Skip to main content
. 2018 Oct 19;23(10):2695. doi: 10.3390/molecules23102695

Table A2.

Free energy differences of all substeps of the hydration free energy calculations with the CHARMM Drude force field in kcal/mol.

Molecule ΔGgas a ΔGchar b Ovl c ΔGvdw d Ovl c ΔGhyd e
water 0.000 ± 0.000 7.92 ± 0.02 52 2.15 ± 0.02 78 5.77 ± 0.02
methanol 11.646 ± 0.003 5.33 ± 0.01 57 1.42 ± 0.03 51 4.90 ± 0.03
ethanol 0.931 ± 0.003 6.08 ± 0.01 51 2.36 ± 0.05 35 4.65 ± 0.05
methanethiol 2.528 ± 0.000 0.28 ± 0.01 83 1.21 ± 0.03 32 1.04 ± 0.03
acetamide 104.139 ± 0.004 119.42 ± 0.01 29 4.63 ± 0.05 35 10.64 ± 0.06
tetrahydrofuran 0.648 ± 0.002 4.61 ± 0.02 63 0.84 ± 0.03 20 3.12 ± 0.04
benzene 22.578 ± 0.003 0.98 ± 0.01 76 22.20 ± 0.05 8 1.36 ± 0.05
phenol 16.280 ± 0.010 11.82 ± 0.02 44 21.03 ± 0.02 7 7.07 ± 0.03
aniline 7.691 ± 0.014 19.98 ± 0.02 43 21.54 ± 0.05 7 6.13 ± 0.06
ethane 3.769 ± 0.001 3.64 ± 0.00 95 2.29 ± 0.02 43 2.16 ± 0.02
n-hexane 3.597 ± 0.005 2.39 ± 0.01 79 3.75 ± 0.08 7 2.54 ± 0.08
cyclohexane 0.026 ± 0.002 0.09 ± 0.00 84 2.09 ± 0.04 7 2.15 ± 0.04

a Free energy difference associated with turning off all non-bonded interactions in the gas phase. b Free energy difference of uncharging the solute in aqueous solution. c Smallest BAR overlap integral of all λ-steps in % (cf. [133,161,197,198]). d Free energy difference of removing all Lennard–Jones interactions of the uncharged solute in aqueous solution. e Total hydration free energy (cf. Table 1).