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The pivotal role of K�-Cl� cotransporter 2 (KCC2) in inhibi-
tory neurotransmission and severe human diseases fosters
interest in understanding posttranslational regulatory mecha-
nisms such as (de)phosphorylation. Here, the regulatory role of
the five bona fide phosphosites Ser31, Thr34, Ser932, Thr999, and
Thr1008 was investigated by the use of alanine and aspartate
mutants. Tl�-based flux analyses in HEK-293 cells demon-
strated increased transport activity for S932D (mimicking phos-
phorylation) and T1008A (mimicking dephosphorylation),
albeit to a different extent. Increased activity was due to changes
in intrinsic activity, as it was not caused by increased cell-surface
abundance. Substitutions of Ser31, Thr34, or Thr999 had no
effect. Additionally, we show that the indirect actions of the
known KCC2 activators staurosporine and N-ethylmaleimide
(NEM) involved multiple phosphosites. S31D, T34A, S932A/D,
T999A, or T1008A/D abrogated staurosporine mediated stimu-
lation, and S31A, T34D, or S932D abolished NEM-mediated
stimulation. This demonstrates for the first time differential
effects of staurosporine and NEM on KCC2. In addition, the
staurosporine-mediated effects involved both KCC2 phosphor-
ylation and dephosphorylation with Ser932 and Thr1008 being
bona fide target sites. In summary, our data reveal a complex
phosphoregulation of KCC2 that provides the transporter with a
toolbox for graded activity and integration of different signaling
pathways.

K�-Cl� cotransporter 2 (KCC2)2 plays a pivotal role in inhib-
itory neurotransmission. Under normal physiological condi-
tions, KCC2 mediates outward transport of K� and Cl�,
thereby lowering the intracellular Cl� concentration ([Cl�]i) in
neurons (1–3). This renders the action of GABA or glycine
hyperpolarizing as their receptors are ligand-coupled Cl�
channels. KCC2 exists in two isoforms, KCC2a and KCC2b,

which differ in their N termini due to alternative promotors and
first exon usage (4). In the adult, KCC2b is the most prominent
isoform (5). Mice with disruption of the gene Slc12a5 encoding
both KCC2a and KCC2b die shortly after birth due to motor
deficits (6). KCC2b-deficient mice survive up to 3 weeks post-
natally (7), whereas KCC2a-deficient mice show no obvious
phenotype (8).

Dysregulation of KCC2 is associated with several neurologi-
cal and psychiatric disorders, including epilepsy, neuropathic
pain, spasticity, ischemic insults, brain trauma, schizophrenia,
and autism (9 –19). This renders KCC2 a prime pharmacother-
apeutic target and fosters interest in understanding posttrans-
lational mechanisms of its regulation (20 –25). Among those,
phosphorelated mechanisms are most intensively scrutinized.
The broad-spectrum kinase inhibitor staurosporine enhances
KCC2 transport activity in hippocampal neurons (26). N-Eth-
ylmaleimide (NEM) enhances KCC transport activity as well
and is thought to act on the same regulatory kinases as stauro-
sporine (27–30). In contrast, the protein phosphatase inhibi-
tors calyculin and okadaic acid block KCC activation by cell
swelling (31, 32).

Functional characterization of several KCC2 phosphosites
demonstrated the importance of phosphorelated regulatory
mechanisms (20, 23, 27, 33, 34). Dephosphorylation of the
N-terminal phosphosite Thr6 of KCC2a (35, 36) or the pan-C-
terminal phosphosites Thr906 and Thr1006 (numbering accord-
ing to mouse KCC2b) increases transport activity (27, 37–39).
Similarly, phosphorylation of Tyr903 and Tyr1087 decreases cell-
surface expression as well as transport activity of Tyr1087 (40 –
42). In contrast, phosphorylation of Thr934, Ser937, or Ser940

increasesKCC2transportactivity (27,43).The latter threephos-
phorylation sites are encoded in exon 22, which is exclusively
conserved throughout vertebrate KCC2 and nontherian KCC4
(27, 33).

Analyses of the underlying regulatory mechanism identified
several kinases that interact with KCC2. These kinases include
protein kinase C (PKC), with-no-lysine (K) kinases (WNKs),
oxidative stress–responsive kinase 1 (OSR1), Ste20p-related
proline/alanine-rich kinase (SPAK), and creatine kinase (CKB)
(35–37, 43– 46). PKC was shown to phosphorylate Ser940 (43),
and WNKs interact with SPAK/OSR1 to phosphorylate the
KCC2a isoform–specific N-terminal residue Thr6 and the pan-
residue Thr1006 (35–37, 39, 47). WNKs also interact with a yet
unknown kinase to phosphorylate Thr906 (36, 37, 39). Kinases
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involved in the phosphorylation of the other phosphosites have
yet to be identified. Overall, regulation of KCC2 transport activ-
ity by phosphorylation involves a variety of phosphosites as well
as kinases and phosphatases. This complexity likely serves to
match the demand for a fine-grained setting of [Cl�] to modu-
late inhibitory neurotransmission and to enable integration of
different signaling pathways in neurons (27, 33, 34, 48 –50).

Here, we analyzed the impact of bona fide phosphosites iden-
tified in large-scale phosphoproteomics studies on KCC2 trans-
port activity. These residues were substituted by either alanine
or aspartate in mouse KCC2b to block or mimic phosphoryla-
tion, respectively. Subsequently, transport activity measure-
ments were performed in HEK-293 cells to determine KCC2
transport activity in the presence of various agents.

Results

Database mining and evolutionary conservation of KCC2
phosphosites

The databases PhosphoSitePlus and PHOSIDA subsume all
experimentally observed phosphosites that were identified by
MS-based proteomics studies (51, 52). Using KCC2 as query,
we identified eight bona fide phosphosites, Ser31, Thr34, Ser913,
Ser932, Ser988, Thr999, and Thr1008, in addition to the previously
described phosphosites Thr6, Ser25, Ser26, Thr906, Thr934,
Ser937, Ser940, Thr1006, Ser1021, Ser1024, and Ser1025 (Table 1).
Five of these eight phosphosites, Thr6, Ser25, Ser26, Ser31, and
Thr34 are located in the cytoplasmic N terminus whereby Thr6

is contained in both alternative exons 1 of KCC2a and KCC2b
and Ser25, Ser26, Ser31, and Thr34 are shared by both isoforms.
The remaining phosphosites are located in the shared C termi-
nus of both KCC2 isoforms. In the following, we focus our anal-
yses on the two N-terminal Ser31 and Thr34 and the three C-ter-
minal Ser932, Thr999, and Thr1008 phosphosites as they were so
far not characterized.

Multiple sequence alignment of vertebrate KCC subfamily
members revealed that these phosphosites cover different pat-
terns of phylogenetic conservation (Fig. 1). The phosphosite
Thr1008 is highly conserved throughout all vertebrate KCC iso-
forms. Thr999 is moderately conserved throughout KCC2 and

KCC3 and partially conserved in KCC1 and KCC4. The N-ter-
minal phosphosite Ser31 is highly conserved in orthologous
KCC2 members and is rarely observed in KCC1 and KCC4,
whereas Thr34 is mainly present in therian KCC2. Ser932 is
highly conserved in vertebrate KCC2 and nontherian KCC4.
This phosphosite is located in exon 22, which also harbors the
previously analyzed and highly conserved phosphosites Thr934,
Ser937, and Ser940 (33).

Expression analyses of KCC2 phosphomutants

Tostudytheposttranslationalregulatoryimpactofphosphor-
ylated Ser31, Thr34, Ser932, Thr999, and Thr1008 for KCC2b (Mus
musculus (mm)KCC2b) function, we generated two mutants
for each phosphosite mimicking the phosphorylated (mutation
into aspartate) or dephosphorylated (mutation into alanine)
status. This resulted in a total of 10 mutants (KCC2S31A/D,
KCC2T34A/D, KCC2S932A/D, KCC2T999A/D, and KCC2T1008A/D).
To analyze whether these mutations affect the expression pat-
tern of KCC2, the constructs were transiently expressed in
HEK-293 cells. All mutants showed a transfection rate in HEK-
293 cells similar to KCC2WT (Fig. S1). Furthermore, immuno-
reactivity against all mutants was detected at the plasma mem-
brane and in the cytosol (Fig. 2). Only the nucleus was spared.
Thus, all mutants were well expressed in HEK-293 cells and
therefore suitable for transport activity measurements.

Regulatory role of S932D and T1008A

To investigate the regulatory relevance of the five bona fide
phosphosites, we determined the transport activity of phospho-
mimetic (aspartate) and dephosphomimetic (alanine) muta-
tions of mmKCC2 by Tl� flux measurements. All mutants as
well as the KCC2WT displayed at least a 2.9-times increased
transport activity compared with mock-transfected cells (Fig. 3,
Table 2, and Fig. S2). The loop diuretic furosemide, which spe-
cifically inhibits the function of cation-chloride cotransporters
(53, 54), blocks most of the flux, demonstrating that the trans-
port activity was largely mediated by KCC2 (see Fig. 5, Table 2,
and Fig. S2).

Analogous to the previously described N-terminal Ser25 and
Ser26 phosphosites (27), substitution of Ser31 and Thr34 by ala-
nine or aspartate did not alter transport activity compared with
KCC2WT. Similar results were obtained for the C-terminal
mutants S932A, T999A/D, and T1008D. All four mutants
showed a transport activity indistinguishable from KCC2WT

(Fig. 3 and Table 2). In contrast, substitution of Ser932 by aspar-
tate and Thr1008 by alanine significantly enhanced KCC2 trans-
port activity, albeit to a different extent (Fig. 3 and Table 2). To
conclude, phosphorylation of the C-terminal residue Ser932 and
dephosphorylation of Thr1008 result in an increased KCC2
transport activity in HEK-293 cells.

No change in abundance and cell-surface expression of
KCC2S932D and KCC2T1008A

To analyze whether the enhanced activity of the two phos-
phomutants is due to increased abundance at the cell surface,
we performed biotinylation assays for KCC2WT, S932D, and
T1008A (Fig. 4). KCC2WT displayed a cell-surface localization
of 16.7 � 1.6% compared with the total KCC2 protein amount.

Table 1
Phosphosites in PhosphoSitePlus and PHOSIDA
Dashes indicate no presence in the data base or they were not publicized. rn, R.
norvegicus.

PhosphoSitePlus
mmKCC2

PhosphoSitePlus
rnKCC2

PHOSIDA
mmKCC2

Transport activity
measured by (Ref.)

Thr6 — — 34–36
Ser25 Ser25 Ser25 27, 34
Ser26 Ser26 Ser26 27, 34
— Ser31 Ser31 —
Thr34 Thr34 Thr34 72
Thr906 Thr906 Thr906 27, 37, 39
Ser913 — — —
Ser932 — (Ser932) —
Thr934 Thr934 (Thr934) 27
Ser937 Ser937 Ser937 27
Ser940 Ser940 Ser940 28, 43
Ser988 — — —
Thr999 — — —
Thr1006 Thr1007 Thr1006 27, 28, 39
Thr1008 — Thr1008 —
Ser1021 Ser1022 Ser1021 27
Ser1024 Ser1025 (Ser1024) 27
Ser1025 Ser1026 Ser1025 27
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This is in line with previously published results that reported a
12–13% surface localization for rat KCC2 (55, 56). The cell-
surface rates of S932D (19.8 � 2.5%) and T1008A (17.4 � 0.2%)
were indistinguishable from KCC2WT. Thus, the enhanced

Figure 3. Transport activity of KCC2 phosphomutants. HEK-293 cells were
transfected with KCC2WT or KCC2 phosphomutant constructs. Transport
activity was determined by performing Tl� flux measurements. The Tl�

flux determined for KCC2S31A/D, KCC2T34A/D, KCC2S932A, KCC2T999A/D, and
KCC2T1008D was similar to the flux of KCC2WT. In contrast, KCC2S932D and
KCC2T1008A mutants resulted in significantly increased transport activity. The
graph represents the data of at least four independent measurements (each
consisting of three technical replicates) normalized to KCC2WT. Statistical
analysis is presented in Table 2 (**, p � 0.01; ***, p � 0.001). Circles indicate
outliers with respect to the 1.5 � interquartile range of the box plot. Error bars
represent S.E.

Figure 1. Evolutionary conservation of phosphosites and their neighboring amino acids in KCC subgroups. Ser31, Thr34, and Thr999 are moderately
conserved in vertebrate KCC subfamily members. The phosphosites Thr1006 and Thr1008 are highly conserved throughout vertebrate KCCs. Ser932, Ser937,
Thr934, and Ser940 display similar degrees of phylogenetic conservation. They are only present in vertebrate KCC2 and in nontherian KCC4. hs, H. sapiens;
rn, Rattus norvegicus; md, Monodelphis domestica; gg, Gallus gallus; tg, Taeniopygia guttata; ac, Anolis carolinensis; xt, Xenopus tropicalis; tr, Takifugu
rubripes; Dr, Danio rerio.

Figure 2. Expression of KCC2WT or KCC2 phosphomutants in HEK-293
cells. The subcellular distribution of KCC2 mutants was indistinguishable
from KCC2WT with immunoreactivity outside the nucleus. Photomicrographs
were taken with a confocal laser-scanning microscope. Scale bar, 10 �m.
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transport activity of S932D and T1008A is caused by intrinsi-
cally kinetic effects and not by changes in KCC2 cell-surface
abundance.

Staurosporine and NEM differentially affect KCC2
phosphomutants

Staurosporine is a broad kinase inhibitor that generally acti-
vates KCCs (27, 57, 58). To investigate whether Ser31, Thr34,
Ser728, Ser932, Thr999, or Thr1008 is an indirect target of stauro-
sporine, we determined the transport activity of the corre-
sponding mutants upon application of 8 �M staurosporine.
S31A, T34D, and T999D mutants were stimulated by stauro-
sporine to a similar extent as KCC2WT (Fig. 5 and Table 3). In
contrast, mutations S31D, T34A, S932A/D, T999A, and
T1008A/D abrogated stimulation by staurosporine. These data
indicate that all five amino acid residues tested, Ser31, Thr34,
Ser932, Thr999, and Thr1008, are involved in the staurosporine-
mediated effect.

As described previously, NEM, which generally activates
KCCs (27, 57, 58), closely mimics the effect of staurosporine
(27). To investigate whether this assumption holds true,
we analyzed the impact of NEM on the transport activity
of KCC2S31A/D, KCC2T34A/D, KCC2S728A/D, KCC2S932A/D,
KCC2T999A/D, and KCC2T1008A/D. As observed for staurospo-
rine, NEM still stimulated transport activity of the mutant
T999D and failed to enhance the transport activity of S932D.

Contrary to staurosporine, NEM also enhanced the transport
activity of S31D, T34A, T932A, T999A, and T1008A/D,
whereas it did not affect the transport activity of S31A, T34D, or
S932D. Thus, we demonstrate for the first time that staurospo-
rine and NEM can differentially affect KCC2-mediated trans-
port activity.

Discussion

The main function of KCC2 is to establish a low intracellular
[Cl�] as this is required for the hyperpolarizing action of GABA
and glycine. Decreased Cl� extrusion by dysregulated KCC2
activity has been associated with a variety of disorders (12, 18,
19, 23, 25). One potent mechanism to rapidly and reversibly
regulate the intrinsic transport rate and cell-surface abundance
of KCC2 is phosphorylation and dephosphorylation of serine,
threonine, and tyrosine residues (23). Recently, some progress
in our understanding of the regulatory impact of specific phos-
phosites (27, 34, 35, 39, 41, 43) and underlying kinases and
phosphates (35–37, 43– 46) has been made.

Here, we focused on the functional characterization of bona
fide phosphorylation sites of KCC2 that were identified by MS
analysis of brain tissue. Site-directed mutagenesis in combina-
tion with transport activity measurements identified a potent
role of Ser932 and Thr1008 in phosphoregulation. Phosphoryla-
tion of Ser932 (mimicked by S932D) and dephosphorylation of
Thr1008 (mimicked by T1008A) increase KCC2 activity. In prin-
ciple, such an increase can arise from an increased cell-surface
abundance of the protein or from an intrinsic conformational
change (20, 23). Surface biotinylation experiments demon-
strated that surface abundance of S932D and T1008A were
indistinguishable from KCC2WT. Thus, their increased trans-
port activity resulted from intrinsically kinetic changes. Similar
results were reported previously for the mutants T934D and
S937D (27).

Ser932 is located within exon 22, which is exclusively present
in vertebrate KCC2 and nontherian KCC4. This exon also har-
bors the previously characterized phosphorylation sites Thr934,
Ser937, and Ser940 (27, 43). Dephosphorylation of Thr934 and
Ser937, mimicked by mutation to alanine, results in transport
activity similar to KCC2WT, and phosphorylation of both resi-
dues, as mimicked by mutation to aspartate, intrinsically
increases KCC2 transport activity (27). Furthermore, PKC-di-
rected phosphorylation of Ser940 enhances KCC2 cell-surface
stability and increases ion transport, whereas mutation of
Ser940 to alanine results in transport activity that is equal to or
decreased compared with KCC2WT (34, 43, 59). Thus, phos-
phorylation of each phosphosite so far described in exon 22
stimulates KCC2 function. Exon 22 phosphosites are therefore
in strikingly contrast to non-exon 22 phosphosites such as
Thr906 and Thr1006. The latter two are highly conserved
throughout KCCs, and their dephosphorylation increases
KCC2 transport activity (27, 34, 37, 39). In addition, Thr1008,
analyzed in the present study, that is near Thr1006 conforms to
this observation as dephosphorylation augments KCC2 activity
as well. Thus, KCC2 harbors two main regulatory principles in
which phosphorylation of exon 22–specific phosphosites and
dephosphorylation of highly conserved KCC phosphosites out-
side exon 22 increase KCC2 transport activity. Therefore, con-

Table 2
Transport activity under basal conditions and in the presence of furo-
semide
**, p � 0.01; ***, p � 0.001; n.s., not significant.

Basal conditions
(significance in comparison

with KCC2WT)

2 mM furosemide
(significance in comparison

with untreated samples)

% %
Mock 32 �2 (***) 27 �2 (n.s.)
KCC2WT 100 �2 (n.s.) 27 �1 (***)
S31A 121 �7 (n.s.) 45 �7 (***)
S31D 108 �7 (n.s.) 32 �4 (***)
T34A 100 �7 (n.s.) 27 �2 (***)
T34D 96 �6 (n.s.) 37 �4 (***)
S932A 130 �7 (n.s.) 24 �3 (***)
S932D 188 �15 (**) 27 �3 (***)
T999A 104 �4 (n.s.) 24 �2 (***)
T999D 93 �6 (n.s.) 26 �2 (***)
T1008A 147 �7 (**) 27 �4 (***)
T1008D 128 �8 (n.s.) 23 �2 (***)

Figure 4. Cell-surface expression of KCC2 phosphomutants. The cell-sur-
face amount of the indicated KCC2 mutants was quantitatively determined
by immunoblot analysis. KCC2WT and the KCC2 mutants S932A or T1008A
show similar abundance at the surface. The plot depicts the mean of at least
three experiments �S.E. (error bars).
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trary to other KCC isoforms, which are only up-regulated upon
dephosphorylation (39, 60), posttranslational regulation of
KCC2 is more complex. This likely equips KCC2 with a more
fine-grained phosphoregulatory mechanism as well as an
enlarged capacity to integrate multiple signaling cascades com-
pared with other KCC isoforms.

So far, the underlying regulatory mechanisms that lead to
phosphorylation and dephosphorylation of specific KCC2

phosphosites have only be partially identified. Ser940 is phos-
phorylated via PKC (43). The phosphosites Thr6 of KCC2a and
Thr906andThr1006areregulatedbytheWNK-SPAK/OSR1phos-
phorylation cascade (35–37, 39, 47). Toward the identification
of kinases involved in the phosphosites analyzed in this study,
we treated HEK-293 cells with staurosporine or NEM. In gen-
eral, both enhance KCC2 transport activity (27, 28, 56, 61, 62).
Recent analyses by Deeb and co-workers (28) demonstrated

Figure 5. Effect of furosemide, staurosporine, or NEM on transport activity of KCC2 phosphomutants. HEK-293 cells were transfected with KCC2WT or
KCC2 phosphomutant constructs. Transport activity was determined by performing Tl� flux measurements. Furosemide, staurosporine, or NEM was added 15
min prior to measurement. KCC2WT and all phosphomutants were significantly inhibited by furosemide. KCC2WT, KCC2S31A, KCC2T34D, and KCC2T999D were
significantly activated by staurosporine. KCC2WT, KCC2S31D, KCC2T34A, KCC2S932A, KCC2T999A/D, and KCC2T1008A/D were significantly activated by NEM. The graph
represents data of at least four independent measurements (each consisting of two (treated cells) or three (untreated cells) technical replicates) normalized to
KCC2WT. Statistical analysis is presented in Table 3. **, p � 0.01; ***, p � 0.001; n.s., not significant. F, furosemide; U, untreated cells; S, staurosporine; N, NEM.
Squares indicate outliers with respect to the 1.5 � interquartile range of the box plot. Error bars represent S.E.
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that NEM leads to increased phosphorylation of Ser940 and
decreased phosphorylation of Thr1007 (numbering according to
rat KCC2b). The latter might be explained by the observation
that NEM also reduces the phosphorylation level of SPAK,
which is involved in phosphorylation of Thr1007 (28). Interest-
ingly, NEM cannot stimulate the transport activity of T1007E,
indicating that the induced activation of KCC2 is mediated by
dephosphorylation of Thr1007 (28). Here, we show that the
phosphomutants S31A, T34D, and S932D also abolish the
NEM-mediated increase in KCC2 transport activity. Our
results reveal that more than one phosphosite partakes in
NEM-induced activation of KCC2.

Previous data indicate that NEM and staurosporine act via
the same regulatory mechanism (27). This actually holds true
for Thr934 and Ser937 (27). Our analyses demonstrate for the
first time that NEM and staurosporine can differentially impact
KCC2 transport activity. NEM did not enhance transport activ-
ity of S31A and T34D, whereas staurosporine did not stimulate
S31D, T34A, S932A/D, T999A, and T1008A/D. This points to
partially different regulatory mechanisms being involved in
stimulation of these phosphosites.

Furthermore, two categories of phosphosites were identified.
The first category consists of the transport activity–regulatory
phosphosites Ser932 and Thr1008 where mutation to either ala-
nine or aspartate abrogated stimulation by staurosporine. This
is expected for a site directly targeted by the staurosporine-
mediated action. In line with this result, alteration of the phos-
phorylation status increased activity (S932D and T1008A).
Together, these data strongly suggest that both amino acid res-
idues are bona fide target sites of proteins affected by the kinase
inhibitor. Additionally, these results reveal that staurosporine
acts by triggering both phosphorylation (S932D) and dephos-
phorylation (T1008A). In the case of Thr1008, this kinase inhib-
itor might inhibit a kinase that opposes KCC2 activation by
phosphorylation of this site. In the case of Ser932, the kinase
inhibitor might indirectly inhibit a phosphatase that dephos-
phorylates this site and thereby opposes KCC2 activation. It is
currently unclear why mutation of either site alone abolished
significant stimulation by staurosporine. One explanation is a
functional cross-talk of both sites. Furthermore, we still noted a
trend toward stimulated activity of the single mutants.

The second category consists of Ser31 and Thr34 for stauro-
sporine and NEM, Thr999 for staurosporine, and Ser932 for

NEM. In these cases, only mutation into one amino acid residue
(alanine or aspartate) abrogated stimulation, whereas mutants
containing the other amino acid residue replacement were still
sensitive to the respective agent. One explanation is that the
kind of substitution at these sites defines accessibility to other
phosphosites such as Ser932 or Thr1008 in the case of staurospo-
rine. One conformational state occludes hidden sites (S31A,
T34D, and S932D for NEM and S31D, T34A, and T999A for
staurosporine), resulting in no further activation of KCC2. The
other conformational state deoccludes hidden sites (S31D,
T34A, and S932A for NEM and S31A, T34D, and T999D for
staurosporine), leading to simulation upon staurosporine or
NEM treatment, respectively. Thus, (de)phosphorylation of
specific phosphosites likely results in different conformational
states of KCC2 termini that have a long-range effect on other
phosphosites. They therefore indirectly regulate the transport
activity of KCC2. This hypothesis is in line with previous work
of Forbush and co-workers (63, 64). They provided evidence
that phosphorylation of N-terminal NKCC1 phosphosites leads
to movements of transmembrane domains 10 and 12 relative to
each other (63, 64). Furthermore, the existence of long-range
effects on the phosphostatus of KCC2 is supported by the
observation that the mutation R1049C causes a significant
�50% decrease in Ser940 phosphorylation (11). Full under-
standing of this issue likely requires the 3D structure of KCC2
to modulate the impact of different phosphosites.

In conclusion, a detailed functional analysis of KCC2 amino
acid residues revealed a complex phosphoregulatory landscape.
Full understanding of phosphoregulation therefore requires a
3D model of KCC2 and the interacting effectors to simulate the
competitive (de)phosphorylation events and the associated
conformational changes. In addition, mass spectrometric char-
acterization of KCC2 phosphosites under different treatments
would be of advantage. These types of analyses will clarify how
single and combined (de)phosphorylation events influence the
conformational changes of KCC2 and thus its transport activ-
ity. Initial progress toward this goal has been made and revealed
a flexible multidomain organization of KCC2 (65). Further-
more, future studies should address the role of phosphosites in
KCC2 trafficking. Most studies, including our own, analyze
phosphosites in nonneuronal cells with a simplified morphol-
ogy compared with the high degree of compartmentalization in
neurons. The N terminus of KCC2, for instance, is required for

Table 3
Transport activity in the presence of staurosporine or NEM
**, p � 0.01; ***, p � 0.001; n.s., not significant.

Basal conditions
(significance in comparison

with KCC2WT)

8 �M staurosporine
(significance in comparison

with untreated samples)

1 mM NEM
(significance in comparison

with untreated samples)

% % %
Mock 32 �2 (***) 30 �2 (n.s.) 41 �2 (**)
KCC2WT 100 �2 (n.s.) 126 �4 (***) 153 �5 (***)
S31A 121 �7 (n.s.) 179 �9 (**) 163 �20 (n.s.)
S31D 108 �7 (n.s.) 147 �12 (n.s.) 182 �18 (***)
T34A 100 �7 (n.s.) 122 �6 (n.s.) 150 �9 (***)
T34D 96 �6 (n.s.) 132 �10 (***) 118 �9 (n.s.)
S932A 130 �7 (n.s.) 151 �11 (n.s.) 183 �15 (**)
S932D 188 �15 (*) 198 �18 (n.s.) 204 �17 (n.s.)
T999A 104 �4 (n.s.) 123 �8 (n.s.) 145 �10 (***)
T999D 93 �6 (n.s.) 136 �13 (***) 145 �7 (***)
T1008A 147 �7 (**) 184 �5 (n.s.) 205 �17 (***)
T1008D 128 �8 (n.s.) 146 �13 (n.s.) 187 �15 (***)
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cell-surface delivery in neurons (66). Interestingly, this part
contains various phosphorylation sites with unknown function.

Experimental procedures

Bioinformatics analyses

To identify native phosphosites from proteomics ap-
proaches, the two databases PhosphoSitePlus (http://www.
phosphosite.org)3 (52) and PHOSIDA (51) were screened using
KCC2 as query. Both databases contained experimentally
observed posttranslational modifications obtained by mass
spectrometric analyses.

KCC protein sequences for a diverse selection of organisms
were obtained from a combination of BLAST searches against
GenBankTM and data mining of the Ensembl database and the
Joint Genome Institute (http://www.jgi.doe.gov/). The protein
sequences of human KCC1 (NP_005063.1), KCC2 (NP_065759.1),
KCC3 (NP_598408.1), and KCC4 (NP_006589.2) were used as
queries. For each protein in each target species, we saved all
sequences with an E-value of at least 10�2. These sequences
were then reverse blasted (BLASTp or translated BLAST)
against the Homo sapiens protein database, and only those pro-
tein sequences were retained that showed the same CCC pro-
tein sequence of H. sapiens that was used as a query sequence as
the best hit (E-value of at least 10�2). Each obtained sequence
was then aligned at the amino acid level using the default set-
tings in MUSCLE (67) as implemented in SeaView v.4.4.2 (68)
and manually improved by eye thereafter.

Construction of expression clones

Site-directed mutagenesis of mouse expression clones for
KCC2b (GenBank accession NM_020333.2) was performed
according to the QuikChange mutagenesis system (Stratagene,
Heidelberg, Germany). Forward oligonucleotides for the gen-
eration of the mutations are given in Table 4. Only sequence-
verified clones were used for this study.

Cell culture

For immunocytochemistry, K�-Cl� cotransporter activity
measurements, and cell-surface biotinylation assays, HEK-293
cells were transiently transfected with the respective construct
using polyethylenimine (Sigma-Aldrich). 3 h prior to transfec-
tion the medium was replaced. Briefly, 400 �l of Dulbecco’s
modified Eagle’s medium (Invitrogen), 18 �l of polyethyleni-

mine, and �4.5 �g of DNA were mixed and incubated for 15
min at room temperature prior to transfection. For K�-Cl�
cotransport activity measurements, HEK-293 cells were plated
in a 0.1 mg/ml poly-L-lysine– coated 96-black well culture
dish (Greiner Bio-One, Frickenhausen, Germany) at a concen-
tration of 100,000 cells/well 24 h after transfection. The
remaining cells were plated on a 0.1 mg/ml poly-L-lysine–
coated glass coverslip. After �18 h, coverslips were processed
for immunocytochemical analyses to determine transfection
rates, which were routinely between 20 and 30% (Fig. S1).

Immunocytochemistry

For immunocytochemistry, all steps were performed at room
temperature. HEK-293 cells grown on poly-L-lysine– coated
coverslips were fixed for 10 min with 4% paraformaldehyde in
0.2 M phosphate-buffered saline (PBS). After three washing
steps in PBS, cells were incubated with blocking solution (2%
BSA, 10% goat serum in PBS) for 30 min. Primary antibody
solution (anti-KCC2 N1–12; 1:1,000; Neuromab) was added in
carrier solution (0.3% Triton X-100, 1% BSA, 1% goat serum in
PBS) for 1 h. After washing three times in PBS, the secondary
antibody, which was conjugated to a fluorescent probe (Alexa
Fluor 488 goat anti-mouse; 1:1,000; Thermo Fisher Scientific,
Bremen, Germany), was incubated for 1 h. After three washes in
PBS, cells were mounted onto glass slides with Mowiol (Roth,
Karlsruhe, Germany) and DAPI (Roth; 1:1000). Photomicro-
graphs were taken using a TCS SP8 confocal laser-scanning
microscope (Leica, Wetzlar, Germany).

Determination of K�-Cl� cotransport

KCC2 transport activity was determined by Cl�-dependent
uptake of Tl� in HEK-293 cells as described previously (27, 55,
56). To initiate the flux measurement, the medium in the
96-well culture dish was replaced by 80 �l of preincubation
buffer (100 mM N-methyl-D-glucamine chloride, 5 mM HEPES,
5 mM KCl, 2 mM CaCl2, 0.8 mM MgSO4, 5 mM glucose, pH 7.4)
with 2 �M FlouZin-2 AM dye (Invitrogen) plus 0.2% (w/v) Plu-
ronic F-127 (Invitrogen) and incubated for 48 min at room tem-
perature. Cells were then washed three times with 80 �l of
preincubation buffer and incubated for 15 min with 80 �l of
preincubation buffer plus 0.1 mM ouabain to block Na�/K�-
ATPase activity. This was done for three technical replicates for
each construct. Afterward, the 96-well plate was placed into a
fluorometer (Fluoroskan Accent, Thermo Scientific), and each
well was injected with 40 �l of 5� Tl� stimulation buffer (12
mM Tl2SO4, 100 mM N-methyl-D-glucamine chloride, 5 mM

HEPES, 2 mM KCl, 2 mM CaCl2, 0.8 mM MgSO4, 5 mM glucose,
pH 7.4). Fluorescence was measured in a kinetic-dependent
manner (excitation, 485 nm; emission ,538 nm; one frame in 6 s
in a 200-s time span) across the entire cell population in a single
well. By using linear regression of the initial values of the slope
of Tl�-stimulated fluorescence increase, transport activity was
calculated (55, 56).

The effects of the kinase inhibitor staurosporine or NEM
were determined by adding 8 �M staurosporine or 1 mM NEM
to the preincubation buffer 15 min prior to flux measurement.
This was done for two technical replicates for each construct,
and at least four independent measurements were performed

3 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party-hosted site.

Table 4
Forward primers for site-directed mutagenesis
for, forward.

Sequence (5� to 3�)

S31A for CTTCATCAACGCCACGGACACGG
S31D for TCCCTTCATCAACGACACGGACACGGAGAAG
T34A for CAACAGCACGGACGCGGAGAAGGGCAG
T34D for CTTCATCAACAGCACGGACGATGAGAAGGGCAGAGAGTACG
S932A for GGAACGGGAGATCCAGGCCATCACAGACGAGTCT
S932D for GGGAACGGGAGATCCAGGACATCACAGACGAGTCTC
T999A for GGGGAGAGGGAGGCAGACCCAGAGG
T999D for CGAGGGGGAGAGGGAGGATGACCCAGAGGTGCATC
T1008A for AGGTGCATCTTACCTGGGCCAAGGATAAGTCAGTG
T1008D for GAGGTGCATCTTACCTGGGACAAGGATAAGTCAGTGGC
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for each construct. To specifically block transport activity of
cation-chloride cotransporters, the loop diuretic furosemide (2
mM) was added to the preincubation buffer. Again, this was
done for two technical replicates for each construct, and at least
four independent measurements were performed for each
construct.

Statistical analyses

Transport activity of each phosphomutant was tested against
the control sample (WT), both under control treatment
(untreated), using two-sample unequal-variances t test after
Welch test (69). Because three technical replicates were mea-
sured from each independent preparation, we deflated the
number of degrees of freedom according to the actual sample
size (number of independent preparations) to avoid pseudorep-
lication. The resulting p values were corrected using the
Benjamini–Hochberg method (70), which controls the false-
discovery rate in multiple comparisons.

For each phosphomutant, we compared the flux measured
under four different treatment conditions (untreated, furo-
semide, staurosporine, and NEM) in a nested analysis of vari-
ance where we set the treatment condition as the fixed effect
and the replicates as nested random effects. The mixed effects
were modeled with the lme function from the R package nlme,
and Tukey post hoc analysis was performed with the glht func-
tion from the R package multcomp. The p values from the post
hoc comparisons were adjusted using Holm’s sequential Bon-
ferroni correction (71). Note that only p values �0.01 were
considered to reduce the chances of false positives (type I
errors).

Cell-surface biotinylation

KCC2 cell-surface levels were assessed by surface biotinyla-
tion as described previously (55, 56). For this purpose, 90 –95%
confluent 10-cm culture dishes of transfected HEK-293 cells
were treated with the membrane-impermeant Sulfo-NHS-SS-
Biotin (Thermo Fisher Scientific) according to the provided
protocol. After several washes and cell lysis, biotinylated pro-
teins were recovered by a NeutrAvidin-agarose column. After
three rounds of washes, biotinylated proteins were eluted in
sample buffer. Aliquots of the cell homogenate and of the eluate
were collected and analyzed by immunoblot analysis.

To quantify the amount of KCCs expressed at the cell sur-
face, dilution series of each sample were loaded onto a 10%
SDS-polyacrylamide gel system. After separation and electro-
transfer onto polyvinylidene difluoride membranes, mem-
branes were incubated with N1–12 antibody (1:1,000). After
incubation for 2 h at room temperature, membranes were
washed four times with TBS-T (20 mM Tris, 150 mM NaCl, 1%
Tween, pH 7.5), and the secondary antibody donkey anti-
mouse IgG-horseradish peroxidase (Santa Cruz Biotechnology,
Heidelberg, Germany) was applied for 2 h. After washing,
bound antibodies were detected using an enhanced chemilumi-
nescence assay (GE Healthcare) and a LAS-3000 documenta-
tion system (Fujifilm, Düsseldorf, Germany). Quantification of
the bands was performed using MultiGauge software V3.1
(Fujifilm). The cell lysate corresponds to the total protein
amount and was set to 100%. Only data with recovery values of

100 � 20% were included in our analysis. Four to six biological
replicas were performed for each construct. Data are given as
mean � S.D. Significant differences between the groups were
analyzed by Student’s t test.
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