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Abstract

We discuss group-sequential designs in superiority clinical trials with multiple co-primary 

endpoints, i.e., when trials are designed to evaluate if the test intervention is superior to the control 

on all primary endpoints. We consider several decision-making frameworks for evaluating efficacy 

or futility, based on boundaries using group-sequential methodology. We incorporate the 

correlations among the endpoints into the calculations for futility boundaries and sample sizes as a 

function of other design parameters including mean differences, the number of analyses, and 

efficacy boundaries. We investigate the operating characteristics of the proposed decision-making 

frameworks in terms of efficacy/futility boundaries, power, the Type I error rate and sample sizes, 

while varying the number of analyses, the correlations among the endpoints, and the mean 

differences. We provide an example to illustrate the methods and discuss practical considerations 

when designing efficient group-sequential designs in clinical trials with co-primary endpoints.
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1 Introduction

Superiority clinical trials with “co-primary” endpoints are designed to evaluate if the test 

intervention is superior to the control on all primary endpoints. Failure to demonstrate 

superiority on any single endpoint implies that superiority to the control intervention cannot 

be concluded. For K co-primary endpoints (K ≥ 2), the hypotheses are formulated as 

follows: the hypothesis for each endpoint is tested at significance level of α with the null 
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hypothesis H0k : δk ≤ 0 versus H1k : δk > 0, and the hypotheses for co-primary endpoints are 

the null hypothesis H0: ∪k = 1
K H0k versus the alnternative hypothesis H1: ∩k = 1

K H1k (The 

union H0 of K individual nulls is tested against the intersection alternative H1), where δk is 

the mean difference in the test and control interventions and positive values of δk represent 

the test intervention’s benefit.

Use of co-primary endpoints in clinical trials is increasingly common, especially in medical 

product development, where indications include Alzheimer disease, irritable bowel 

syndrome, acute heart failure, Duchenne and Becker muscular dystrophy, diabetes mellitus 

and so on. In many such trials, the sample size is often unnecessarily large and impractical. 

For example, Green et al. (2009) reported the results of a multicenter, randomized, double-

blind, placebo-controlled trial in patients with mild Alzheimer disease (Tarenflurbil study), 

where co-primary endpoints were cognition as assessed by the Alzheimer Disease 

Assessment Scale Cognitive Subscale (ADAS-Cog) and functional ability as assessed by the 

Alzheimer Disease Cooperative Study activities of daily living (ADCS-ADL) as Committee 

for Medicinal Products for Human Use (CHMP) (2008) and Food and Drug Administration 

(FDA) (2013) recommended the two co-primary endpoints in the development of drugs for 

the treatment of Alzheimer disease. The study was sized for 1600 participants in total 

(equally-sized groups) based on a power of 96% to detect the between-group joint difference 

in the two primary endpoints (using a one-sided test at 2.5% significance level, with the 

standardized mean differences between the two groups of 0.2 for both endpoints, assuming 

zero correlation between the two endpoints). To overcome the issue, recently many authors 

have discussed the approach to the design and analysis of co-primary endpoints trials in 

fixed-sample (size) design (please see extensive references in Offen et al. (2007) and Sozu et 

al. (2015)).

Group-sequential designs for multiple co-primary endpoints are a more attractive design 

feature rather than the fixed-sample designs because they offer the possibility of stopping a 

trial when evidence is overwhelming, thus providing efficiency (Hung and Wang, 2009). 

Recently Asakura et al. (2014, 2015) discussed two decision-making frameworks associated 

with interim evaluation of efficacy in clinical trials with two co-primary endpoints in a 

group-sequential setting. One framework is to reject the null hypothesis if and only if 

statistical significance is achieved for the two endpoints simultaneously at the same interim 

timepoint of the trial. The other is a generalization of this, i.e., to reject the null hypothesis if 

superiority is demonstrated for the two endpoints at any interim timepoint (i.e., not 

necessarily simultaneously at the same interims). The former framework is independently 

discussed by Cheng et al. (2014) and evaluated in clinical trials with two co-primary 

endpoints. Hamasaki et al. (2015) discussed more flexible decision-making frameworks, 

allowing the different timepoints of analyses among the endpoints. Jennison and Turnbull 

(1993), and Cook and Farewell (1994) discussed the decision-making frameworks associated 

with interim evaluation of efficacy and futility to monitor the efficacy and safety responses. 

For group-sequential designs with other inferential goal settings, Pocock et al. (1987) and 

Tang et al. (1989) discussed a method based on a generalized least squares procedure by 

O’Brien (1984), and Jennison and Turnbull (1991) discuss a method based on chi-square and 

F test statistics, where a trial is designed if the test intervention has an overall effect across 
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the endpoints compared with the control intervention, but does not necessarily evaluate the 

effect on any specific endpoint. When the aim is to evaluate an effect on at least one 

endpoint (multiple primary endpoints), Tang and Geller (1999), Glimm et al. (2010) and 

Tamhane et al. (2010, 2012) considered methods based on the closed testing principle, and 

Kosorok et al. (2004) discussed a global alpha-spending function to control the Type I error 

and a multiple decision rule to control error rates for concluding wrong alternative 

hypotheses.

The Tarenflurbil trial mentioned above, failed to demonstrate a beneficial effect of 

tarenflurbil. In fact, the observed ADCS-ADL scores in the tarenflurbil group were smaller 

(smaller scores being worse) than for the placebo group. If the design had included an 

interim futility assessment, the trial may have been stopped earlier, saving valuable 

resources and time, and preventing patients from being exposed to an ineffective 

intervention unnecessarily. In many trials, in addition to efficacy assessments, it is desirable 

to conduct interim assessments for futility (Gould and Pecore, 1982; Ware et al., 1985; 

Snapinn et al., 2006). There are two fundamental approaches for the interim futility 

assessment, i.e., based on: (1) the conditional power (Lan and Halperin, 1982; Lachin, 2005) 

and (2) futility boundaries using group-sequential methodology (DeMets and Ware, 1980, 

1982; Whitehead et al., 2003).

In this paper, we consider group-sequential designs in superiority clinical trials with multiple 

co-primary endpoints with the decision-making frameworks evaluating efficacy (rejecting 

the null hypothesis) or futility (accepting the null hypothesis), where efficacy and futility 

boundaries are prespecified and determined using any group-sequential method. Jennison 

and Turnbull (1993) provided the fundamentals for this design. When planning interim 

efficacy and futility assessments in clinical trials with multiple co-primary endpoints, the 

approach determines efficacy and futility boundaries to preserve the desired Type I and II 

errors, analogously to the single endpoint case. The method by Jennison and Turnbull (1993) 

(JT method) determines the efficacy and futility boundaries based on methods in Emerson 

and Fleming (1989). Both of the efficacy and futility boundaries are fixed for any values of 

correlation among the endpoints but the JT method incorporates the correlations into the 

power assessment. The efficacy boundary for each endpoint is usually determined 

independently using group-sequential methods (e.g., Lan-DeMets (LD) error-spending 

method (Lan and DeMets, 1983)) to control the Type I error, analogously to the single 

primary endpoint case (Asakura et al., 2014). However the efficacy boundary could be 

adjusted by incorporating the correlations among the endpoints (Chuang-Stein et al. (2007) 

and Kordzakhia et al. (2010) discussed this for fixed-sample designs). This strategy may 

provide smaller sample sizes but also introduces challenges. The sample size calculated to 

detect the joint effect may be smaller than the sample size calculated for each individual 

endpoint. Furthermore the correlation is usually unknown and estimates from prior studies 

may be incorrect. This calls into question whether or not the significance level should be 

adjusted based on the unknown nuisance parameter. On the other hand, when planning for 

interim futility assessment in trials with multiple co-primary endpoints, the futility boundary 

could be adjusted by the correlations. Although a use of non-adjusted futility boundary 

discussed in the JT method is simple, it is unclear how adjusting the futility boundary by 

incorporating the correlations, may affect the decision-making for accepting the null 
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hypothesis. In this paper, to investigate this issue, we use the futility boundary adjusted by 

the correlations and investigate how the adjusting affects the decision-making for rejecting 

or accepting the null hypothesis in terms of power and Type I error rate. Please see extensive 

references in Jennison and Turnbull (1999) and Hamasaki et al. (2016).

In addition, the JT method simply assumed that both of efficacy and futility assessments are 

performed at the same interims and described a simple decision-making framework for 

rejecting or accepting the null hypothesis associated with multiple co-primary endpoints. In 

addition to this simple framework, we consider two other, more flexible decision-making 

frameworks which allow selecting different interim evaluation timing and the number of 

interim analyses for efficacy and futility assessments. The decision-making frameworks 

allow for a delay of the efficacy assessments for outcomes with a smaller (standardized) 

mean effect size which require a larger sample size, and allow for earlier futility assessments 

for outcomes with a larger mean effect size which require a smaller sample size. These could 

save costs in error spending (Type I and II errors) and improve the efficiency (increase 

power and reduce required sample sizes).

This paper is structured as follows: in Section 2, we describe the decision-making 

frameworks for implementing the efficacy and futility assessments in group-sequential 

clinical trials with multiple co-primary endpoints. In Section 3, we describe the methods for 

calculating efficacy and futility boundaries based on the decision-making frameworks, and 

illustrate the behavior of the efficacy and futility boundaries as the size of mean difference 

and the number of analyses, vary. In Section 4, we investigate the operating characteristics 

of the decision-making frameworks in terms of power, the Type I error and sample sizes as a 

function of the size of mean differences and the correlations. In Section 5, we provide an 

example to illustrate the decision-making framework. In Section 6, we discuss two practical 

considerations in the application of the methods to clinical trials. In Section 7, we 

summarize the findings.

2 Group-sequential designs for efficacy and futility assessments

2.1 Statistical settings

Consider a randomized, group-sequential, superiority clinical trial comparing the test 

intervention (T) with the control intervention (C) based on K continuous outcomes to be 

evaluated as co-primary endpoints. Suppose that a maximum of L analyses are planned, 

where the same number of analyses with a common information space are selected for all of 

the endpoints. Let nl and rnl be the cumulative number of participants on the T and the C 

groups at the lth analysis (l = 1,…, L), respectively, where r is the sampling ratio. Hence, up 

to nL and rnL participants are recruited and randomly assigned to the T and the C groups, 

respectively. Let responses to the T be denoted by YTki and responses to the C by YCkj (k = 

1,…, K; i = 1,…, nL; j = 1,…, rnL). Assume that (YT1i,…, YTKi) and (YC1j,…, YCKj) are 

independently K– variate normally distributed as (YT1i,…, YTKi) ~ NK(μT; Σ) and (YC1j,…, 

YCKj) ~ NK(μC; Σ), where μT and μC are mean vectors given by μT= (μT1,…, μTK)T and 

μC= (μC1,…, μCK)T, re-spectively. For simplicity, Σ is known covariance matrix given by Σ 
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= {ρkk′σkσk′} with var YTki = var YCk j = σk
2 and corr [YTki, YTk′i] = corr[YCkj, YCk′j] = 

ρkk′ (1 ≤ k < k′ ≤ K; K ≥ 2).

Let δk and Δk denote the mean differences and the standardized mean differences between 

the T and the C respectively, where δk = μTk − μCk and Δk = δk/σk (k = 1,…, K). Suppose 

that positive values of δk indicate favorability of the T. As mentioned in Section 1, to 

evaluate the superiority of the T relative to the C, we are interested in testing the null 

hypothesis H0 : δk ≤ 0 for at least one k versus the alternative hypothesis H1 : δk > 0 for all 

k. Let (Z1l,…, ZKl) be the statistics for testing the hypotheses at the lth analysis, given by 

Zkl = YTkl − YCkl / σk (1 + r)/ rnl , where YTkland YCkl are the sample means given by 

Y  Tkl = nl
−1∑i = 1

nl YTki and YCkl = rnl
−1∑ j = 1

rnl YCk j. Thus, each Zkl is normally distributed 

as N rnl/(1 + r)δk /σk, 12  under H1. As the joint distribution of (Z1l,…, ZKl) is K-variate 

normal with the correlation ρkk′ and the joint distribution of (Zk1,…, ZkL) is L-variate 

normal with the correlation ρkk′, the joint distribution of (Z11,…, ZK1,…, Z1L,…, ZKL) is K 

× L multivariate normal with their correlation given by ρkk′ nl/nl′ k ≠ k′; l ≠ l′ .

2.2 Decision-making frameworks, corresponding power functions and sample sizes

We now describe the decision-making frameworks with the rules for rejecting or accepting 

H0 when implementing both of efficacy and futility assessments.

When assessing the futility on K co-primary endpoints in a group-sequential setting, the 

decision-making rule is to accept H0 if the test statistic for at least one endpoint crosses a 

prespecified group-sequential-based futility boundary at any interim analysis. If the trial is 

planned with binding futility boundary and not stopped when at least one test statistic has 

crossed the futility boundary, then the Type I error will be inflated, analogously to trials with 

a single primary endpoint. In this situation the non-binding futility boundary could be used. 

To investigate the fundamental properties of the group-sequential designs, in this paper, we 

only discuss the non-binding futility boundary, assuming that the trial may not be stopped 

when at least one test statistic has crossed the futility boundary. On the other hand, when 

assessing efficacy, there are two options for testing H0. One is to reject H0 if each test 

statistic crosses the prespecified group-sequential-based efficacy boundary at any interim 

analysis (i.e., not necessarily simultaneously). If some but not all of the test statistics cross 

the boundary at an interim analysis, then the trial continues but subsequent hypothesis 

testing is repeatedly conducted only for the previously non-significant endpoint(s). As 

discussed in Asakura et al. (2014) and Hamasaki et al. (2015), this could offer the 

opportunity of stopping measurement of an endpoint for which superiority has already been 

demonstrated. Stopping measurement may be desirable if the endpoint is very invasive or 

expensive (e.g., data from a liver biopsy or gastro-fiberscope, or data from expensive 

imaging). The other option is a special case of the first one: reject H0 if all of the test 

statistics cross the boundary at the same interim analysis. If any of the test statistics do not 

cross the boundary, then the trial continues until all of the test statistics cross the boundary at 

the same interim analysis.
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In combining the two decision-making rules for efficacy assessment with the decision-

making rule for futility assessment, we consider an option that allows selecting different 

timings and number for interim analyses for efficacy and futility assessments. For example, 

two interim analyses for efficacy assessment (with information times of 0:50 and 0:75) and 

one interim analysis for futility assessment (with information times of 0:25) could be 

conducted. This provides an opportunity for detecting an early negative sign for either of 

endpoints, but also has flexibility for delaying efficacy analyses to improve the power. This 

will be shown in Section 4.

Based on these concepts, we describe three decision-making frameworks with corresponding 

stopping rules and power definitions.

DF-1: The first decision-making framework is: (i) to accept H0 if the test statistic for at least 

one endpoint crosses a prespecified group-sequential-based futility boundary at any interim 

analysis, and (ii) to reject H0 if each test statistic crosses the prespecified group-sequential-

based efficacy boundary at any interim analysis (i.e., not necessarily simultaneously), where 

the efficacy and futility assessments are repeatedly only conducted on the endpoint which 

statistic has not yet crossed both of the efficacy and futility boundaries. Thus DF-1 offers the 

opportunity of stopping measurement of an endpoint for which superiority has already been 

demonstrated. Here suppose that Lk analyses are planned for efficacy or futility assessments 

for endpoint k, and a total number of analyses L is the sum of the number of analyses over 

all endpoints, excluding the duplications of the same information time 

nlk
/nL = ℐlk

= nlk′
/nL = ℐlk′

 (lk = 1,…, Lk; lk′ = 1,…, Lk′; 1 ≤ Lk, Lk′ ≤ L). The stopping 

rule for DF-1 is formally given follows:

Until the lth analysis (l = 1,…, L – 1),

if Zklk
≤ cFklk

 for at least one endpoint, for some 1 ≤ lk ≤l, then accept H0 

and stop the trial,

if Zklk
> cEklk

 for each endpoint k, for some 1 ≤ lk ≤ l, then reject H0 and 

stop the trial,

otherwise, continue to the (l + 1)th analysis,

at the Lth analysis, for the endpoints which statistics have not yet crossed both of 

the efficacy and futility boundaries until the (L – 1)th analysis

if ZkLk
≤ cFkLk

 for at least one endpoint, then do not reject H0,

if ZkLk
> cEkLk

 for non-significant endpoint(s) until the (L – 1)th analysis, 

then reject H0,

where cEklk and cFklk are the efficacy and futility boundaries. The efficacy boundaries cEklk

are prespecified and determined separately, using any group-sequential method to control the 

Type I error rate, analogously to the single primary endpoint case. The futility boundaries 
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cFklk
 are also prespecified and determined for achieving the desired power 1 – β and 

controlling the marginal Type I error rate to the pre-specified level α with cFkL = cEkL at the 

final analysis, using any group-sequential method. The method for calculating the efficacy 

and futility boundaries is discussed in Section 3. Defining δ* = δ1*, …, δK*  to be the clinically 

meaningful differences in means between the two interventions to be detected with high 

probability, the power corresponding to the DF-1 at δ = δ* is

1 − β = Prδ = δ * ∩
k = 1

K
Ak1 ∪ ∪

lk = 2

Lk ∩
l′k = 1

lk − 1
Bkl′k

∩ Aklk
, (1)

where Aklk
= Zklk

> cEklk
, Bklk

= cFklk
< Zklk

≤ cEklk
 and δ = (δ1,…, δK).

DF-2: The second framework is a special case of the DF-1. A major difference in the 

decision-making rule is to reject H0 if all of the test statistics cross the boundary at the same 

interim analysis. The stopping rule is formally given as follows:

Until the lth analysis (l = 1,…, L – 1),

if Zklk
≤ cFklk

 for at least one endpoint, for some 1 ≤ lk ≤ l, then accept H0 

and stop the trial,

if Zklk
> cEklk

 for all endpoints, at the same lkth interim analysis, then 

reject H0 and stop the trial,

otherwise, continue to the (l + 1)th analysis,

at the Lth analysis,

if ZkLk
≤ cFkLk

 for at least one endpoint, then do not reject H0,

if ZkLk
> cEkLk

 for all endpoints, then reject H0.

Therefore, the power corresponding to the DF-2 at δ = δ* is

1 − β =  Prδ = δ * ∩
k = 1, ℐl1 = … = ℐlK

K

Ak1 ∪ ∪
lk = 2

Lk

∩
l′k = 1

lk − 1

Ckl′k
∩ Aklk

, (2)

where Cklk
= Zklk

> cFklk
.

DF-3: The above two decision-making frameworks are flexible, but different timings of the 

interim analyses between the efficacy and futility assessments may also introduce 

operational challenges. To avoid the operational difficulties, one may opt for restricting 
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when H0 is rejected or accepted. Both of efficacy and futility assessments are performed at 

the same interim analysis, and if the test statistic for at least one endpoint does not cross the 

prespecified futility boundary and if the test statistic for any endpoint does not cross the 

prespecified efficacy boundary, then the trial continues until a joint significance for all 

endpoints is established at the same interim analysis. The third framework is same as 

discussed in Jennison and Turnbull (1993). The stopping rule for the most simplified 

decision-making framework is formally given as follows:

Until the lth analysis (l = 1,…, L – 1),

if Zkl ≤ cFkl for at least one endpoint, then accept H0 and stop the trial,

if Zkl > cEkl for all endpoints, then reject H0 and stop the trial,

otherwise, continue to the (l + 1)th analysis,

at the Lth analysis,

if ZkL ≤ cFkL for at least one endpoint, then do not reject H0,

if ZkL > cEkL for all endpoints, then reject H0.

Based on this decision-making framework, the corresponding power at δ = δ* is

1 − β =  Prδ = δ * ∩
k = 1

K

Ak1 ∪ ∪
l = 2

L

∩
l′ = 1

l − 1

C1l′ ∩ ⋯ ∩ CKl′ ∩ A1l ∩ ⋯ ∩ AKl , (3)

where Ckl = {Zkl > cFkl} and 1 ≤ l′ ≤ l ≤ L.

The powers (1), (2) and (3) defined above can be evaluated using the numerical integration 

method in Genz (1992) or other simulation-based method. The power calculation requires 

considerable computing time and memory especially with a large number of endpoints or 

number of analyses. The accuracy of the computation should be carefully controlled as it is 

sensitive to the number of endpoints and the number of analyses.

Based on these powers (1), (2) and (3), we discuss two sample size concepts, i.e., the 

maximum sample size (MSS) and the average sample number (ASN). The MSS is the 

sample size required for the final analysis to achieve the desired power 1 – β. The ASN is 

the expected sample size under a specific parameter reference. The MSS is given by the 

smallest integer not less than nL satisfying the power for a group-sequential strategy at the 

prespecified values for δk, σk, and ρkk′, with Fisher’s information time for the interim 

analyses. The ASN is the expected sample size under hypothetical reference values and 

provides information regarding the number of participants anticipated in a group-sequential 

design to reach a decision point. Detailed calculation for the ASN is given in Appendix.

2.3 The probability of rejecting the null hypothesis

We now consider a simple situation where a clinical trial is designed to evaluate a joint 

effect on two co-primary endpoints (K = 2) with two planned analyses (L = 2). With an 
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assumption of σ1 = σ2 = 1, based on the DF-1 including both of efficacy and futility 

assessments at the interim analysis, the probability of rejecting the H0 is

Pr Z11 > cE11, Z12 > cE21 | Δ1 , Δ2 , ρ12
+ Pr Z11 > cE11, cF21 < Z21 ≤ cE21, Z22 > cE22 | Δ1 , Δ2 , ρ12
+ Pr cF11 < Z11 ≤ cE11, Z12 > cE12, Z21 > cE21 | Δ1 , Δ2 , ρ12
+ Pr cF11 < Z11 ≤ cE11, Z12 > cE12, cF21 < Z21 ≤ cE21, Z22 > cE22| Δ1 , Δ2 , ρ12

(4)

Similarly the probability of rejecting H0 based on DF-2 including both of efficacy and 

futility assessments at the interim analysis is

Pr Z11 > cE11, Z12 > cE21 |Δ1, Δ2, ρ12
+ Pr Z11 > cE11, Z12 > cE12, cF21 < Z21 ≤ cE21, Z22 > cE22 Δ1, Δ2, Δ12
+ Pr cF11 < Z11 ≤ cE11, Z12 > cE12, Z21 > cE21, Z22 > cE22 |Δ1, Δ2, ρ12
+ Pr cF11 < Z11 ≤ cE11, Z12 > cE12, cF21 < Z21 ≤ cE21, Z22 > cE22|Δ1, Δ2, ρ12

(5)

Comparing the probability (4) with the probability (5), it is clear that DF-1 is more powerful 

than DF-2 under H1 (less conservative under H0) as the second and third probabilities in (4) 

are larger than the corresponding probabilities in (5). The probability of rejecting H0 based 

on DF-1 including only an efficacy assessment at the interim analysis is

Pr Z11 > cE11, Z12 > cE21 | Δ1 , Δ2 , ρ12
+ Pr Z11 > cE11, Z21 ≤ cE21, Z22 > cE22 | Δ1 , Δ2 , ρ12
+ Pr Z11 ≤ cE11, Z12 > cE12, Z21 > cE21 | Δ1 , Δ2 , ρ12
+ Pr Z11 ≤ cE11, Z12 > cE12, Z21 ≤ cE21, Z22 > cE22 | Δ1 , Δ2 , ρ12

(6)

Comparing the probability (4) with the probability (6), it is clear that DF-1 which includes 

only an efficacy assessment is more powerful than DF-1 with both efficacy and futility 

assessments under H1 (less conservative under H0). This is because the second, third and 

fourth probabilities in (4) are smaller than the corresponding probabilities in (6). This result 

may help illustrating the operating characteristics of the decision-making frameworks. 

However, it is unclear how the power under each decision-making framework may behave as 

design parameters vary (including mean differences, correlations, and the number of 

analyses). It is also important to determine how much the power changes with the allocation 

of futility assessments. In Section 4, we investigate the operating characteristics of the 

decision-making frameworks.
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3 Critical boundaries for efficacy and futility assessments

3.1 Critical boundary and sample size calculations

The efficacy and futility boundaries cEklk
 and cFklk

 are determined using the error-spending 

functions to spend both of the Type I and II error rates. cEklk
 is determined independent of 

cFklk
 and separately calculated for each endpoint and treated as if the endpoints are not 

correlated. But cFklk
 is iteratively determined as a function of the standardized mean 

differences, the MSS and cEklk
 with the restriction cFkL = cEkL, by incorporating the 

correlations among the endpoints into the calculation. Then the marginal Type II error rate 

βk, the probability of crossing cFklk
 at any analysis for each endpoint under H1, is spent 

depending on the error-spending function. For simplicity, here we consider a situation where 

both of the efficacy and futility assessments are performed at the same interim analysis, i.e., 

lk = l. First, for δk = 0, the efficacy boundary cEkl
 is determined such that:

Pr Zk1 ≤ cEk1, …, Zkl − 1 ≤ cEkl − 1, Zkl > cEkl = f k ℐl − f k ℐl − 1 ,

where Pr [Zk1 > cEk1] = fk ℐ1 , and fk ℐl  is an error-spending function for endpoint k, 

which describes the Type I error rate spent until the lth analysis with the information time 

ℐl, and fk(0) = 0 and fk(1) = α. Once cEk1
 has been determined, for δk = δk*, the futility 

boundary cFkl
 is determined such that:

Pr cFk1 < Zk1 ≤ cEk1, …, cFkl − 1 < Zkl − 1 ≤ cEkl − 1, Zkl ≤ cFkl = gk ℐl − gk ℐl − 1

where Pr [Zk1 ≤ cFk1] = gk ℐ1  and gk ℐl  is an error-spending function for endpoint k, 

which describes the Type II error rate spent until the lth analysis with the information time 

ℐl, and gk(0) = 0 and gk(1) = βk. In Appendix, we describe the iterative procedure to 

identify the efficacy and futility boundaries cEklk
 and cFklk

 including the calculation for nL. 

The R codes to reproduce the results presented in this paper is available as Supporting 

Information on the journal’s web page (http://onlinelibrary.wiley.com/doi/10.1002/bimj.

200800143/suppinfo).

If all of the correlations among the endpoints are assumed to be zero, i.e., ρ12 = ⋯ = ρK –1,K 

=0, and the standardized mean differences are equal, then the futility boundary can be 

simply determined, using a group-sequential method with the adjusted Type II error rate of 1 

– (1 – β)1/K, analogously to the single primary endpoint case. However if the endpoints are 

assumed to be correlated perfectly, i.e., ρ12 = ⋯ = ρK –1,K =1, and the standardized mean 

differences are equal, then the futility boundary can be given by using a group-sequential 

method with the unadjusted Type II error rate of β, analogously to the single primary 
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endpoint case. Further numerical evaluation of the behavior of the futility boundary will be 

discussed in Section 3.2.

3.2 Behavior of efficacy and futility boundaries

We investigate how the efficacy and futility boundaries behave when varying design 

parameters, i.e., mean differences, the number of analyses and correlation. For illustration, 

consider a simple clinical trial where the superiority of a T relative to C is evaluated based 

on two co-primary endpoints (EP1 and EP2). The trial is designed to evaluate both of 

efficacy and futility at the same interim analysis with the number of analyses (L =2, 3 and 

4). The sample size per intervention group (equally-sized groups: r =1) is calculated to 

detect a joint effect with the power of 80% by using a one-sided test with a significance level 

of α=2.5%, where the standardized mean differences (Δ1, Δ2) are (0.1,0.1), (0.1,0.2), 

(0.2,0.2), (0.2,0.3) and (0.3,0.3), and the correlations between EP1 and EP2 are ρ12 = 0.0, 

0.3, 0.5, 0.8 and 1.0.

Table 1 displays the efficacy and futility boundaries for the DF-1, determined based on the 

O’Brien-Fleming(OF)-type boundary (O’Brien and Fleming, 1979) by using LD error-

spending function, for spending the Type I and II errors, with equally-spaced increments of 

information. Table 1 illustrates that the regions based on the efficacy and futility boundaries 

for the two endpoints is narrower when the mean differences are larger and when the 

correlation is higher. When Δ1 = Δ2, the futility boundaries for both endpoints vary with the 

correlation. If ρ12 = 0.0, then the futility boundaries for both endpoints are equal to the ones 

individually calculated for each endpoint with the power of 1 − β = 89.4% and ones with the 

power of 1 – β =80% if ρ12 = 1.0. When Δ1 > Δ2, then the futility boundaries do not vary 

with the correlation. For example, when (Δ1, Δ2) = (0.1,0.2), the futility boundaries for EP1 

are −0.822, 0.609, 1.401 and 2.014 for each analysis and are equal to those calculated for 

EP1 to detect Δ1 = 0.1 with the power of 1 – β=80%. On the other hand, for EP2, the futility 

boundaries are −5.140, −1.504, 0.542 and 2.014 for each analysis. In this situation, the 

calculated sample size per intervention group is 1782 which is equal to the one calculated 

for EP1 with Δ1 = 0.1 and 1 – β=80%. The futility boundaries for EP2 are equal to those 

calculated to detect Δ2 with the marginal power for EP2 under this sample size (the marginal 

power for EP2 is close to one under the sample size).

4 Operating characteristics: behavior of power, ASN and the Type I error

In this section, we investigate the operating characteristics of the decision-making 

frameworks described in Section 2.2. We discuss the power and Type I error rate under a 

given sample size for a one-sided test. For illustration, we consider a randomized clinical 

trial designed to compare a T to a C based on the two co-primary endpoints (EP1 and EP2). 

We discuss the nine group-sequential designs shown in Table 2: the first five designs include 

efficacy and futility assessments for both endpoints at the same interim analyses (the same 

interim assessment). The last four include a futility assessment for both endpoints only at the 

first interim analysis and then only efficacy assessments for both endpoints at later interim 

analyses (the different interim assessment), where the maximum number of analyses is 2, 3 

or 4. The efficacy and futility boundaries for the two endpoints are determined based on the 
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OF-type boundary using the LD error-spending function for the Type I and II errors, with 

equally or unequally-spaced increments of information time, where the significance level for 

a one-sided test is α = 2.5%.

4.1 Power behavior

First we evaluate how the power behaves with the given MSS per intervention group, the 

correlation between the two endpoints, and the standardized mean differences for the two 

endpoints, where the MSS (equally-sized group: r =1) is varied from nL =100 to 900 by 100; 

the correlation varies from ρ12 = 0.0, 0.5 and 1.0; the standardized mean differences are (Δ1, 

Δ2) = (0.2,0.2) and (0.2,0.3) for the same and different interim assessments. The results are 

displayed in Figure 1. When conducting the assessment for both of efficacy and futility at 

the same interims (upper figures), if the two standardized mean differences are equal, i.e., 

(Δ1, Δ2) = (0.2,0.2), then the power is increased with a larger sample size and a higher 

correlation. On the other hand, if one standardized mean difference is larger than the other, 

i.e., (Δ1, Δ2) = (0.2,0.3), then the power is increased with a larger sample size but is not 

greatly affected by the correlation. For both equal and unequal mean differences, although 

there is no meaningful difference in the power among the five designs (the maximum 

difference is 1.6%), the smallest power is given by Design #1–1 and the largest is given by 

Design #1–5. Among Designs #1–2, #1–3 and #1–4 (L =3), the smallest power is given by 

Design #1–2 and the largest is given by Design #1–4.

When conducting the different interim assessment for efficacy and futility (bottom figures), 

similarly as in the same interim assessment, if (Δ1, Δ2) = (0.2,0.2), then the power is 

increased with a larger sample size and a larger correlation. On the other hand, if (Δ1, Δ2) = 

(0.2,0.3) and (0.3,0.2), then the power is increased with a larger sample size but is not 

greatly affected by the correlation. For both equal and unequal standardized mean 

differences, although there is no appreciable difference in the power among the five designs 

(the maximum difference is 0.4%), the lowest power is given by Design #2–2 and the 

highest is given by Design #2–4. The different interim assessment provides higher power 

than the same interim assessment although the differences are small (the maximum 

difference is 1.1%).

In summary, higher correlation increases the power if the standardized mean differences are 

equal, but does not otherwise affect power. A larger number of analyses decreases the power. 

Allocation of the efficacy and/or futility assessment to interim analyses with earlier 

information time increases the power.

4.2 ASN behavior

Next, we evaluate how the ASN under a given MSS per intervention group behaves as a 

function of the correlation between the two endpoints and the standardized mean differences 

for the two endpoints. The correlation is selected as ρ12 = 0.0, 0.3, 0.5, 0.8 and 1.0. The 

standardized mean differences (Δ1, Δ2) =(0.2,0.2) and (0.2,0.3) for same and different 

interim assessments. Under these parameter configurations, the given MSS per intervention 

group are calculated to detect the joint effect of (Δ1, Δ2) with the power of 80% at the 

significance level of 2.5% for a one-sided test, assuming zero correlation between the two 
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endpoints, in a fixed-sample size design; they are 516 for (Δ1, Δ2) = (0.2,0.2), and 402 for 

(Δ1, Δ2) = (0.2,0.3). The result is displayed as a reduction in ASN relative to the given MSS 

((ASN–MSS)/MSS) × 100) in Figure 2. When conducting the assessment for both of 

efficacy and futility at the same interims, the ASN reduction is larger with higher correlation 

if (Δ1, Δ2) = (0.2,0.2), but is not much changed by correlation if (Δ1, Δ2) = (0.2,0.3). For 

both equal and unequal standardized mean differences, the largest ASN reduction is given by 

Design #1–1 and smallest by Design #1–5. Among Designs #1–2, #1–3 and #1–4 (L =3), the 

largest reduction is given by Design #1–2 and the smallest is by Design #1–4.

When conducting the different interim assessment for efficacy and futility, similarly as in the 

same interim assessment, the power is increased with a higher correlation if (Δ1, Δ2) 

=(0.2,0.2), but it is not much changed by correlation if (Δ1, Δ2) = (0.2,0.3). For both equal 

and unequal mean differences, the largest ASN reduction is given by Design #2–1 and 

smallest by Design #2–4. Designs #2–2 provides a larger reduction than Design #2–3 if (Δ1, 

Δ2) = (0.2,0.2) and (0.2,0.3). The different interim assessment provides a larger ASN 

reduction than the same interim assessment.

In summary, higher correlation increases the ASN reduction if the standardized mean 

differences are equal, but does not otherwise affect the ASN. A larger number of analyses 

increases the ASN reduction. Allocation of the efficacy and/or futility assessments to interim 

analysis with earlier information time decreases the ASN reduction.

4.3 Type I error behavior

Finally, we evaluate how the Type I error behaves with the standardized mean differences for 

the two endpoints and the correlation between the two endpoints. The standardized mean 

differences is selected as (Δ1, Δ2) = (0.0, Δ2*) with Δ2* = 0.0 to 0.5 by 0.05, and the 

correlation is ρ12 = 0.0, 0.5 and 1.0, and the significance level for the one sided test is α = 

2.5%. The MSS per intervention group is 516 which has 80% power to detect the joint effect 

on the two endpoints with the standardized mean differences of (Δ1, Δ2) = (0.2,0.2) at the 

significance level of α = 2.5% for a one-sided test. The results are displayed in Figure 3. 

When conducting the assessment for both of efficacy and futility at the same interims, the 

Type I error rate is increased as Δ2* increases and as the correlation increases, but is never 

larger than the targeted significance level of 2.5%. The smallest Type I error rate is given by 

Design #1–4 and the largest is by Design #1–5. Among Designs #1–2, #1–3 and #1–4 (L 
=3), the smallest Type I error rate is given by Design #1–2 and the largest is by Design #1–4.

When conducting the assessment for efficacy and futility at the different interims, similarly 

as in the same interim assessment, the Type I error rate is increased as Δ2* increases and as 

ρ12 increases. However it is never larger than the targeted significance level of 2.5%. The 

Type I error rates for Designs #2–1, #2–3, and #2–4 are at most achieved at the targeted 

level, but not for Design #2–2. The smallest Type I error rate is given by Design #2–2 and 

the largest is by Design #2–3 although there is no meaningful difference in Type I error rate 

among Designs #2–1, #2–3 and #2–4. The same interim assessment provides a smaller Type 

I error rate than the different interim assessment but differences are negligible (the 

maximum difference is 0.2%).
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In summary, higher correlation increases the Type I error rate but not above the targeted 

significance level. A larger number of futility assessments decreases the Type I error rate. 

Allocation of the futility assessments to interim analyses with later information time 

decreases the Type I error rate.

5 An illustration: Tarenflurbil study

We illustrate the concepts with an example from the Tarenflurbil study (Green et al., 2009) 

described in the Introduction. Recall that the study was designed to evaluate if tarenflurbil 

was superior to placebo on two co-primary endpoints, (i) change score from baseline on the 

ADAS-cog, and (ii) change score on the ADCS-ADL. The original design called for 800 

participants per intervention group to provide a power of 96% to detect the joint between-

group difference in the two primary endpoints using a one-sided test at the 2.5% significance 

level, with an alternative hypothesis of a standardized effect mean difference of 0.2 for both 

endpoints. The correlation between the two endpoints was assumed to be zero.

Table 3 displays the efficacy and futility boundaries, MSS and ASN per intervention group 

(equally-sized groups: r =1) in the DF-1 for the group-sequential designs shown in Table 2 

(the different interim assessment). The MSS was calculated with an alternative hypothesis of 

a standardized mean difference for both ADAS-Cog (Δ1 =0.2) and ADCS-ADL (Δ2 =0.2), 

with the power of 96% at the one-sided significance level of 2.5%, where ρ12 = 0.0, 0.3, 0.5, 

0.8 and 1.0, and σ1 = σ2 =1.0. The ASN is calculated under (Δ1, Δ2) =(0.2,0.2), (0.0,0.2) and 

(0.0,0.0). The efficacy and futility boundaries are determined commonly based on the OF-

type boundary by using LD error-spending function for the Type I and II errors, with equally 

or unequally-spaced increments of information.

When only a futility assessment is conducted at the first interim analysis and then only 

efficacy assessments at later interim analyses are conducted for both endpoints, the smallest 

MSS is given by Design #2–4. The largest ASN reduction under (Δ1, Δ2) =(0.2,0.2) is given 

by Design #2–1, but the largest ASN reduction under (Δ1, Δ2) = (0.0,0.2) and (0.0,0.0) by 

#2–2. On the other hand, when both efficacy and futility assessments are conducted at the 

same analysis for both endpoints, the smallest MSS is given by Design #1–4 or #1–5, but the 

largest ASN reductions under all of the standardized mean difference combinations by 

Design #1–1 or #1–2.

Figure 4 summarizes the probability of rejecting or accepting H0 when using Design #2–2 

shown in Table 2, with ρ12 = 0.0, 0.5, and 1.0, and (Δ1, Δ2) = (0.2, 0.2), (0.0, 0.2) and (0.0, 

0.0). For (Δ1, Δ2) = (0.2, 0.2) or (0.0, 0.2), when ρ12 =0.0, it is difficult to reject or accept H0 

at the earlier analyses, but easier later on. On the other hand, as ρ12 goes toward one, it is 

easier to reject or accept H0 at the earlier analyses. For (Δ1, Δ2) = (0.0, 0.0), it is easier to 

reject H0 at the earlier analyses, but difficult later on.

6 Two practical considerations

When constructing efficient group-sequential strategies in clinical trials with multiple co-

primary endpoints, there are two practical considerations. One is whether the correlation 

should be incorporated into futility boundary and sample size calculations or whether 
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correlation should be assumed to be zero. Correlation estimates may be available from pilot 

or other studies. A conservative approach is to assume that the correlations are zero even if 

non-zero correlations are expected.

Table 4 summarizes the power and ASN under a given MSS and true correlation between the 

endpoints. The given MSS per intervention group (equally-sized groups: r =1) is calculated 

to detect a joint effect on the two endpoints with a power of 80% using one-sided test with a 

significance level of α = 2.5%, with DF-1 based on the OF-type boundaries for efficacy and 

futility using the LD error-spending function, where both of efficacy and futility assessments 

are conducted with equally-spaced increment in information.

The standardized mean differences are (Δ1, Δ2) = (0.2,0.2), the numbers of analyses are L 
=2, 3, and 4, and the hypothetical correlations during planning are ρ12 =0.0, 0.5 and 1.0. The 

power is calculated under the true correlation ρ12*  = 0.0, 0.3, 0.5, 0.8 and 1.0 with (Δ1, Δ2) = 

(0.2,0.2). The ASN is calculated under the true correlation ρ12*  = 0.0, 0.3, 0.5, 0.8 and 1.0 

with (Δ1, Δ2) = (0.2,0.2), (0.0,0.2) and (0.0,0.0). When the true correlation is ρ12*  = 0.5, the 

boundary and sample size are calculated with the hypothetical correlation ρ12 = 0.0 during 

planning, the MSSs are 529, 548 and 560 for L =2, 3, and 4 respectively. This is 

approximately 5% larger than the MSSs of 505, 524 and 536 calculated with ρ12 = 0.5. The 

power under the MSS with the true correlation is 2.4% higher than the target power of 80%. 

When the true correlation is ρ12*  = 1.0, the boundary and sample sizes are calculated with the 

hypothetical correlation of ρ12 = 0.0 during planning, and the MSS is 26% larger than MSS 

of 415, 434 and 446 calculated with ρ12 =1.0. However, the power under the MSS with the 

true correlation is 9.5% higher than the target power. Conversely, when the true correlation is 

ρ12*  = 0.0, the boundary and sample size are calculated with the hypothetical correlation ρ12 

= 0.5 or 1.0 during planning, the power under the calculated sample size under the MSS with 

the true correlation ρ12*  = 0.0 is 2.6% or 16.0% lower than the target power of 80%. 

However, assuming zero correlations is conservative when there is concrete evidence of 

higher correlations. In this situation, one approach is to use the confidence limit method 

discussed in Tamhane, Wu, and Mehta (2012) which takes sampling error associated with 

the correlations into account by use of the upper confidence limit of the correlation. The 

advantage of incorporating the correlation into the calculation of the futility boundary, 

power, and sample sizes is minimal when the standardized mean differences among the 

endpoints are unequal. In cases where the effects are expected to be different across the 

endpoints, trials can be sized based on the endpoint with the smaller standardized effect as if 

it was a trial with a single primary endpoint without Type II error adjustment.

A second consideration is the choice of boundary-type for the efficacy and futility 

assessments based on the error-spending function for each endpoint. We have discussed the 

common boundary-type for the efficacy and futility assessments among the endpoints. For 

example, when considering a clinical trial with the two co-primary endpoints, one option is 

to select the OF-type for calculating the efficacy boundary and the Pocock (PC)-type 

boundary (Pocock, 1977) for the futility boundary, for both endpoints. Another option is to 

select the OF-type for efficacy and futility boundaries for one endpoint and the PC-type 
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boundaries for the other endpoint. If the trial is designed to detect effects on at least one 

endpoint with a prespecified ordering of endpoints, then the selection of different boundaries 

for each endpoint can provide a higher power than using the same boundary for both of the 

endpoints (Glimm et al., 2010; Tamhane et al., 2012). However, as shown in Asakura et al. 

(2014) and Hamasaki et al. (2015), the selection of a different boundary-type has a minimal 

effect on the power and ASN in clinical trials with co-primary endpoints including those 

with only efficacy assessments. Table 5 illustrates the MSS and ASN with a combination of 

OF- and PC-type boundaries for two endpoints (EP1 and EP2) (a common combination 

between the efficacy and futility assessments). The MSS per intervention group (equally-

sized groups: r =1) is calculated to detect a joint effect on the two endpoints with a power of 

80% using one-sided test with a significance level of α = 2.5%, where ρ12 =0. Both of 

efficacy and futility assessments are conducted based on DF-1 and critical boundaries are 

determined using the LD error-spending function with equally-spaced increment in 

information. The ASN is calculated under H1. When the standardized mean differences 

between the endpoints are unequal, i.e., (Δ1, Δ2) = (0.1,0.2), the combination of the OF-type 

boundary for both endpoints provides the smallest MSS. But, the combination of the OF-

type boundary for EP1 and the PC-type boundary for EP2 provides a larger MSS only by 

one patient and a slightly smaller ASN than the combination of the OF-type boundary for 

both endpoints. On the other hand, when the standardized mean differences between the 

endpoints are equal, i.e., (Δ1, Δ2) = (0.2,0.2), the combination of the OF-type boundary for 

both endpoints provides the smallest MSS. The combination of the OF-type boundary for 

EP1 and the PC-type boundary for EP2 provides a larger MSS and larger ASN than the 

combination of the OF-type boundary for both endpoints. For the combination of boundary 

type for efficacy and futility assessments (a common combination between the endpoints) 

which is not shown in the paper, the findings from the single endpoint suggest that the OF-

type for both assessments provides the highest power and the smallest MSS. These results 

suggest that the selection of a different boundary-type has a minimal effect on the power and 

ASN in clinical trials with co-primary endpoints including trials with both efficacy and 

futility assessments. In terms of the power and ASN, a practical option is to select the OF-

type boundary for efficacy and futility assessments. If the standardized mean differences are 

not equal, then a different type of boundary may be considered: OF-type boundary for 

endpoint(s) with a smaller standardized mean difference and a PC-type boundary for 

endpoint(s) with a larger standardized mean difference. A more complex option is to have a 

different boundary-type selection for all of the efficacy and futility assessments and 

endpoints but this is less practical.

7 Summary

Increasingly clinical trials are being designed with more than one co-primary endpoint to 

more comprehensively evaluate intervention’s multidimensional effects. As with trials 

involving a single primary endpoint, designing co-primary endpoint trials to include interim 

analyses (i.e., with repeated testing) may provide resource efficiency and minimize the 

number of trial participants exposed to an ineffective intervention. However, this creates 

challenges in the evaluation of power and the calculation of sample size during trial design. 

We discuss group-sequential designs in clinical trials with multiple co-primary endpoints, 
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and evaluate decision-making frameworks for stopping for efficacy or futility, based on 

boundaries using group-sequential methodology. The basic idea in the paper is similar to 

that introduced by the JT method, but the proposed methodology includes the two advances 

compared with JT method: (1) methodology for determining the efficacy and futility 

boundaries, and (2) decision-making frameworks for rejecting or accepting the null 

hypothesis associated with multiple co-primary endpoints. We summarize the main 

differences between our methods (AHE methods) and the JT methods shown in Table 6.

We incorporate correlations among the endpoints into the boundary and sample size 

calculations and illustrate the behavior of the futility boundary with varying mean 

differences and number of analyses. We investigate the operating characteristics of the 

proposed decision-making frameworks in terms of the power, the Type I error and sample 

size with varying number of analyses, the correlations among the endpoints, and the 

standardized mean differences. We provide an example illustrating the methods and discuss 

two practical considerations when designing the efficient group-sequential designs in 

clinical trials with co-primary endpoints. These results are useful for designing an efficient 

clinical trial with multiple co-primary endpoints. When conducting group-sequential 

efficacy and futility assessments in these trials, there is an advantage of incorporating 

correlations among the endpoints into the futility boundary and sample size calculations 

particularly when the correlations are large and the effects on the endpoints are similar. A 

larger number of analyses decreases the power, but increases the reduction in ASN. Efficacy 

and futility assessments at earlier information time increase the power but decrease the 

reduction in ASN. The power for assessing efficacy and futility at different interim analyses 

is larger than one for assessing both of efficacy and futility at the same interim analyses. 

Careful consideration is needed regarding the frequency and timing of the efficacy and 

futility assessments. When there is a high confidence that all of the endpoints could be 

statistically significant, then assessing efficacy and futility at different interim analysis 

timepoints could save costs in Type I and II errors spending and increase power and reduce 

the required sample sizes. However, when there is uncertainty in demonstrating a joint effect 

on all of the endpoints, the decision-making framework that includes both efficacy and 

futility assessments at the same interim analysis timepoint is a better strategy because the 

number of trial participants exposed to an ineffective intervention can be minimized.

Our discussion has been restricted to continuous outcomes being evaluated in a superiority 

clinical trial with two interventions when the aim is to evaluate effects on all endpoints. 

However, the methods provide a foundation for designing randomized trials with other 

outcome scales. Cook and Farewell (1994) provided some guide on designing clinical trials 

with two time-to-event outcomes in a group-sequential setting. However, time-to-event 

outcomes are more complex and require careful consideration when designing clinical trials 

in a group-sequential setting. As discussed in Hamasaki et al. (2013) and Sugimoto et al. 

(2013) in the fixed-sample designs, the strength of the association among the time-to-event 

outcomes may depend on time. The censoring mechanism further complicates the design of 

these trials. In addition, as Hung et al. (2016) point out, the allocation of the Type I error to 

each interim analysis is more complicated as the amount of information for the endpoints 

may be different at any particular interim timepoint of the trial.
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The methods also provide the foundation for designing randomized trials with other 

inferential goal, i.e., when the aim is to evaluate an effect on at least one endpoint (multiple 

primary endpoints). For example, in many oncology settings, the most commonly used 

primary endpoint is overall survival (OS) defined as the time from randomization until death 

from any cause. OS in general requires long follow-up periods after disease progression, 

which leads to quite long and also expensive studies. Therefore, many clinical trials include 

a short-term primary endpoint such as time to progression (TTP) or progression-free survival 

(PFS), defined as the time from randomization until tumor progression or death. One 

strategy is to assess futility only for TTP (or PFS) at earlier interim analyses and to assess 

the efficacy for either TTP and OS at later interim analyses if negative signs are not detected 

for TTP at the earlier interim analyses. If a negative sign is detected for TTP at the earlier 

interim analysis, the trial is terminated. The methods could be also applicable to select the 

most promising endpoint(s) among the candidate endpoints in explanatory clinical trials. 

One may consider stopping measurement for an endpoint which statistic has already crossed 

the futility boundary. If all statistics for the endpoints cross the futility boundary, the trial is 

terminated. As mentioned above, note that careful consideration is required to deal with 

censoring scheme and time-dependent association in designing clinical trials with multiple 

time-to-event outcomes.

Our research motivation comes from Tarenflurbil study which included two co-primary 

endpoints in the treatment of early stage Alzheimer Disease. In addition to Alzheimer 

Disease, the two co-primary endpoint situation is the common in other disease areas, e.g., 

asthma, benign prostatic hyperplasia, irritable bowel syndrome, oncology, and vaccines. 

Therefore, we focused the two co-primary endpoint situation as a fundamental and common 

occurrence although the methods were generalized to a situation with more than two co-

primary endpoints. Three co-primary endpoints are also common in some disease areas, e.g., 

acute pain, fibromyalgia, low back pain, osteoarthritis, and election dysfunction. An 

extension to more than two endpoints is straightforward, but the computational cost will be 

very expensive in the power evaluations using a numerical integration method as shown in 

Appendix. In this situation, a Monte-Carlo simulation-based method provides a good 

alternative but the number of replications for simulations should be carefully chosen to 

control simulation error in calculating the empirical power.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A.1.: ASN calculation

As defined in Section 2, the ASN is the expected sample size under hypothetical reference 

values which is given by

ASN = ∑
l = 1

L − 1
nlPl δ1, …, δK + nL 1 − ∑

l = 1

L − 1
Pl δ1, …, δK ,

where Pl(δ1,…, δK) = PEl + PFl, and PEl and PFl are the stopping probabilities for efficacy or 

futility at the lth analysis, assuming that the true values of the mean difference are (δ1,…, 

δK). The ASN provides information regarding of the number of participants anticipated in a 

group-sequential design in order to reach a decision point. We briefly describe the several 

definitions of the ASN corresponding to the decision-making frameworks. For DF-1, the 

stopping probabilities at the first analysis are

PE1 = Pr ∩
k = 1

K
Ak1 ℐk1 = ℐ1  and PF1 = Pr ∪

k = 1
K

Ek1 ℐk1 = ℐ1 ,

and at the lth analysis (l ≥ 2),

PEl = Pr ∩
k = 1

K
Ak1 ∪ ∪

lk′ = 2

lk
∩

lk″ = 1

lk′ − 1
Bklk″

∩ Aklk′
− ∑

l′ = 1

l − 1
PEl′

and

PFl = Pr ∪
k = 1

K
Ek1 ∪ ∪

lk′ = 2

lk
∪

k = 1
K

∩
lk″ = 1
l′ − 1

Dklk″
∩ ∪

k = 1
K

Eklk′
− ∑

l′ = 1

l − 1
PFl′,

where Aklk
= Zklk

> cEklk
, Bklk

= cFklk
< Zklk

≤ cEklk
, Cklk

= Zklk
> cFklk

, 

Dklk
= Zklk

≤ cEklk
 and Eklk

= Zklk
≤ cFklk

, and lk is the latest analysis for endpoint k on 

or before the information time at the lth analysis (i.e., ℐlk
≤ ℐl).

Similarly for the DF-2, stopping probabilities at the first analysis are at

PE1 = Pr ∩
k = 1

K
Ak1 ℐk1 = ℐ1  and PF1 = Pr ∪

k = 1
K

Ek1 ℐk1 = ℐ1 ,

at the lth analysis (l ≥ 2),
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PEl = Pr ∩
k = 1, ℐl1′

= … = ℐlK′

K
Ak1 ∪ ∪

lk′ = 2

lk
∩

lk″ = 1

lk′ − 1
Cklk″

∩ Aklk′
− ∑

l′ = 1

l − 1
PEl′,

and

PFl = Pr ∪
lk′ = 1

lk
∩

lk″ = 1

lK′
∪

k = 1, ℐl1″
= … = ℐlK″

K
Dklk″

∩ ∪
k = 1

K
Eklk′

− ∑
l′ = 1

l − 1

PFl′ .

Furthermore, for DF-3, the sopping probabilities the 1st analysis are

PE1 = Pr ∩
k = 1

K
Ak1  and PF1 = Pr ∪

k = 1
K

Ek1 ,

and at the lth analysis (l ≥ 2),

PEl =  Pr  ∩
l′ = 1
l − 1

∩
k = 1

K
Ckl′ ∩ ∪

k = 1
K

Dkl′ ∩ ∩
k = 1

K
Akl

and

PFl = Pr ∩
l′ = 1
l − 1

∩
k = 1

K
Ckl′ ∩ ∪

k = 1
K

Dkl′ ∩ ∪
k = 1

K
Ekl ,

where Akl = {Zkl > cEkl}, Ckl = {Zkl > cFkl}, Dkl = {Zkl ≤ cEkl} and Ekl = {Zkl ≤ cFkl}.

A.2.: An iterative procedure for identifying the efficacy and futility 

boundaries, including the calculation for MSS

As a general case, we only describe the procedure for DF-1. The following is an iterative 

procedure for identifying the efficacy and futility boundaries cEklk
 and cFklk

 including the 

calculation for MSS nL.

Step 1: Determine cEk1,…, cEkLk
 using any group-sequential method.

Step 2: Select the two initial values nL
(m − 1) and nL

(m) (m = 1, 2,…,).

Step 3: Select the initial values βk
( j − 1, m) and βk

( j, m), where βk
( j, m) is the marginal Type II 

error rate for Endpoint k (j = 1; 2,…,).

Step 4: Calculate nL βk
( j, m)  and cFk1,…, CFkLk

, satisfying βk1
( j, m) = Pr Zk1 ≤ cFk1  and
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βkl
( j) =  Pr  ∩

l′ = 1
l − 1

cFkl′ < Zkl′ ≤ cEkl′ ∩ Zkl ≤ cEkl

With ∑l = 1
Lk βkl

( j, m) = βk
( j, m) and cFkLk

= cEkLk
, using any group-sequential method (k = 1,…, 

K; l = 2,…, Lk).

Step 5: Update the value of βk using the equation based on basic linear interpolation

βk
( j + 1, m) =

βk
( j − 1, m) nL βk

( j, m) − nL
(m) − βk

( j, m) nL βk
( j − 1, m) − nL

(m)

nL βk
( j, m) − nL βk

( j − 1, m) .

Step 6: Calculate nL βk
( j + 1, m)  and cFk1,…,cFkLk

 under current βk
( j + 1, m) as with Step 4.

Step 7: If βk
( j + 1, m) − βk

( j, m)  is within a prespecified error tolerance, then stop iterative 

procedures with βk
(m). Otherwise, go back to Step 5. Note: Calculate βk

(m), satisfying 

nL βk
(m) = nL

(m), for all k.

Step 8: Calculate f nL
(m)  which is the power (1) (DF-1) under the current nL

(m), using the 

cFk1,…, CFkLk
 calculated at Step 6.

Step 9: Update the value of nL, using the equation based on basic linear interpolation

nL =
nL
(m − 1) f nL

(m) − (1 − β) − nL
(m) f nL

(m − 1) − (1 − β)

f nL
(m) − f nL

(m − 1) .

Step 10: If nL is an integer, nL
(m + 1) = nL; otherwise, nL

(m + 1) = nL + 1, where [nL] is the 

greatest integer less than nL. If nL
(m + 1) = nL

(m), stop the iterative procedures with nL
(m + 1) as 

the final value. Otherwise, repeat Steps 3 to 9.

Options for the two initial values nL
(0) and nL

(1) include the sample sizes calculated for 

detecting the smallest standardized mean differences min[Δ1,…, ΔK] with the marginal 

power 1 – β with a one-sided test at the significance level of α. Another option is calculated 

by the same method but with the marginal power (1 – β)1/K. This is because nL lies between 

these options.

A.3.: Computing time for evaluating the power

The following table illustrates the CPU time (in seconds) taken for calculating the power 

under a given sample size on a DELL Precision T7300 (Intel(R) Xeon(R) CPU E5–
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2630/2.60GHz/RAM 8.00GB/32bit operating system) for DF-3 with varying the number of 

endpoints (K), the number of analyses (L) and correlation ρkk′, where K =2 and 3; L =2, 3, 4 

and 5; and a common correlation ρ = ρkk′ = 0.0, 0.5 and 0.8. The given sample sizes of 516 

for K =2 and 586 for K =3 are enough to detect a joint effect on all endpoints (assuming a 

common effect size Δ = Δk = 0.2, and zero correlations among the endpoints) with the power 

of 80% at the significance level of 2.5% for a one-sided test in the fixed sample design. The 

O’Brian-Fleming-type boundary is commonly selected for efficacy and futility on all of the 

endpoints, with equally spaced increments of information. The program for calculating the 

power is coded in FORTAN 77/90, including the subroutine for computing the multivariate 

normal distribution function values, MVNDST developed by Professor Alan Genz of 

Washington State University (the subroutine MVNDST is available on at his website http://

www.math.wsu.edu/faculty/genz/software/fort77/). In our study, computing the multivariate 

normal distribution function values using the subroutine MVNDST began with a maximum 

number of function values (MAXPTS) of 5000, an absolute error tolerance (ABSEPS) 

of0.00001, and a relative error tolerance (RELEPS) of zero. If the estimated absolute error 

(ERROR) is larger than required tolerance (ABSEPS), i.e., ERROR > ABSEPS, then 

MAXPTS is increased by 1000 to decrease the estimated absolute error.

Based on the result, except for the case of K =3 and L =4 and 5, the CPU time taken for 

calculating the power under a given sample size is within 10 seconds. As our algorithm 

generally requires 4 to 6 iterations for finding the final maximum sample size, depending on 

the initial values, the maximum CPU time is supposed to be one minutes. However, in the 

case of K =3 and L =5, the CPU time taken for calculating the power under a given sample 

size is over 300 seconds and the CPU time taken for finding the final maximum sample size 

is supposed to be over half hour. In this situation, a Monte-Carlo simulation-based method 

provides a good alternative but the number of replications for simulations should be 

carefully chosen to control simulation error in calculating the empirical power. For the case 

of K =3 and L =5, the Monte-Carlo simulation-based method can shorten the CPU time in 

less than one-quarter, where the number of replications is 100,000.

Appendix Table 1

CPU time (in seconds) taken for calculating the power under a given sample size for DF-3 

with varying the number of endpoints (K), the number of analyses (L) and common 

correlation ρ. The given sample sizes of 516 for K =2 and 586 for K =3 are enough to detect 

a joint effect on all endpoints (assuming a common effect size Δ = Δk = 0.2 and zero 

correlations among the endpoints) with the power of 80 % at the significance level of 2.5% 

for a one-sided test in the fixed sample design. The O’Brian-Fleming-type boundary is 

commonly selected for efficacy and futility on all of the endpoints, with equally spaced 

increments of information. The number of replications for power evaluation by Monte-Carlo 

simulation is 100,000.

K =2 K =3

# of analyses
L

Correlation
ρ

Numerical
integration

Monte-Carlo
simulation

Numerical
integration

Monte-Carlo
simulation

2 0.0 0.14 44.59 0.78 75.69
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K =2 K =3

# of analyses
L

Correlation
ρ

Numerical
integration

Monte-Carlo
simulation

Numerical
integration

Monte-Carlo
simulation

0.3 0.28 43.82 0.97 74.35

0.5 0.39 42.73 2.36 73.02

0.8 0.44 41.64 11.54 70.65

3 0.0 0.67 49.14 2.56 85.72

0.3 0.87 48.06 3.81 82.96

0.5 1.12 47.11 5.74 80.96

0.8 1.37 45.72 11.39 77.42

4 0.0 1.01 55.27 40.06 97.31

0.3 1.47 54.13 41.54 93.73

0.5 1.23 52.96 43.23 91.34

0.8 2.31 50.95 51.53 85.97

5 0.0 5.66 61.67 381.78 108.78

0.3 6.29 60.06 383.92 104.40

0.5 6.75 58.70 388.93 101.24

0.8 8.89 56.53 411.05 101.24
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Figure 1. 
Behavior of the power as a function of the standardized mean difference and correlation, for 

the group-sequential designs shown in Table 2 (DF-1).
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Figure 2. 
Behavior of the ASN (sample size reduction relative to MSS) as a function of the 

standardized mean difference and correlation, for the group-sequential designs shown in 

Table 2 (DF-1).
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Figure 3. 
Behavior of the Type I error rate as a function of the standardized mean difference Δ2* and 

correlation ρ12, for the group-sequential designs shown in Table 2 (DF-1).
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Figure 4. 
Tarenflurbil study: The probability of rejecting or accepting the null hypothesis H0 under 

hypothetical reference values for the group-sequential design #2–2 shown in Table 2 (DF-1).
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Table 1

OF-type efficacy and futility boundaries with standardized mean differences, the number of analyses, and 

correlation. The efficacy and futility assessments are conducted for the two endpoints at the same interim 

analysis based on DF-1 (β =20% and α =2.5%, and equally-spaced increments of information time).

Futility(Correlation)

ρ12=0.0 ρ12=0.3 ρ12=0.5 ρ12=0.8 ρ12=1.0

No. of analyses/
Information time

Efficacy EP1 EP2 EP1 EP2 EP1 EP2 EP1 EP2 EP1 EP2

(Δ1, Δ2) = (0.1,0.1)

2 1/2 2.963 0.287 0.287 0.313 0.313 0.340 0.340 0.407 0.407 0.559 0.559

1 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969

3 1/3 3.710 −0.662 −0.662 −0.621 −0.621 −0.579 −0.579 −0.473 −0.473 −0.237 −0.237

2/3 2.511 1.014 1.014 1.030 1.030 1.045 1.045 1.084 1.084 1.170 1.170

1 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993

4 1/4 4.333 −1.362 −1.362 −1.309 −1.309 −1.255 −1.255 −1.122 −1.122 −0.821 −0.821

1/2 2.963 0.345 0.345 0.371 0.371 0.398 0.398 0.463 0.463 0.609 0.609

3/4 2.359 1.299 1.299 1.309 1.309 1.320 1.320 1.345 1.345 1.402 1.402

1 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014

(Δ1, Δ2) = (0.1,0.2)

2 1/2 2.963 0.559 −1.049 0.559 −1.409 0.559 −1.409 0.559 −1.409 0.559 −1.409

1 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969

3 1/3 3.710 −0.238 −3.552 −0.238 −3.552 −0.238 −3.552 −0.238 −3.552 −0.238 −3.552

2/3 2.511 1.170 −0.039 1.170 −0.039 1.170 −0.039 1.170 −0.039 1.170 −0.039

1 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993

4 1/4 4.333 −0.822 −5.140 −0.822 −5.140 −0.821 −5.141 −0.821 −5.141 −0.821 −5.141

1/2 2.963 0.609 −1.504 0.609 −1.504 0.609 −1.503 0.609 −1.503 0.609 −1.503

3/4 2.359 1.401 0.542 1.401 0.542 1.402 0.542 1.402 0.542 1.402 0.542

1 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014

(Δ1, Δ2) = (0.2,0.2)

2 1/2 2.963 0.285 0.285 0.312 0.312 0.338 0.338 0.405 0.405 0.558 0.558

1 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969

3 1/3 3.710 −0.665 −0.665 −0.623 −0.623 −0.580 −0.580 −0.474 −0.474 −0.239 −0.239

2/3 2.511 1.014 1.014 1.029 1.029 1.045 1.045 1.084 1.084 1.170 1.170

1 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993

4 1/4 4.333 −1.363 −1.363 −1.314 −1.314 −1.260 −1.260 −1.126 −1.126 −0.823 −0.823

1/2 2.963 0.345 0.345 0.369 0.369 0.395 0.395 0.461 0.461 0.608 0.608

3/4 2.359 1.299 1.299 1.308 1.308 1.319 1.319 1.344 1.344 1.401 1.401

1 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014

(Δ1, Δ2) = (0.2,0.3)

2 1/2 2.963 0.540 −0.464 0.545 −0.457 0.550 −0.450 0.555 −0.443 0.558 −0.440

1 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969

3 1/3 3.710 −0.263 −1.949 −0.255 −1.938 −0.247 −1.926 −0.239 −1.915 −0.239 −1.915
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Futility(Correlation)

ρ12=0.0 ρ12=0.3 ρ12=0.5 ρ12=0.8 ρ12=1.0

No. of analyses/
Information time

Efficacy EP1 EP2 EP1 EP2 EP1 EP2 EP1 EP2 EP1 EP2

2/3 2.511 1.161 0.536 1.164 0.540 1.167 0.544 1.170 0.548 1.170 0.548

1 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993

4 1/4 4.333 −0.849 −3.062 −0.844 −3.055 −0.834 −3.040 −0.823 −3.026 −0.823 −3.026

1/2 2.963 0.596 −0.488 0.599 −0.484 0.603 −0.477 0.608 −0.470 0.608 −0.470

3/4 2.359 1.396 0.962 1.397 0.964 1.399 0.967 1.401 0.970 1.401 0.970

1 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014

(Δ1, Δ2) = (0.3,0.3)

2 1/2 2.963 0.283 0.283 0.308 0.308 0.338 0.338 0.405 0.405 0.555 0.555

1 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.969

3 1/3 3.710 −0.668 −0.668 −0.629 −0.629 −0.581 −0.581 −0.483 −0.483 −0.240 −0.240

2/3 2.511 1.012 1.012 1.027 1.027 1.045 1.045 1.081 1.081 1.169 1.169

1 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993 1.993

4 1/4 4.333 −1.364 −1.364 −1.314 −1.314 −1.263 −1.263 −1.128 −1.128 −0.821 −0.821

1/2 2.963 0.344 0.344 0.369 0.369 0.394 0.394 0.460 0.460 0.609 0.609

3/4 2.359 1.299 1.299 1.308 1.308 1.318 1.318 1.344 1.344 1.402 1.402

1 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014 2.014
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Table 2

Group-sequential designs for efficacy or futility assessments in clinical trials with two co-primary endpoints 

(EP1 and EP2).

Information time

Situation Design No. Assessment 1/4 1/2 3/4 1

1.  Futility and efficacy assessments for both endpoints at the same interim 
analysis: the same interim assessment #1–1 Efficacy Both Both Both Both

Futility Both Both Both Both

#1–2 Efficacy Both Both Both

Futility Both Both Both

#1–3 Efficacy Both Both Both

Futility Both Both Both

#1–4 Efficacy Both Both Both

Futility Both Both Both

#1–5 Efficacy Both Both

Futility Both Both

2.  Futility assessment only conducted at the first interim analysis and then 
efficacy assessment at later interim analyses: the different interim assessment #2–1 Efficacy Both Both Both

Futility Both Both

#2–2 Efficacy Both Both

Futility Both Both

#2–3 Efficacy Both Both

Futility Both Both

#2–4 Efficacy Both Both

Futility Both Both
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Table 3

Efficacy and futility boundaries, MSS and ASN (per intervention group) in group-sequential designs for 

Tarenflurbil study, including efficacy and futility assessments for the two endpoints based on DF-1 for the 

group-sequential designs shown in Table 2.

Information time ASN(Δ1,Δ2)

Design No. ρ12 Assessment 1/4 1/2 3/4 1 MSS (0.2,0.2) (0.2,0.0) (0.0,0.0)

#1–1 Efficacy 4.333 2.963 2.359 2.014

0.0 Futility −2.459 −0.195 1.083 2.014 836 623 564 489

0.3 −2.441 −0.186 1.086 2.014 831 608 559 498

0.5 −2.412 −0.172 1.092 2.014 824 594 553 502

0.8 −2.322 −0.128 1.110 2.014 798 563 532 500

1.0 −2.044 0.009 1.165 2.014 725 498 468 468

#1–2 Efficacy → 2.963 2.359 2.014

().() Futility → −0.194 1.083 2.014 836 623 565 492

0.3 → −0.186 1.086 2.014 831 608 561 501

0.5 → −0.172 1.092 2.014 824 595 555 505

0.8 → −0.127 1.110 2.014 798 564 533 503

1.0 → 0.010 1.165 2.014 725 500 472 472

#1–3 Efficacy 4.333 → 2.340 2.012

0.0 Futility −2.460 → 1.096 2.012 835 669 650 624

0.3 −2.442 → 1.100 2.012 829 661 645 623

0.5 −2.413 → 1.106 2.012 822 654 639 620

0.8 −2.323 → 1.126 2.012 796 629 617 606

1.0 −2.048 → 1.187 2.012 722 566 554 554

#1–4 Efficacy 4.333 2.963 → 1.969

0.0 Futility −2.492 −0.242 → 1.969 809 725 644 546

0.3 −2.471 −0.232 → 1.969 804 703 638 559

0.5 −2.446 −0.220 → 1.969 796 684 630 564

0.8 −2.355 −0.176 → 1.969 111 644 602 562

1.0 −2.080 −0.044 → 1.969 696 564 524 524

#1–5 Efficacy → 2.963 → 1.969

0.0 Futility → −0.241 → 1.969 809 725 645 548

0.3 → −0.231 → 1.969 804 703 639 561

0.5 → −0.219 → 1.969 796 684 631 567

0.8 → −0.175 → 1.969 771 644 604 565

1.0 → −0.043 → 1.969 696 565 527 527

#2–1 Efficacy → 2.963 2.359 2.014

0.0 Futility −2.482 → → 2.014 817 618 811 809

0.3 −2.462 → → 2.014 812 603 806 804

0.5 −2.435 → → 2.014 804 589 797 795

0.8 −2.343 → → 2.014 111 558 769 767

1.0 −2.076 → → 2.014 701 493 689 689
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Information time ASN(Δ1,Δ2)

Design No. ρ12 Assessment 1/4 1/2 3/4 1 MSS (0.2,0.2) (0.2,0.0) (0.0,0.0)

#2–2 Efficacy → —> 2.340 2.012

0.0 Futility → −0.224 → 2.012 819 661 649 552

0.3 → −0.214 → 2.012 814 654 643 565

0.5 → −0.201 → 2.012 806 646 635 571

0.8 → −0.158 → 2.012 780 622 608 569

1.0 → −0.027 → 2.012 705 560 531 531

#2–3 Efficacy → → 2.340 2.012

0.0 Futility −2.483 → → 2.012 817 660 811 809

0.3 −2.463 → → 2.012 811 653 805 803

0.5 −2.436 → → 2.012 803 645 797 794

0.8 −2.347 → → 2.012 776 620 770 767

1.0 −2.076 → → 2.012 700 557 688 688

#2–4 Efficacy → 2.963 → 1.969

0.0 Futility −2.495 → → 1.969 807 725 803 799

0.3 −2.478 → → 1.969 801 702 796 793

0.5 −2.450 → → 1.969 793 683 788 785

0.8 −2.357 → → 1.969 767 643 761 758

1.0 −2.087 → → 1.969 691 563 681 681
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Table 4

Power and ASN under a given MSS and true correlation between the endpoints ρ12* . The given MSS per 

intervention group (equally-sized groups: r =1) is calculated to detect a joint effect on the two endpoints with a 

power of 80% using one-sided test with a significance level of α = 2.5%, with (Δ1, Δ2) =(0.2,0.2) and 

hypothetical correlation ρ12 during planning, where both of efficacy and futility assessments are conducted 

based on DF-1 and critical boundaries are determined by OF-type boundary using the LD error-spending 

function with equally-spaced increment in information.

Hypo, correlation No. of analyses True correlation ASN(Δ1,Δ2)

ρ12 L MSS ρ12* Power(%) (0.2,0.2) (0.2,0.0) (0.0,0.0)

0.0 1 516

2 529 0.0 80.0 500 365 305

0.3 81.2 492 366 317

0.5 82.4 486 367 325

0.8 84.8 474 367 341

1.0 89.5 456 367 367

3 548 0.0 80.1 468 345 289

0.3 81.3 460 345 298

0.5 82.4 454 346 306

0.8 84.9 443 346 321

1.0 89.5 427 346 346

4 560 0.0 80.0 456 329 277

0.3 81.3 447 330 285

0.5 82.4 440 330 292

0.8 84.9 428 330 306

1.0 89.5 410 330 330

0.5 1 490

2 505 0.0 77.3 477 343 287

0.3 78.7 469 344 298

0.5 80.0 464 345 306

0.8 82.8 454 345 321

1.0 87.9 438 345 345

3 524 0.0 77.3 448 323 269

0.3 78.8 441 324 278

0.5 80.0 435 324 286

0.8 82.8 425 325 300

1.0 87.9 410 325 325

4 536 0.0 77.3 437 308 258

0.3 78.7 429 309 266

0.5 80.0 423 310 273

0.8 82.8 412 310 287

1.0 87.9 395 310 310
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Hypo, correlation No. of analyses True correlation ASN(Δ1,Δ2)

ρ12 L MSS ρ12* Power(%) (0.2,0.2) (0.2,0.0) (0.0,0.0)

1.0 1 393

2 415 0.0 64.1 380 263 225

0.3 66.6 377 265 233

0.5 68.7 375 266 238

0.8 72.8 370 267 249

1.0 80.1 363 267 267

3 434 0.0 64.1 364 243 198

0.3 66.6 359 245 206

0.5 68.6 356 246 213

0.8 72.8 351 247 226

1.0 80.0 344 247 247

4 446 0.0 64.1 357 233 190

0.3 66.6 351 235 198

0.5 68.6 348 236 204

0.8 72.8 342 237 216

1.0 80.1 333 237 237
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Table 5

MSS and ASN with a combination of OF-type and PC-type boundaries for two endpoints (EP1 and EP2). The 

MSS per intervention group (equally-sized groups: r =1) is calculated to detect a joint effect on the two 

endpoints with a power of 80% using one-sided test with a significance level of α = 2.5%, where ρ12 = 0. Both 

of efficacy and futility assessments are conducted based on DF-1 and critical boundaries are determined using 

the LD error-spending function with equally-spaced increment in information. The ASN is calculated under 

H1.

Standardized
mean difference
(Δ1,Δ2)

The number of analyses

Boundary-type L = 2 L = 3 L = 4

EP1 EP2 MSS ASN MSS ASN MSS ASN

(0.1,0.2) OF OF 1658 1473 1734 1385 1782 1343

OF PC 1659 1458 1735 1378 1783 1336

PC OF 2005 1381 2174 1376 2264 1338

PC PC 2005 1352 2174 1273 2264 1236

(0.2,0.2) OF OF 529 500 548 468 560 456

OF PC 592 510 628 482 648 468

PC PC 649 470 700 450 728 438
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Table 6

The main differences between the AHE methods and the JT methods

The JT methods The AHE methods

Efficacy and futility boundary 
determination

Power family by Emerson and Fleming 
(1989) Error-speeding method by Lan and De-Mets (1983)

Incorporation of correlation in 
power and futility boundary Power assessment only

Power assessment and futility boundary calculations- allows 
evaluation of how adjusting the futility boundary by incorporating 
the correlations, may affect the decision-making for accepting the 
null hypothesis

Decision-making framework 
for rejecting the null 
hypothesis

Simple- conducts both of the efficacy 
and futility assessments at the same 
interim analyses

Flexible- allows for different timings for efficacy and futility 
assessments and provides savings for error spending (Type I and II 
errors), thus improving the efficiency (increasing power and 
reducing required sample sizes)

Calculation of power and 
sample sizes Requires a simple iterative procedure Requires a complex iterative procedure
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