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ABSTRACT Implicit assumption of common (co)variance for all loci in multi-trait Genomic Best Linear

GENOMIC PREDICTION

KEYWORDS
Unbiased Prediction (GBLUP) results in a genomic relationship matrix (G) that is common to all traits. When =~ Genomic
this assumption is violated, Bayesian whole genome regression methods may be superior to GBLUP by prediction
accounting for unequal (co)variance for all loci or genome regions. This study aimed to develop a strategy to ~ GenPred
improve the accuracy of GBLUP for multi-trait genomic prediction, using (co)variance estimates of SNP  Shared Data
effects from Bayesian whole genome regression methods. Five generations (G1-G5, test populations) of Resources

Genetic

genotype data were available by simulations based on data of 2,200 Danish Holstein cows (GO, reference
population). Two correlated traits with heritabilities of 0.1 or 0.4, and a genetic correlation of 0.45 were
generated. First, SNP effects and breeding values were estimated using BayesAS method, assuming
(co)variance was the same for SNPs within a genome region, and different between regions. Region size was
set as one SNP, 100 SNPs, a whole chromosome or whole genome. Second, posterior (co)variances of SNP
effects were used to weight SNPs in construction of G matrices. In general, region size of 100 SNPs led to
highest prediction accuracies using BayesAS, and wGBLUP outperformed GBLUP at this region size. Our
results suggest that when genetic architectures of traits favor Bayesian methods, the accuracy of multi-trait
GBLUP can be as high as the Bayesian method if SNPs are weighted by the Bayesian posterior (co)variances.
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Genomic prediction methods mainly fall into one of the two categories
i.e, (i) methods assuming a variance specific to each SNP, or to a
chromosomal region (Meuwissen et al. 2001; Serensen et al. 2012;
Janss 2014), and (ii) methods assuming a common variance for all
SNPs (Meuwissen et al. 2001; de los Campos et al. 2013). For instance,
in one extreme BayesA method it is assumed that each SNP follows a
normal distribution with null mean and a locus-specific variance
(B; ~ N(0, (ng}_)), while in another extreme Ridge Regression method
it is assumed that all SNPs have null means and a common variance
(Bj ~ N(0,0%)). It has been shown that this Ridge Regression can be
written as a linear mixed model at individual level (taking the sum of
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SNP effects as additive genetic effect of an individual) with a genomic
relationship matrix (Nejati-Javaremi et al. 1997), G, which is known as
genomic best linear unbiased prediction (GBLUP) (Habier et al. 2007).
The GBLUP method is popularly used for genomic evaluation in an-
imal breeding programs, mainly due to its straightforward implemen-
tation using the existing computer softwares (Tiezzi and Maltecca 2015;
Karaman et al. 2016). Compared to Bayesian whole genome regression
methods, GBLUP has also less computational demand particularly
when the number of marker covariates greatly exceeds the number of
observations, which is the case in most genome-wide analysis. More-
over, many important traits in animals are complex in nature, and are
controlled by a large number of small effect genes distributed across the
entire genome, favoring the infinitesimal model (Meuwissen et al. 2001;
Hayes and Goddard 2001; Hayes et al. 2009; Meuwissen and Goddard
2010). For some traits, the distribution of underlying genes violates the
infinitesimal model assumption of large number of genes with
small effect. Thus, methods assuming SNP specific or region specific
(co)variances can lead to higher accuracy of prediction than GBLUP,
by accounting for the relative importance of genomic regions
(Meuwissen et al. 2001; VanRaden et al. 2009).
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A priori assumption of common variance for all loci in GBLUP
results in a G matrix that is common to all traits. However, any trait
deviates from the infinitesimal model to some degree, and different
traits can be controlled by different sets of genes and different chro-
mosomal regions (Lipkin et al. 2008; Zhang et al. 2010). Hence, it
needs a G matrix that can reflect the genetic architecture of the traits
of interest for improving genomic prediction. Zhang et al. (2010), for
the first time, reported that the estimates from Bayesian regression
methods assuming a specific variance for each SNP can be imple-
mented in GBLUP to improve genomic prediction accuracy. Comput-
ing a trait-specific genomic relationship matrix by weighting SNPs
using posterior variances from BayesB method, the authors reported
higher predictive abilities than traditional GBLUP method (Zhang et al.
2010). Following their work, many others investigated the use of var-
ious weights for GBLUP in single-trait evaluation, either weighting
SNPs individually or assigning a common weight to adjacent SNPs
(Su et al. 2014; Calus et al. 2014; Tiezzi and Maltecca 2015).

A great majority of the genomic selection studies (Calus and Veer-
kamp 2007; Legarra et al. 2008; Lorenzana and Bernardo 2009;
Daetwyler et al. 2010a; Liu et al. 2011; Gao et al. 2013; Wolc et al.
2013; Su et al. 2014) has focused on single-trait breeding value estima-
tion. However, multi-trait methods are expected to yield more accurate
predictions than single-trait methods as in traditional BLUP. Simula-
tions have shown that multi-trait genomic prediction can lead to a
considerable increase in genomic prediction accuracy (Calus and Veer-
kamp 2011; Jia and Jannink 2012; Guo et al. 2014). These studies either
implemented Bayesian methods that have a higher computational de-
mand especially for large scale of data, or used GBLUP with a G matrix
that is common to all traits. An alternative estimation procedure can be
to combine important features of both methods such that any deviation
from the infinitesimal model are accounted for without compromising
the simplicity in application. In a bivariate model, for instance, such a
procedure should account for heterogeneous covariances between SNP
effects on two traits as well as heterogeneous variances of SNP effects on
each trait. In the framework of bivariate GBLUP, this immediately
requires that genomic relationship matrices are able to account for
heterogeneous variances and and covariances accross the genome.

The aim of this study is to (i) extend the weighted single-trait GBLUP
methodology to multi-trait case, (ii) compare the performance of pro-
posed methodology with unweighted single and multi-trait GBLUP
methods, and (iii) investigate the effect of two weighting strategies
(i.e., single or group SNP weighting).

MATERIAL AND METHODS

Data Sets

Five generations of genotype data were simulated based on 50K haplotype
data of 2,200 animals from Danish Holstein population. Only the SNPs
(11,154) on first five chromosomes were used. A fixed ratio of male:female,
1:10, was assumed throughout the simulated generations. Thus, at each
generation, 200 and 2,000 animals were assumed to be males and females,
respectively. Each male was randomly mated with 10 females, and one
mating per sire was replicated so as to retain the population size at 2,200
for each generation. The number of recombinations on each chromosome
was determined using a random variable drawn from a Poisson distri-
bution, under the assumption that the length of a chromosome in the
Morgan’s unit in the linkage map is the lambda parameter (Yamamoto
et al. 2016). Mutation was not considered in the simulations. Animals in
the base population (hereinafter referred to as G0) were used to form a
reference population, while animals in the simulated generations (here-
inafter referred to as G1-G5) were used to form the test populations.

3550 | E. Karaman et al.

Some SNPs were assigned to QTL in the following way. Each
chromosome was divided into windows of 1 million bp, yielding 159,
139, 127, 121 and 125 bins for chromosomes 1-5, respectively. Then, a
bin was randomly selected, and a random number, #,,, was drawn from a
uniform distribution U(0,0.15). A SNP was randomly selected and
designated as QTL among those SNPs, if any, which met the condition
of 0.15—r, <MAF;=0.15 +r,,, where MAF; is the minor allele
frequency of the SNP. Each bin was allowed to include one QTL at
maximum. The restriction in MAF for QTL was based on the assump-
tion that QTL in general have relatively low MAF. Two traits were
considered, and total number of QTL was set at 200 or 500, which were
excluded from the final data set of SNP. Averaged over the replicates,
MAFs of the QTL and SNPs were 0.15 and 0.26, respectively.

All QTL were assigned into three groups according to their causal
relationships with the traits. This was done by assuming a percentage of
the total QTL (82%) had pleiotropic effects on two traits, while the rest of
the QTL had effects on either of the traits. Two correlated gamma
variables (i.e., QTL effects) with marginal distributions of G(0.4, 1.66)
were simulated for the pleiotropic QTL (Dvorkin 2012). It was assumed
that the pleiotropic QTL had effects either on the same or on the
opposite direction for the two traits. The 78% of those QTL were
assigned to a correlation between effects on two traits of 0.90, and
22% of -0.90 randomly, to accomplish a genetic correlation of about
0.45. The effects of trait-specific QTL were sampled from a Gamma
distribution, G(0.4, 1.66), and were assigned a positive or negative sign
at random.

Phenotypic values of the two traits were simulated to have herita-
bilities of 0.1 and 0.4, which represents low (L) and high (H) heritability
traits, respectively. The phenotypic values of individual i on two traits,
yri and yp;, adjusted for fixed effects can be given as:

yLi = uLi +er;
=qj;a1+q ;e +eri
YHi = UHi t+ eHi
=q;aH+qQ;; a3+ eq;

where u; and uy; are the breeding values of individual i for traits L
and H, respectively. q, ; and g, ; are the vectors of the genotypes of
QTL that determine either trait L or H, and q,; is the genotype vector
of QTL with effect on both traits, for individual i. The a;, a,s and
a; are vectors of QTL effects for the corresponding three groups of
QTL, and ¢;; and ey; are the random residual effects. Random residual
2
Loy, 02 }), where the sizes of
0 Io,,

o’ and o were determined according to heritabilities of 0.1 and 0.4,
respectively. All animals had genotypes and phenotypes on both
traits. In total, 10 replicates were generated. Averaged over the repli-
cates, the heritabilities for traits L and H were 0.1 and 0.4, respectively,
and the genetic correlation between the traits was 0.47.

effects were sampled from N (O7 {

Models and Methods

Definition of a basic multi-trait model: In practice, QTL are un-
observed, and breeding value estimates are based on markers instead of
QTL. A multi-trait model with marker effects can be written as

y=XB+e (1)

where y is the vector of phenotypes corrected for the effects other than
genetic effect, X is the matrix of genotypes (centered) for k markers,
B is the vector of marker effects, and e is the vector of random residual
effects. Equation (1) can be explicitly written as follows.
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In the case that two traits are measured on the same animals, marker
genotype matrices X; = Xy, and these matrices will be denoted

as Xj hereinafter, to simplify the demonstration. A typical assump-
tion for residuals, e = [ef,ef], is €|Ro ~ N(0,Ry®I,), where

2
o, O . . . .

Ry=| '« %H |, Assuming all the genetic variance is captured
Tery UeH

by markers, vectors of breeding values of the animals for traits L and
H are u;, = Xof3; and uy = XofBy, respectively.

Multi-trait genomic BLUP: We will first start with a multi-trait BLUP
model assuming independence of SNP effects on different loci, and
homogeneous SNP (co)variances across the genome. We will then make
a connection between that model and the traditional BLUP model based
on genomic relationship matrix (GBLUP). Finally, we will relax the
assumption of homogeneous SNP (co)variances, and introduce a multi-
trait GBLUP model where SNP (co)variances across the genome are
assumed to be heterogeneous (WGBLUP).

When constant (co)variances are assumed for all the SNPs,
0-/23,_ (TBLH

B|By ~ N(0,By®I;), where By =
OBy UBH

values, u’ = [uf, uy], are

. BLUP of breeding

Cov(u,y’)Var(y) _ly
Cov(XB,y')Var(y) 'y 5
XBX'[XBX' +R] 'y )

Ly, + (XBX")'R] 'y

a

Xoop Xy Xoop,,Xo
X()O'BL”X6 X()O'éHX(,)
ing Hardy-Weinberg equilibrium, and homogeneous (co)variance
for SNPs, total genetic variance and covariances are (Morota and
Gianola 2014) o7, = Y>2p;q0p , 05, = >, 2pqop and oy, =
> 2pjqjog,,, respectively, where p; and g; are the allele frequencies
of 2" and 1* alleles at loci j. Using the fact that

where XBX' = and R = Ry ®1,,. Assum-

0_2 — O-flL 0,2 — 31{ O,B Tuy
B S apig TP Sopig) TP T Y2pgy

and in turn replacing respective parameters in equation (2), we get

[ Xoo% X/
= |Ian + B 0,
Xo0p,,X0

I 2 /
XoDX

L
Ty XoDX)

- -1
2
oo G o0,.G
= |1 ur Uiy R
nt <0'uLHG a'ﬁHG )

where G = X,DXj, and D is a diagonal matrix with dj;; =

-1

A 1
X()O'BLHX() R v
Xoo, Xo

=

-1 -1
7., XoDXj R y
o2, XoDXj
-1

y

1
Z 2pjq;
(VanRaden 2008). Hence, only a single relationship matrix needs to
be computed, and

[ uy, } ~ N|o, O'iLG O'LZ,LHG
uy 0u,G 0, G
Hereinafter, this multi-trait BLUP model using a single relationship
matrix will be referred to as multi-trait GBLUP.
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Assume that each SNP has a specific (co)variance, and that
B|B ~ N(0,B), with B = B Buy
By By
nal matrices of SNP variances for traits L and H, respectively, and B,y is
a diagonal matrix of the covariances for the SNP effects on the traits.
BLUP of breeding values are

} . Here, B}, and By are diago-

r -1
L XoB: Xy XoBrgXp
o= (bt (XOBLHxa XOBHXO) Rl
_ g, + o7, XD X a-uLHXODLHXO
0w, XoDiuXy o2 XODHXO
i 2
g GL oy GLH
= |1 uy, LH R
o+ <UuLHGLH D'ﬁH GH Y
with
' UBLJ/ T8, O-BHJ/ 8y UBLH]/UﬁLH
LA,] 47 H] Zz]] ’ LH,] Zijq]

where dpj, dy; and diy; are entries for the j'th diagonal of corre-
sponding D matrices, o'é and O'B are the SNP variances for traits
L and H, respectively, and OB, is the covariance of the jth SNP
between traits. It is more convenient to write

l: ur ] |: ( O'i Gr O-HI.NGLH>
~ Nlo, L '

uy O'uH,_GLH UuHGH
where G, and Gy are the genomic relationship matrices that account
for the heterogeneous variances, while Gy is the genomic relation-
ship matrix that accounts for heterogeneous covariances across the
genome. Hereinafter multi-trait BLUP model based on these genomic
relationship matrices will be referred to as multi-trait weighted
GBLUP (wGBLUP).

We also used single-trait weighted and unweighted GBLUP to
predict breeding values in this study. In the single-trait analysis,
the distribution of breeding values were assumed to follow u ~
N(0, O'iLGL) and uy ~ N(O,O'iHGH) in weighted GBLUP, and
u; ~ N(0,07% G) and uy ~ N(0,07, G) in unweighted GBLUP.

Multi-trait BayesAS: The multi-trait BayesAS method is an extension
of the method proposed by Janss (2014). The assumption in this method
is that SNPs in a genomic region have the same genomic (co)variance,
but SNPs in different genomic regions have different genomic
(co)variances (Li et al. 2017). The model can be written as

Hregion

Ye=m+ > XPy +elt =L1H)

s=1

where y, is the vector of phenotypes, u, is the overall mean, X; is the
matrix of marker genotypes for region s, B, is the vector of marker
effects of region s for trait £, e; is the vector of random residual effects.
For the region s, SNP effects across traits are correlated and are
formulated by the following hierarchical model

B = 7t80,s + TtsS1,s + BZ (3)

In the hierarchical model, a SNP effect is decomposed to three
components. The vectors sy and s;; are subsets of latent variables
so and s;, respectively, and are common to all traits in the analysis.
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The vectors sy and s; are vectors with SNP effects transformed to an
eigen-vector space (Janss 2014). The purpose of the latent vectors s,
and s; is to model covariances between traits. Regression coefficients
r; and r;; determine the sizes of the covariances. Hence, average co-
variance between SNP effects are modeled through r,s¢ 5, while the
deviation of region s from this common covariance is modeled
through r,s; ;. In BayesAS, the elements of the vectors sy and s; are
estimated in a hierarchical model specification, where the SNP effects
on each trait are taken as a known “response”, the r; and r;; param-
eters are taken as known scaling parameters, and sy and s; are
updated by a regular mixed model equation. Then, taking s, and s;
as known, r; and r; are updated. Vector of residual SNP effects, B},
consists of the SNP effects, which are uncorrelated across traits. For a
SNP having effect only on one trait, the sum of the two regression
terms (r;Sos + 71581 5) is expected to be null, and for a SNP having the
same effect on both traits, B}, is expected to be null. We assumed
following priors for the parameters of the models

Ty ~ U(_ )780 ~ N(Ovl)v
~ N(o . ) o2 ~ U(0, ®),s; ~ N(0,T),

r )Y

ﬁ;; ~ N(OJ%),%; ~ U(0, ®).

Variance and covariance for each SNP in each region can be com-
puted as var(B,) = 1> + 12 + a' - and cov(Brs, Bus) = 1LrH + TLsTHS
(Liet al. 2017). Single-trait BayesAS was also used, where equation (3)
reduces to B, = 14815 + Bm and the variances for each SNP in each
region becomes var(B,,) = 12 + 04 . Priors for single-trait BayesAS
model were as defined for multi-trait BayesAS, with O'B set at the
value from multi-trait analysis.

Statistical Analysis

Weaimed to compare the prediction accuracies of BayesAS, GBLUP and
wGBLUP in single and multi-trait genomic prediction. Four different
sizes of genomic regions (one SNP, 100 SNPs, one chromosome and
whole genome) were considered using BayesAS. Posterior (co)variance
components of the traits from BayesAS models with different region
sizes were used in GBLUP, and posterior (co)variances of SNPs
were used to calculate weights for wGBLUP. It is worth noting that
(co)variance components of traits may vary among the BayesAS analyses
with different region sizes to some extent (Li et al. 2017), which in turn
may result in accuracies from GBLUP analysis to vary within single and
multi-trait analysis.

The analysis of single and multi-trait BayesAS model was carried out
using the BAYZ software (www.bayz.biz). Chain length consisted of
20,000 cycles, and the first 5,000 cycles were considered as burn-in.
Thinning interval was set to 10, and in total 1,500 samples were saved
for the posterior analysis. Mean value of the posterior samples was
considered as the estimate of each parameter. GBLUP and wGBLUP
results were obtained by solving mixed model equations in R (R Core
Team 2017).

Accuracy of prediction from different methods was calculated as
the correlation between true and estimated breeding values of animals
in test populations. Results presented here were the average over
10 replicates.

Single and multi-trait BayesAS models assuming different region
sizes were compared for each trait, separately. Prediction accuracies for
all methods were compared for each trait and each scenario of region
size. Those comparisons were performed by two-sided paired t-tests, for
which accuracies were paired across each replicate for the same test
population, and based on a p-value of 0.05 with Bonferroni correction.
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Data Availability

Supplemental material available at Figshare: https://figshare.com/s/
1a1886f38d25b6{3891f. Files at this URL are, real and simulated geno-
types, and File S1, which includes Tables S1 and S2 for accuracies of
generations 2-5 under two QTL scenarios. The genotypes and the
methodology described previously are sufficient to reproduce the re-
sults of this study. The authors affirm that all data necessary for con-
firming the conclusions of the article are present within the article,
figures, and tables.

RESULTS

Genomic prediction using BayesAS
Prediction accuracies from single and multi-trait BayesAS models for
different region sizes are presented in Tables 1-2, for test animals in G1.

Accuracies from multi-trait analysis were significantly higher than
their single-trait counterparts regardless of the region size or the number
of QTL, for trait L. For trait H, on the other hand, accuracies from single
and multi-trait analyses were similar at all region sizes, except for the
region size of whole genome in 500 QTL scenario.

Region size of 100 SNPs resulted in the highest accuracies in single
and multi-trait analyses, for both traits. In the scenario of 500 QTL,
accuracy from region size of 100 SNPs was not significantly higher than
that from region size of 1 SNP, but than from one chromosome or whole
genome, for trait L using a single-trait model. For this trait, accuracy for
the region size of 100 SNPs was more than 2 percentage points higher
than those for other region sizes using a multi-trait model, however, it
was not significant.

Weighted GBLUP using SNP (co)variances

From BayesAS

After fitting BayesAS models with different region sizes, posterior
(co)variance components of the traits from these models were used
in GBLUP, and posterior (co)variances of SNPs were used to calculate
weights for WGBLUP. Accuracies from GBLUP and wGBLUP methods
are presented in Tables 1 and 2 along with the accuracies from BayesAS
methods, for test animals in G1. It is worth noting that what varied
among the different region sizes for single or multi-trait GBLUP analyses
were the estimates of (co)variance components of traits due to using
BayesAS with different region sizes, while the relationship matrices
remained unchanged.

Similar to BayesAS model, in general, accuracies from multi-trait
wGBLUP and GBLUP analysis were significantly higher than their
single-trait counterparts for trait L. For trait H, on the other hand,
accuracies from single and multi-trait WGBLUP analyses were generally
similar in both QTL scenarios.

In the scenario of 200 QTL, accuracies for trait L from wGBLUP were
significantly higher than those from GBLUP, when the weighing factors
were the (co)variances from BayesAS with region size of 100 SNPs,
for both single and multi-trait analysis. In the scenario of 500 QTL,
the accuracy for trait L from wGBLUP was higher than GBLUP (2.5 per-
centage points) using a multi-trait model with region size of 100 SNPs,
however, it was not significant. There was no significant difference be-
tween wGBLUP and GBLUP, when the region was one SNP, one chro-
mosome or whole genome for trait L, regardless of the number of QTL.

For trait H, prediction accuracies from wGBLUP models when
weights were obtained from BayesAS with region sizes of 100 SNPs,
were significantly higher than those from corresponding GBLUP mod-
els, regardless of the number of QTL. Weighted GBLUP was similar or
superior to traditional GBLUP for region sizes of one SNP, one chro-
mosome or whole genome, for trait H.
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Table 1 Accuracies of genomic prediction for test animals in generation 1 using different methods with varying region sizes, for

200 QTL scenario

Single-Trait Multi-Trait
Trait? Region SizeP BayesAS GBLUP wGBLUP® BayesAS GBLUP wGBLUP
Ld 1 SNP 1,0.495¢ 0.493¢ 0.499bc 1,0.5392 0.5402 0.5352k
100 SNPs ,0.532¢ 0.4934 0.530¢ ,0.5972 0.532¢ 0.590°
1 Chr £0.488b 0.486° 0.498b ,0.5572 0.5432 0.5582
WG £0.488b 0.489° 0.482b 1,0.5412 0.5422 0.5422
H 1 SNP ,0.7142 0.702° 0.7152 10.7132 0.7052k 0.7142
100 SNPs ,0.7552 0.703b 0.7572 ,0.7612 0.705° 0.7602
1 Chr p0.71120 0.702¢ 0.7112k 1,0.7143 0.706P¢c 0.7152
WG 0.7012 0.7012 0.6882 0.7052 0.7052 0.7062
ZL and H: low (0.1) and high (0.4) heritability traits, respectively.

Chr: chromosome; WG: Whole genome.

ZWGBLUP: weighted GBLUP.

Different alphabets mean significantly different values at a type one error rate of 0.05 with Bonferroni correction. Subscripts and superscripts stand for comparisons

within column and row, respectively, for each trait.

Although not always statistically significant, analysis using (co)-
variance estimates from BayesAS in construction of G matrices resulted
in higher accuracies than GBLUP, when the accuracies of correspond-
ing BayesAS model was higher than those of GBLUP. Moreover,
prediction accuracies of breeding values from wGBLUP were generally
as high as those from BayesAS models.

Change in accuracy Over generations

Figures 1 and 2 show the prediction accuracy of breeding values
using wGBLUP method for five consecutive generations, when the
total number of QTL were 200 and 500, respectively. It is worth
noting that wGBLUP model with region size of whole genome is
consistent with GBLUP, where all SNPs are implicitly assumed to
have the same (co)variance. For all four region sizes considered,
accuracy decreased with generations regardless of the number of
QTL. The rate of decay in accuracy for a region size of 100 SNPs
was slightly lower than that for other region sizes when the total
number of QTL was 200, particularly in multi-trait setting for trait
L. When the number of QTL was 200, substantial accuracy was still
retained with a region size of 100 SNPs using the multi-trait
WGBLUP method, even after five generations. Accuracies from
500 QTL scenario (Figure 2) decayed slower compared to 200 QTL
scenario (Figure 1), when the region size was whole genome. The
accuracies of (single or multi-trait) BayesAS and wGBLUP were very
similar in all five generations (Tables S1 and S2).

DISCUSSION

Region size in BayesAS
A wide range of statistical methods is available for single-trait genomic
prediction, which mainly differ in the assumptions on SNP effects
(Meuwissen et al. 2001; Gianola et al. 2009; de los Campos et al.
2013). Among those methods, an extreme is the BayesA method, where
prior distribution of each SNP effect is assumed to be normal with a
SNP specific variance, O'fg . Those variances are further assumed to
follow a scaled inverted chi-square distribution with some scale and
degree of freedom (df) parameters. This was criticized by Gianola et al.
(2009) as not following Bayesian learning, because posterior SNP var-
iances have only one additional df compared to their prior. This can be
overcome by assigning a common variance for a subset of SNPs, and
therefore, posterior distribution of each SNP variance (within a group
consisting of ks SNPs) will have kg df in addition to prior df (Gianola
et al. 2009). These subsets can be achieved by grouping SNPs based on
fixed length of genomic region, or fixed number of adjacent SNPs in
each subset. This is reasonable, because the SNPs in a region likely
inherit together, and also likely to be in linkage disequilibrium (LD)
with the same QTL (Serensen et al. 2012; Gebreyesus et al. 2017).
Some of the existing single-trait Bayesian whole genome regression
models have been extended to accommodate more than one trait at a
time (Calus and Veerkamp 2011; Jia and Jannink 2012; Hayashi and
Iwata 2013). An issue with those models is that when two traits are

Table 2 Accuracies of genomic prediction for test animals in generation 1 using different methods with varying region sizes, for

500 QTL scenario

Single-Trait Multi-Trait
Trait? Region SizeP BayesAS GBLUP wGBLUP® BayesAS GBLUP wGBLUP
L 1 SNP 250.486° 0.486° 0.484° 20.5272 0.5272 0.5272
100 SNPs 20.496<d 0.486¢ 0.494< 20.5512a 0.522b¢ 0.547%
1 Chr b0.475bP 0.484° 0.4852% 20.5272 0.5282 0.5282
WG 0.473b 0.474> 0.475° 20.5292 0.5282 0.5282
H 1 SNP x0.7012 0.696°¢ 0.7012bc ,0.7012 0.699bc 0.7012
100 SNPs ,0.7242 0.696°¢ 0.7232 .0.7274 0.699 0.7252
1 Chr b0.698 0.696°4 0.6973bcd p0.7023bcd 0.6992¢ 0.703%
WG 0.695¢ 0.695¢ 0.684¢ 0.700%P 0.699°¢ 0.700°
ZL and H: low (0.1) and high (0.4) heritability traits, respectively.

Chr: chromosome; WG: Whole genome.
ZWGBLUP: weighted GBLUP.

within column and row, respectively, for each trait.

-=.G3:Genes| Genomes | Genetics

Volume 8 November 2018 |

Different alphabets mean significantly different values at a type one error rate of 0.05 with Bonferroni correction. Subscripts and superscripts stand for comparisons
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considered simultaneously, the models are restricted to two situations ~ where the same trait in these countries was treated as different traits,
for a locus i.e., the locus has effect on both traits, or none of them.  and analyzed using a bivariate model. They reported that region size of
Cheng et al. (2018) developed a set of models that can accommodate all 100 SNPs resulted in similar estimates of variance components as
possible situations, that is, in terms of two traits, their models can  region sizes of 200 or 400, but more accurate estimates than region size
handle also with the situation where a locus has effect on one trait,  of 50, using a 50K SNP panel. Fitting a Bayesian multi-trait mixed
but not on the other. With their new multi-trait BayesCII model = model that uses latent variables to fit (co)variance structures,
(Cheng et al. 2018), they reported the same as or higher accuracies  Serensen et al. (2012) estimated genomic (co)variances for six mastitis
than the model considering two situations only (Jia and Jannink  resistance related traits in Danish cows, for some region sizes. Their
2012), using real and simulated data sets. results using half-overlapping region size of 100 SNPs on BTA19 in-

The Bayesian method used in this study, BayesAS, also assumes thata  dicated the existence of different (co)variance patterns for different
locus simultaneously affects all the traits, but allows the inclusion of priorsfor  traits. Brendum et al. (2012) modified the single-trait BayesR model
genomic regions of any size. This way, the method exploits the genomic  to allow incorporating prior information on genomic regions, and re-
regions that show correlations between traits, which deviate from the  ferred to it as BayesRS in an across-breed genomic prediction study for
genome-wide correlation (Li et al. 2017). Assuming a common (co)-  protein, fat, and milk yield. They reported that, among varying sizes of
variance for a group of adjacent SNPs is not as flexible as assuming a ~ genome regions they examined, the highest accuracies were obtained
(co)variance specific to each SNP, but it increases the power in estimation ~ with the region size of 100 SNPs. However, the SNP panel used in
of SNP (co)variances. Taking advantage of grouping adjacent SNPs, there-  (Brendum et al. 2012) was dense consisting of (before data editing)
fore, might be critical to achieving a high prediction accuracy, by better ~ 777K SNPs, and therefore, the region size of 100 SNPs corresponds to a
exploiting the local deviations from the average genome-wide (co)variance.  region size of roughly 5-10 SNPs in the 50K panel.

Special cases of BayesAS method occur when the region size is In a recent study, Gebreyesus et al. (2017) used the model for multi-
one SNP or whole genome, which has similar assumptions to BayesA  trait genomic prediction, and reported substantial improvements in
or GBLUP, respectively. Because our primary aim was to develop a  reliabilities using a region size of 100 SNPs compared to the reliabilities
methodology to improve accuracy of multi-trait genomic prediction  from a bivariate GBLUP model, for most of the milk protein compo-
using GBLUP via weighted G matrices, we only investigated a limited  sition traits in Danish Holstein cattle. The extent of LD is highly vari-
number of region sizes (one SNP, 100 SNPs, one chromosome or whole able in different populations, and it also varies with respect to SNP
genome). Our results demonstrated the potential of improving geno-  density (Goddard and Hayes 2009). The decision of optimal region size
mic prediction accuracy by assigning priors to genomic regions for both  is, therefore, crucial to obtain highest accuracy of genomic prediction
single and multi-trait analysis via BayesAS method. Highest accuracies  (Gebreyesus et al. 2017).
were reached with BayesAS when the region size was 100 SNPs, re-
gardless of the number of QTL, however, some of those for trait L in Weighted GBLUP using SNP (co)variances
500 QTL scenario were not significantly higher than all other region =~ From BayesAS
sizes considered here (Tables 1 and 2). Computation of relationship matrices by weighting SNPs was first

Li et al. (2017) estimated genetic parameters for milk, fat and pro-  proposed by Zhang et al. (2010), and higher accuracies were reported
tein yields of Chinese and Nordic Holstein cattle using BayesAS model, ~ for wGBLUP than for GBLUP, using single-trait analysis. Following
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their work, the use of weights to compute genomic relationships has
been studied extensively, and many different weights such as p-values
from GWAS studies, genetic variance at a locus etc. were used (Su et al.
2014; Calus et al. 2014; Tiezzi and Maltecca 2015).

In the applications of weighted GBLUP, SNP specific weights were
either used to weight SNPs individually, or averaged (or summed) over
adjacent SNPs to assign a common weight to a set of SNPs (Su et al. 2014;
Calus et al. 2014; Zhang et al. 2016). Su et al. (2014) reported that using
the mean variance of 30-SNP window as weights in GBLUP improved
the reliabilities up to one percent for four production traits and mastitis,
compared with single SNP weighting. Zhang et al. (2016) used an
iterative weighting procedure, where the SNP variances estimated in
the previous iteration were used to weight SNPs in the current iteration
when building a G matrix for single-step GBLUP (Christensen and
Lund 2010; Aguilar et al. 2010). Using a common weight for 20-SNP
window that sums or averages the individual SNP variances improved
the accuracy of prediction.

An alternative, and arguably a more straightforward approach is to
assume a variance common to all SNPs in a genomic region using a
Bayesian method, and then using those variances as weights to compute
the G matrix for genomic prediction with GBLUP. The Bayesian whole
genome regression method used here, BayesAS, allows assigning
prior distributions for genomic regions including any number of SNPs
(Li et al. 2017), and provides (co)variances for those regions which can
directly be used to weight SNPs when building the genomic relationship
matrices for multi-trait genomic prediction. The gain from a weighted
GBLUP analysis depends on whether the Bayesian method used to derive
weights is superior to GBLUP for traits under investigation. As discussed
previously, this is highly related to the the region size when using BayesAS.

Predictions from single or multi-trait wGBLUP were not found to be
superior to their GBLUP counterparts with some exceptions for high
heritability trait, when each SNP assumed to have its own (co)variance
using BayesAS (Tables 1 and 2). Taking full advantage of the Bayesian
whole genome regression methods is much more difficult for low

-=.G3:Genes| Genomes | Genetics

heritability traits, because the power to detect the right SNPs associated
with the QTL is weak for low heritability trait. When weights were
obtained from BayesAS with a region size of 100 SNPs, accuracies for
single and multi-trait wGBLUP models were significantly higher than
those for the corresponding GBLUP models, except for trait L when the
number of QTL was 500. In fact, it is expected that there will be no
advantage for Bayesian whole genome regression, and therefore, for
wGBLUP over GBLUP if the simulated QTL more closely fit an in-
finitesimal model, unless the data are large enough (Hayes et al. 2009;
Karaman et al. 2016; Cheng et al. 2018). In general, taking one chro-
mosome or whole genome as one region did not yield significantly
higher prediction accuracies for WGBLUP than those for GBLUP. This
is due to the fact that, as region size is larger than an optimum level, the
advantage of Bayesian methods starts to diminish because the assump-
tion on (co)variance approaches to that in GBLUP.

The accuracies for wGBLUP were higher up to 4.3 percentage points
for 200 QTL scenario than for 500 QTL scenario, when the region size
was 100 SNPs. On the other hand, the accuracies of predictions using
GBLUP showed little difference between the QTL scenarios. This is
mainly due to the fact that GBLUP rely on average relationships among
animals across the genome, and is less sensitive to the genetic architec-
ture of traits (Daetwyler et al. 2010b; Tiezzi and Maltecca 2015).

Bayesian whole genome regression methods do not include genomic
relationship matrices (i.e., G, Gy and Grp) explicitly, however, these
“weighted” genomic relationship matrices can be implicitly estimated
during the MCMC procedure (Fernando and Gianola 2018). In multi-
trait BayesA, all loci contribute to the genomic relationships, while in
multi-trait BayesB, only some proportions of the total loci contribute to
the genomic relationships in each cycle (Fernando and Gianola 2018).
Generally speaking, under some assumptions, any Bayesian alphabet
method can lead to its equivalent weighted GBLUP counterpart. There-
fore, one would obtain similar accuracies for BayesB and wGBLUP, if
the SNP (co)variances from BayesB were used to weight SNPs when
constructing genomic relationship matrices.
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Table 3 Accuracies of genomic prediction for test animals in generation 2 using different methods with varying region sizes for 500 QTL

scenario, when generations 0 and 1 were used as training population

Single-Trait Multi-Trait
Trait? Region SizeP BayesAS GBLUP wGBLUP® BayesAS GBLUP wGBLUP
Ld 1 SNP £0.579b 0.577b 0.578b £0.6262 0.6262 0.627°
100 SNPs ,0.601P 0.577¢ 0.599p ,0.6662 0.623b 0.6612
1 Chr £0.569P 0.577° 0.575k £0.6302 0.627° 0.6312
WG £0.568P 0.570p 0.567b p0.6272 0.627° 0.6272
H 1 SNP p0.7893k 0.7784 0.7902 p0.786P 0.780¢ 0.7873k
100 SNPs ,0.805P 0.778d 0.804b ,0.8092 0.780¢ 0.8082
1 Chr 0.779<d 0.778bd 0.778abcd 0.7823bcd 0.7802¢ 0.7832k
WG 0.7792ab 0.778b 0.766P 0.7812 0.7802 0.7812
ZL and H: low (0.1) and high (0.4) heritability traits, respectively.

Chr: chromosome; WG: Whole genome.

ZWGBLUP: weighted GBLUP.

Different alphabets mean significantly different values at a type one error rate of 0.05 with Bonferroni correction. Subscripts and superscripts stand for comparisons

within column and row, respectively, for each trait.

In almost all cases, GBLUP was able to reach the accuracy as high as
that of BayesAS models, by using posterior SNP (co)variances from the
Bayesian models as weights to build G matrices (WGBLUP), in both
single-and multi-trait analysis. This is in line with published results for
single-trait weighted GBLUP (Su et al. 2014; Calus et al. 2014). To our
knowledge, multi-trait weighted GBLUP has not been reported so far,
although some studies constructed G matrices in a similar manner for
across breed prediction (Zhou et al. 2014; Veroneze et al. 2016).

Implementation of multi-trait weighted GBLUP in
genomic prediction

Most recent applications of genomic prediction are based on a single-
trait genomic model. Many important traits in animal breeding, how-
ever, have genetic correlations of varying size with one or more traits,
and analysis of such genetically correlated traits jointly using a multi-trait
model may yield more accurate predictions of breeding values compared
to separate single-trait analysis. Further implementation of genomic
selection in breeding programs, therefore, will require extension of
current single-trait genomic evaluation models to their multi-trait
versions (Janss 2014). This is straightforward for GBLUP as it requires
simply replacing the numerator relationship matrix A in the
traditional multi-trait BLUP models by the genomic relationship
matrix G (Nejati-Javaremi et al. 1997; VanRaden 2008; Hayes et al.
2009). However, it is implicitly assumed in the commonly used G
matrices that each loci equally contribute to the genomic (co)variance
(Zhang et al. 2010; Janss 2014). In the situation of two correlated
traits, this assumption of genetic architecture is violated if some ge-
nomic regions explain a large proportion of the total genomic vari-
ance and/or covariance, while other regions explain only a small
amount (Serensen et al. 2012; Brondum et al. 2012; Li et al. 2017;
Gebreyesus et al. 2017).

Bayesian whole genome regression methods can be used to relax
the assumption of equal contribution of each loci to the genomic
(co)variance, however, they have computational disadvantages which
make them difficult to be used in routine genomic evaluations. Weighted
GBLUP can make it possible to avoid computational costs of Bayesian
methods, while maintaining a higher prediction accuracy compared to
traditional GBLUP. Such a procedure still requires to perform Bayesian
analysis to obtain weights, butless frequently compared to the number of
evaluations. Su et al. (2014) reported that weights obtained from a data
set having a lag up to three years did not reduce the reliability of
genomic prediction in the evaluation of a dairy cattle population.

3556 | E. Karaman et al.

In practical genomic evaluations, variance components are generally
estimated using a linear mixed model at individual level via REML
or Bayesian methods (Hayes et al. 2009), without accounting for het-
erogeneous SNP (co)variance structure across the genome. Hence,
BayesAS and wGBLUP models in which all SNPs are assumed to have
a common (co)variance, is consistent with GBLUP. The decrease in
accuracy over the five generations was larger for GBLUP than for
wGBLUP with a region size of 100 SNPs ("WG” vs. 7100 SNPs” in
Figures 1 and 2). For the region sizes considered, accuracies decreased
with generations for all methods (Tables S1 and S2), in agreement with
other studies (Habier et al. 2007; Wolc et al. 2011). It is worth noting
that the decrease of accuracy with generations is not contradictory with
the results in Su ef al. (2014), which used same weights for three years.
First, time interval of three years in a dairy cattle breeding scheme
corresponds approximately to less than one generation in our simula-
tions. Second, although the same weights were used in Su et al. (2014)
for three years, the genomic predictions were performed using an
updated phenotypic data, while not only the same weights, but also
the same phenotypes from GO were used throughout the generations in
our study.

SNPs fitted in genomic prediction models not only capture the
information on LD between SNPs and QTL, but also capture within-
family information (Habier et al. 2007, 2010; Wientjes et al. 2013). Any
change on these factors, therefore, affects the accuracy of genomic
prediction. Bayesian whole genome regression methods rely more on
population LD, while GBLUP relies more on within-family LD. As test
population gets farther from reference population, the genetic relation-
ships between reference and test populations become weak, and there-
fore, the persistence of population LD across generations becomes
more important to maintain the accuracy of prediction (Habier et al.
2007, 2010; Tiezzi and Maltecca 2015). Due to intensive genomic
selection in many countries, such as the Nordic countries, the distance
between selection candidates and genomic reference population has
increased. It is, therefore, very likely that most genotyped candidates
will have no sire with daughter information in the reference population,
at the time of they are being selected (Gao et al. 2013). Thus, it is
important for practical applications if wWGBLUP performs better than
traditional GBLUP when the selection candidates are a few generations
apart from the reference population.

The gain of accuracy from a multi-trait over single-trait genomic
prediction is more profound for low heritability traits that are genetically
correlated with a high heritability trait, and for traits which can not be
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measured for all individuals (Jia and Jannink 2012; Guo et al. 2014).
When the total number of QTL was increased from 200 to 500, the
advantage wGBLUP, over traditional GBLUP decreased for trait L. The
improvement in accuracy of a low heritability trait could be similar to
500 QTL scenario, which resembles the situation of complex traits, if
the methodology presented here is used in practical applications.

Due to the reduction in genotyping costs, and the interest in exchange
of data among countries, reference populations now include several
thousands of genotyped bulls and cows even for small breeds (Su et al.
2016). The reference population used here consists of a relatively small
number of individuals of 2,200, which may have an impact on com-
parison of the models, particularly when the simulated QTL more
closely fit an infinitesimal model. In order to investigate the potential
usefulness of our approach, we run additional analysis combining GO
and G1 to form a reference, and G2 as test population, respectively
(Table 3). Although adding more ancestral generations to the reference
population is not the same as a reference population consisting of a
recent generation with more animals, it can be an alternative strategy
(Weng et al. 2016) to investigate the impact of reference population
size on comparison between models. The results of BayesAS models
(Table 3) demonstrate that prediction accuracies from region size of
100 SNPs was superior to those from other region sizes in both single
and multi-trait analysis. More importantly, the improvement of
wGBLUP over traditional GBLUP at the region size of 100 SNPs was
larger than that in a smaller reference population size (Table 2), when
trait L was controlled by relatively a large number of QTL. This suggest
that weighting SNPs by posterior (co)variance estimates from Bayesian
models can be a useful strategy for improving the accuracy of GBLUP,
provided that the data used to derive weights is sufficiently large.

CONCLUSIONS

In this study, we aimed to develop a strategy to improve the accuracy of
GBLUP in multi-trait genomic prediction. Our two step strategy involves
the estimation of SNP (co)variances via a Bayesian method, and sub-
sequent use of those (co)variances as weights in multi-trait weighted
GBLUP analysis. We used BayesAS method to obtain those weights,
however, other Bayesian whole genome regression methods could also be
used. In general, assuming a common (co)variance for 100 adjacent SNPs
led to highest prediction accuracies using BayesAS. When 100 adjacent
SNPs were assigned a common weight obtained from posterior (co)-
variances of BayesAS, WGBLUP outperformed the traditional GBLUP.
Our results demonstrate that multi-trait GBLUP can yield accuracies of
genomic prediction as high as Bayesian multi-trait genomic prediction
method, when SNPs are weighted by posterior SNP (co)variances from
the Bayesian method. The gain from a multi-trait weighted GBLUP
analysis depends on factors, such as the model used to obtain weights
(i.e., SNP (co)variances), genetic architecture of the traits (e.g., number
of QTL, traits’ heritabilities), and reference population size.
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