chichilnisky EJ, Kalmar RS (2002) Functional asymmetries in ON and OFF
ganglion cells of primate retina. J Neurosci 22:2737–2747. CrossRef
Medline

Clarke SE, Longtin A, Maler L (2014) A neural code for looming and reced-
ing motion is distributed over a population of electrosensory ON and OFF
contrast cells. J Neurosci 34:5583–5594. CrossRef Medline

Cleland BG, Levick WR (1974) Brisk and sluggish concentrically organized
ganglion cells in the cat’s retina. J Physiol 240:421– 456. CrossRef Medline
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