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Abstract

Modeling stereo transparency with physiologically plausible mechanisms is challenging because 

in such frameworks, large receptive fields mix up overlapping disparities whereas small receptive 

fields can reliably compute only small disparities. It seems necessary to combine information 

across scales. A coarse-to-fine disparity energy model, with both position- and phase-shift 

receptive fields, has already been proposed. However, because each scale decodes only one 

disparity for each location and uses the decoded disparity to select cells at the next scale, this 

model cannot represent overlapping surfaces at different depths. We have now extended the model 

to solve stereo transparency. First, we introduce multiplicative connections from cells at one scale 

to the next to implement coarse-to-fine computation. The connection is the strongest when the pre-

synaptic cell’s preferred disparity matches the post-synaptic cell’s position-shift parameter, 

encouraging the next scale to encode residual disparities with the more reliable phase-shift 

mechanism. This modification not only eliminates the artificial decoding and selection steps of the 

original model but also enables maintenance of complete population responses throughout the 

coarse-to-fine process. Second, because of the above modification, explicit decoding is no longer 

necessary but rather is for visualization only. We use a simple threshold criterion to decode 

multiple disparities from population energy responses, instead of a single disparity in the original 

model. We demonstrate our model via simulations on a variety of transparent and non-transparent 

stereograms. The model also reproduces psychophysically observed disparity interactions 

(averaging, thickening, attraction, and repulsion) as the depth separation between two overlapping 

planes varies.
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1 Introduction

We can see overlapping surfaces at different depths in transparent random-dot stereograms 

(Julesz, 1971; Prazdny, 1985). Computationally, however, this so-called stereo transparency 

problem is difficult to solve with physiologically plausible methods such as the disparity 

energy model (Ohzawa et al., 1990; Qian, 1994, 1997). On one hand, cells with large 

receptive fields (RFs) cover dots carrying different disparities, mixing them in the cells’ 
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responses. On the other hand, cells with small RFs can reliably compute only small 

disparities; this is true even for position-shift RFs (Chen and Qian 2004, also see 

Discussions). Consequently, a model has to use RFs that are much smaller than distances 

between adjacent dots in a stereogream but much larger than the disparities involved. This 

requires that the disparities be much smaller than the distances between adjacent dots. The 

transparent random-dot stereogram in Fig. 1, for example, violates this requirement, yet we 

can still perceive two transparent surfaces.

Extant models of stereo transparency often include non-biological procedures to get around 

the above problem. For example, a large class of models follows Marr and Poggio (1976) by 

starting with a compatibility map that contains all possible matches between features in the 

two eyes, and then introducing constraints to eliminate false matches (Prazdny, 1985; 

Pollard et al., 1985; Qian and Sejnowski, 1989; Zhaoping, 2002). Such models are non-

physiological because they do not use any reasonable RFs, and each unit of a compatibility 

map responds to only one potential match (Qian, 1997). If the compatibility map is replaced 

by disparity energy responses produced by realistic RFs, then the Marr-Poggio style 

constraints cannot be applied because the energy responses are broadly distributed with 

multiple peaks (Qian, 1994; Chen and Qian, 2004; Assee and Qian, 2007).

In this study, we solve stereo transparency in the framework of the disparity energy model 

(Ohzawa et al., 1990; Qian, 1994). Since, as mentioned above, a single RF scale appears to 

be inadequate, it seems natural to combine information across scales. Intuitively, although a 

large scale may average overlapping stimulus disparities, the average could still be a good 

starting point for smaller scales to resolve multiple disparities. Conversely, a small scale 

alone cannot reliably compute large disparities but can use larger scales’ guidance to offset 

stimulus disparities with the position-shift component of RFs and compute the residual 

disparity of each surface with the more reliable phase-shift component (Chen and Qian, 

2004). A coarse-to-fine version of the disparity energy model, with both position- and phase-

shift RFs, has already been proposed (Chen and Qian, 2004) and successfully applied to 

non-transparent stereograms. However, each scale of this model decodes only a single 

disparity for each location and uses the decoded disparity to select cells in the next scale. 

Consequently, it cannot represent multiple, transparent surfaces at a location. We have now 

extended this model to solve stereo transparency and at the same time to make it more 

biologically plausible by eliminating explicit decoding and selection during computation. 

Preliminary results were presented in abstract form (Li and Qian, 2014).

2 Method

2.1 Coarse-to-fine disparity energy model

We first briefly describe Chen and Qian’s coarse-to-fine disparity energy model and then 

explain our extensions. The model employs hybrid binocular cells with both position and 

phase shifts between the two eyes’ RFs (Zhu and Qian, 1996; Ohzawa et al., 1997; Anzai et 

al., 1997, 1999; Livingstone and Tsao, 1999; Prince et al., 2002). For convenience, we first 

define Gabor function with orientation θ (measured from horizontal) as:
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G(x, y; σ, θ, ϕ) = 1
2πσ⊥σ∥

exp − x′2

2σ⊥
2 − y′2

2σ∥
2 cos ωx′ − ϕ (1)

where (x′, y′) is (x, y) rotated by angle θ, σ⊥ ≡ σ characterizes the spatial scale, σ∥ = kσ⊥ 

determines RF aspect ratio k (set to 2 in our simulations), and ω = π
σ  is the preferred spatial 

frequency. We keep 
σ∥
σ⊥

 and ωσ constant across scales to ensure scale-invariant RF shapes.

The left and right RFs of a simple cell is then given by:

FL1 x, y; σ, θ, d, Δϕ = G(x − d
2 , y; σ, θ, Δϕ

2 ) (2)

FR1 x, y; σ, θ, d, Δϕ = G(x + d
2 , y; σ, θ, − Δϕ

2 ) (3)

where d and Δϕ are the position- and phase-shift parameters, respectively. Another simple 

cell forming a quadrature pair with this cell has RFs given by:

FL2 x, y; σ, θ, d, Δϕ = G(x − d
2 , y; σ, θ, Δϕ

2 − π
2 ) (4)

FR2 x, y; σ, θ, d, Δϕ = G(x + d
2 , y; σ, θ, − Δϕ

2 − π
2 ) (5)

The responses of these simple cells at position (x, y) to the left and right images, IL (x, y) 

and IR (x, y), are:

r1(x, y; σ, θ, d, Δϕ) = ∫ dx′dy′IL(x + x′, y + y′)FL1(x′, y′)

+ ∫ dx′dy′IR(x + x′, y + y′)FR1(x′, y′)

(6)

r2(x, y; σ, θ, d, Δϕ) = ∫ dx′dy′IL(x + x′, y + y′)FL2(x′, y′)

+ ∫ dx′dy′IR(x + x′, y + y′)FR2(x′, y′)

(7)
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The energy response of the complex cell receiving inputs from this quadrature pair of simple 

cells is then:

rc(x, y; σ, θ, d, Δϕ) = r1
2(x, y; σ, θ, d, Δϕ) + r2

2(x, y; σ, θ, d, Δϕ) (8)

For a stimulus with disparity D evenly divided between the two eyes, the response is 

approximately (when D − d ≪
σ⊥

sin θ , see Appendix)

rc ≈ 4A2 cos2 ω
2 D − (d + Δϕ

ω sin θ ) (9)

where A is the Fourier amplitude of local image patch. Thus, the cell’s preferred disparity is 

approximately:

D* ≈ d + Δϕ
ω sin θ (10)

To improve performance, Chen and Qian pooled energy responses across orientation and 

space according to:

r(d, Δϕ; x, y, σ) = ∑
i = 1

5
rc(x, y; σ, θi, d, Δϕi) + Fsp(x, y; σ) (11)

where the 5 orientations are:

θi = iπ
6 (i = 1, 2, …, 5), (12)

Δϕi = Δϕ sin θi ensures that the pooled cells of different orientations have the same preferred 

disparity, and the spatial pooling kernel for scale σ is

Fsp(x, y; σ) = 1
2πσ2 exp − x2 + y2

2σ2 (13)

At each scale and image location, we will index the pooled responses by d and Δϕ without 

mentioning Δϕi and θi of differently oriented cells. Note that the orientation pooling occurs 

after the disparity energy responses are calculated in each orientation-specific channel. 

Therefore, the pooling scheme does not violate Mansfield and Parker (1993)’s finding of an 

orientation-specific component in noise masking of stereo detection. Specifically, when the 

masking noise and the disparity signal are in the same orientation channel, the noise will 
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greatly reduce the (quadratic) disparity energy responses, and consequently the pooled 

responses, and impair signal detection. However, when the noise and signal are in different 

orientation channels, the signal will produce large energy responses in one orientation 

channel whereas the noise will produce small responses in a different orientation channel. 

Since the pooling is weighted by the responses, the impact of the noise will be smaller in 

this case.

Chen and Qian (2004) computed disparity at each location iteratively from large to small RF 

scales. Each scale selects cells whose position shift d’s are all equal to the disparity 

estimated in the previous scale, and whose phase shift Δϕ ‘s span the whole range of [−π,π]. 

Consequently, the position-shift RF component offsets stimulus disparity based on the 

current estimate, whereas the phase-shift RF component estimates any residual stimulus 

disparity. Therefore, at the end of the iteration, the most responsive cells have position shifts 

close to stimulus disparity and phase shifts close to 0. This strategy is adopted because the 

phase-shift RF component estimates stimulus disparity more reliably than the position-shift 

component when the disparity is made small by offsetting (Chen and Qian, 2004). Unlike 

the first coarse-to-fine stereo model of Marr and Poggio (1979) that offsets stimulus 

disparity globally with vergence, this model offsets stimulus disparity locally with the 

position-shift component of RFs (see Chen and Qian (2004) for further details). The process 

is consistent with Menz and Freeman (2003)’s finding that when cells’ RF scales reduce, 

their preferred disparities do not change. Since the disparity range of the phase-shift 

component reduces with the scale, the cells must use a position-shift component to offset 

stimulus disparities and maintain the preferred disparities.

As mentioned above, despite its successful application to various stereograms, Chen and 

Qian (2004)’s model cannot solve stereo transparency because each scale estimates only a 

single disparity at each location by finding the response peak of a population of disparity 

energy units, and uses this disparity to select cells of the next scale. Fig. 1 shows the 

simulation result of applying this model to a transparent random dot stereogram with two 

overlapping planes. The model can only recover one of the two disparities at each location, 

rather than two overlapping planes that we perceive. It is also unclear how the selection 

procedure in the model could be implemented physiologically.

2.2 Connectivity pattern

We therefore extended Chen and Qian’s model to resolve the above problems. The first 

extension is to replace the artificial selection procedure by multiplicative connections from 

large to small scales. Let the position- and phase-shift parameters of pre- and post-synaptic 

cells be dpre, Δϕpre, dpost and Δϕpost respectively. The connection strength is set to:

W(dpost, dpre, Δϕpre) = exp −
dpost − dpre +

Δϕpre
ωpre

2

σd
2 (14)
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where ωpre is the preferred spatial frequency of pre-synaptic cell. Thus, the connection is the 

strongest when the pre-synaptic cell’s overall preferred disparity (as determined by its both 

position and phase shifts) equals the post-synaptic cell’s position shift. This is illustrated 

schematically in Fig. 2. σd controls the spread of connections around the strongest 

connections. We used σd = 0.1 pixel in our simulations but other values work well too (see 

below). Note that the connections are local as Eqn. 14 applies to cells tuned to each location 

(x, y). For simplicity, the above description uses the pooled responses indexed by d and Δϕ. 

However, an equivalent description can be made with responses before pooling, which 

effectively combines the pooling and multiplication steps into one.

The final response of a cell is a multiplication of its energy response to the stimulus and the 

total gain it receives from the previous scale. Similar to the iteration in Chen and Qian 

(2004), the response is locally determined. For each position (x, y), denote the energy 

response after spatial and orientation pooling as r(σ, d, Δϕ; x, y) as in Eqn. 11, and the 

activity of each cell after the gain multiplication as r(σ, d, Δϕ; x, y). r, then:

r(σ, dpost, Δϕpost; x, y) ≡ r(σ, dpost, Δϕpost; x, y)

⋅ ∑
dpre, Δϕpre

W(dpost, dpre, Δϕpre)r(βσ, dpre, Δϕpre; x, y)

(15)

where β is a constant specifying the ratio of two adjacent scales. As in Chen and Qian, we 

let β = 2, and used 5 scales with σ equal to 8, 5.7,4, 2.8 and 2 pixels, respectively. For the 

largest scale r(σ, d, Δϕ; x, y) ≡ rc(σ, d, Δϕ; x, y).

This pattern of connectivity encourages the next scale to use the position-shift RF 

component to offset the disparities estimated in the previous scale, and to use the phase-shift 

RF component to estimate residual disparities (i.e., the differences between the actual 

disparities and their current estimates). It thus provides a physiologically plausible 

implementation of the coarse-to-fine computation in Chen and Qian (2004). Fig. 3 shows an 

example of population responses without (top row) and with (bottom row) multiplicative 

gains for a fixed position in the transparent random-dot stereogram of Fig. 1. The two left-

most panels (for the largest scale) are identical. However, at the finest scale, the responses 

with and without the coarse-to-fine connections are different. Specifically, the connections 

help reduce false peaks and enhance the correct peaks in the population responses. 

Moreover, the responses peaks are more focused around Δϕ = 0 as intended in Chen and 

Qian (2004)’s coarse-to-fine model.

2.3 Decoding multiple disparities from population responses

Our second extension is to replace the single-disparity decoding in Chen and Qian by multi-

disparity decoding. For each scale and location, the decoding finds all reliable peaks in the 

population responses of cells with various position- and phase-shift parameters. Denote the 

population response at scale σ and position (x, y) as r(d, Δϕ; σ, x, y). Since the coarse-to-fine 

computation aims to use RF position shifts to offset stimulus disparities computed by the RF 
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phase shifts so that at the end the most responsive cells have Δϕ near 0 Chen and Qian 

(2004), the decoding method should find all Ds that satisfy:

∂r(d, Δϕ; σ, x, y)
∂d d = D, Δϕ = 0

= 0 (16)

∂r(d, Δϕ; σ, x, y)
∂Δd d = D, Δϕ = 0

= 0 (17)

To eliminate noisy small peaks, we require:

r(D, 0) > α max
d

r(d, 0) (18)

where 0 < α < 1 is a relative threshold for the peaks as fraction of the highest peak. We let α 
= 0.3 but its exact value is not important (see below). In our implementation, we used 

parabolic interpolation to determine D. More details are described in Appendix.

We also tried another decoding method by first integrating responses of the cells with the 

same preferred disparity D* (cf., Eqn. 10):

rsum(D*) = ∫
−π

π
dΔϕ r(D* − Δϕ

ω , Δϕ) (19)

and then finding local maxima of rsum as the decoded disparity D. We applied 2D 

interpolation in the d-Δϕ space to perform the integration. A relative threshold α as in Eqn. 

18 is also used to remove small noisy peaks.

Although this method integrates responses to reduce noise, it performs slightly worse than 

the first method. This is likely because the first method takes advantage of the fact that the 

energy units encode disparity most accurately when the RF position shifts correctly offset 

the stimulus disparities and thus the phase shifts of the most responsive cell are around Δϕ = 

0 (Chen and Qian, 2004).

3 Results

We applied our extended model to a variety of stereograms using exactly the same set of 

parameters. Since the ground truth of the natural-image stereogram in Fig. 9 represent near 

and far disparities as positive and negative, respectively, we use the same convention for all 

stereograms for consistency.
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3.1 A transparent stereogram with two overlapping fronto-parallel planes

We first applied the model to the same transparent random-dot stereogram as in Fig. 1 

(copied to top panel of Fig. 4). The true disparity map and the decoded disparity maps at 

each scale are shown in the bottom of Fig. 4.

98.3% of all image positions has two decoded disparities, whereas 1.5% positions has one 

decoded disparity and 0.2% position has more than two decoded disparities. Thus, the model 

correctly represented the two transparent planes in most positions. The decoded disparity 

values are also close to the true values: the root mean square (RMS) error is 0.2 pixel, 

compared with the 5-pixel separation between the two planes.

The small fluctuations of the decoded disparity values are likely attributable to the fact that 

our model is completely local, with separate estimation of disparities at each location. 

Interactions among different positions in higher-level surface representations would likely 

smooth out the fluctuations.

3.2 A non-transparent stereogram with a floating square

To ensure that our model works on non-transparent stereograms, we applied it to a standard 

random dot stereogram with a floating square. The result is shown in Fig. 5. At the finest 

scale, our model correctly decoded the floating square.

3.3 A transparent stereogram with a floating square

Next, we tested a transparent version of the standard stereogram in the previous example, 

namely that we added an overlapping background for the central floating square. This is an 

interesting test because unlike the uniform transparent stereogram in Fig. 4, this stereogram 

has depth boundaries in addition to transparency. Additionally, the dot density in the central 

square region is twice as that in the surround region. Nevertheless, the model with the fixed 

set of parameters work well. The results are shown in Fig. 6.

3.4 A non-transparent stereogram with a slanted plane

A problem with Marr and Poggio’s model and related models is that they have difficulty 

with slanted planes because they consider a small number of fronto-parallel planes and 

include strong interactions within each plane. In contrast, Chen and Qian (2004)’s coarse-to-

fine disparity energy model can compute disparity maps from nontransparent stereograms 

with slated planes. We therefore also tested our extension on a non-transparent stereogram 

with a slated plane and the result is shown in Fig. 7.

3.5 A transparent stereogram with overlapping slanted planes

We then tested a transparent version of the previous stereogram, namely a transparent 

stereogram with two overlapping slanted planes. The result is shown in Fig. 8.

3.6 A natural-image stereogram

Finally, since Chen and Qian (2004)’s model has been applied to natural-image stereograms, 

we also tested our extension on a natural-image stereogram in which disparity and contrast 

co-vary, and the result is shown in Fig. 9.
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3.7 Disparity attraction and repulsion in transparent stereograms

Disparities of a few isolated features appear to attract or repel each other depending on the 

features’ lateral separations (Westheimer, 1986; Westheimer and Levi, 1987). Mikaelian and 

Qian (2000) applied the disparity energy model to explain this observation. A similar 

phenomenon occurs for transparent stereograms: disparities of two overlapping planes 

appear to attract or repel each other depending on the depth separation between the planes 

(Parker and Yang, 1989; Stevenson et al., 1989). Specifically, when the depth separation is 

small, the two planes appear to merge as a single plane with the average disparity. With 

increasing separation, the stimulus looks like a thickened slab, a perception termed 

“pyknostereopsis.” Further depth separation produces two transparent planes with an 

exaggerated depth separation between them. Finally, at even greater depth separations, the 

perceived separation between the two planes become veridical.

Our model reproduces these observations as shown in Fig. 10. We applied our model to a 

transparent random-dot stereogram with various disparity separations between two 

overlapping planes. The disparities of the two planes always have the same magnitude but 

opposite signs. In the top panel of Fig. 10, each column is a gray-scale histogram (compiled 

from all positions of the stereogram) of the decoded disparity values for each actual disparity 

separation between the planes. Brighter colors represent more frequently decoded values. 

The two actual disparities are indicated by the two dashed black lines. Similar to our 

perception, the model requires a minimum disparity separation (threshold) between the 

planes to decode two disparities. This threshold depends on the model’s finest RF scale. 

Also similar to our perception, the model produces a thickened slab during the transition 

from decoding one plane to two planes.

Averaging two disparities into one may be viewed as an extreme case of attraction between 

the two disparities. To examine disparity interactions generally, we plot in the bottom panel 

of Fig. 10 the decoded disparity separation against the actual disparity separation between 

the two planes (open dots). This was done by searching for the peaks in the histogram of the 

top panel around the actual disparity values and then subtract the two peak disparities. The 

dashed line in the bottom panel marks the equality between the computed and estimated 

disparity separations. The model predicts smaller than actual separations, larger than actual 

separations, and veridical separations as the actual separation increases, in agreement with 

the observation of Stevenson et al. (1991).

A related observation is that at small disparity separations, the averaged disparity of two 

overlapping planes is weighted by the contrasts of the dots for the planes Rogers and Anstis 

(1975). We applied our model to a transparent random-dot stereogram with two planes 

having ±0.5 pixel of disparities but various contrast ratios between the dots of the two 

planes. The decoded disparity closely match the average disparity weighted by the contrasts 

(Fig. 11), in excellent agreement with the observation Rogers and Anstis (1975).

In addition to contrasts, we also varied the dot density ratio between the two planes. The 

decoded disparity is very close to the average disparity weighted by the dot densities (Fig. 

11, right panel). This is a prediction that could be tested psychophysically.
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3.8 Dependence on two key parameters

Our extension introduced two new parameters, and we examined how the model 

performance depends on them. They are the spread of the connectivity pattern characterized 

by σd in Eqn. 14 and the relative threshold α for eliminating noisy small peaks in decoding 

in Eqn. 18.

For the transparent stereogram with two fronto-parallel planes in Fig. 4, the right panel of 

Fig. 12 shows the proportion of positions with two decoded disparities as a function of α 
and σd. The curve in the density plot indicates the optimal combination of the two 

parameters. When σd > 2 pixel, optimal α increases quickly as σd increases. This suggests 

that as the connections for coarse-to-fine computation are more spread out from the intended 

ones, the ratio of noisy small peaks to real peaks in population responses become larger. For 

small σd, a broad range of α produces similarly good performances. The standard σd and α 
used in our simulations are 0.1 pixel and 0.3 (indicated by a star in the figure.)

The right panel of Fig. 12 shows the decoding RMS error as a function of σd (with the 

optimal α for each σd). The model performance does not vary much as long as σd is smaller 

than σ⊥ of the finest scale (2 pixels in our simulations). These results explain why a single 

parameter set works well for all stereograms in this paper.

4 Discussion

We extended Chen and Qian’s coarse-to-fine disparity energy model to solve the difficult 

problem of stereo transparency with biologically plausible mechanisms. In the original 

model, a given scale decodes a single disparity for each location and uses this disparity to 

select a set of cells for the next scale. We replaced this artificial selection procedure with 

multiplicative connections from one scale to the next. The connectivity pattern provides a 

biologically plausible mechanism to achieve the original model’s goal of using cells’ 

position-shift RF component to offset stimulus disparities and the more reliable phase-shift 

RF component to estimate residual disparities. More importantly, whereas each scale of the 

original model commits to a single decoded disparity at each location, the new model 

maintains the entire population responses during the coarse-to-fine computation. 

Consequently, unlike the original model, explicit disparity decoding at each scale is 

unnecessary for the new model. We can still decode the population responses at each scale 

for the sole purpose of visualization as we did in this paper. This leads to our second 

extension: we used a simple threshold criterion capable of decoding multiple disparities, 

instead of single-disparity decoding in the original model. We demonstrated through 

computer simulations, with a single parameter set, that these extensions allow our model to 

solve various transparent and non-transparent stereograms in a biologically plausible way. 

Finally, our model explains disparity interactions (averaging, thickening, attraction, and 

repulsion) as the separation between two overlapping planes varies.

Both Chen and Qian (2004)’s model and our current extension use the position-shift RF 

component to offset estimated stimulus disparities and the phase-shift component to estimate 

the residual disparities. Consequently, at the end of computation, the most responsive cells 

have position shifts near stimulus disparities and phase shifts near 0. As we noted above, this 
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strategy is based on the finding that the phase-shift population response is more reliable than 

the position-shift population response for disparity computation (Chen and Qian, 2004; 

Tsang and Shi, 2004). The analysis in Appendix shows that this remains true when stimulus 

disparity is divided evenly between the two eyes. Position shifts are needed to properly place 

the limited disparity range of phase shifts. Also note that Read and Cumming (2007) follow 

Chen and Qian (2004) in searching for the cells whose position shift offsets stimulus 

disparity and whose phase shift is near 0, albeit with a different algorithm.

It is easy to understand why position-shift RFs are generally less reliable than the phase-shift 

RFs. Consider disparity encoding at a given location by a set of energy units with a range of 

preferred disparities. If the units have phase-shift RFs, then the RFs of all the units cover the 

same left and right image patches. Consequently, variations in the units’ responses are 

attributable to their different tuning properties. In contrast, if the units have position-shift 

RFs, then different units cover different left and right image patches, which introduce 

additional variability in the population responses.

We mentioned in Introduction that cells with small RFs can reliably compute only small 

disparities. This is easy to understand for phase-shift RFs because phase shift is periodic, 

and disparity representation is unambiguous only for phase shifts within the [−π,π) range 

(Qian, 1994). One might argue that because position shift is not periodic, position-shift RFs 

could represent arbitrarily large disparities. However, this is not the case for the reason 

discussed in the above paragraph. Specifically, by definition, cells with different position 

shifts are located at different positions. When their RFs are small, they more likely cover 

completely different image regions. Thus, spatial variations of image properties (contrast, 

frequency content, local features such as orientation, etc.) may overwhelm the disparity 

related signals in population responses.

How does our extended coarse-to-fine disparity energy model solve the stereo transparency 

problem? We define residual disparity as the difference between an actual stimulus disparity 

and its current estimate. At the largest scale, cells’ RFs cover many dots carrying different 

disparities and thus the most responsive cells are likely those tuned to the average of the 

stimulus disparities (see Fig. 3 and 4). Because of the connectivity pattern, these cells will 

excite the cells in the next scale whose position-shift components are close to the average 

disparity. With the offsetting of the average disparity by the position shifts, the cells of the 

next scale with smaller RFs can better represent the residual disparities with their phase 

shifts. This process is then repeated to gradually offset more of the stimulus disparities and 

reduce the residual disparities. At the smallest scale, the most active cells are the ones whose 

position shifts are close to one of the actual stimulus disparities and whose phase-shift 

components are near 0 (because the residual disparities are close to 0).

Our model makes specific predictions. There are physiological and psychophysical evidence 

for coarse-to-fine disparity processing in biological vision (Menz and Freeman, 2003; 

Smallman and MacLeod, 1994; Wilson et al., 1991; Rohaly and Wilson, 1993). Our model 

suggests a specific implementation of this computation, namely that the connections from 

cells with larger RFs to those with smaller RFs is the strongest when a pre-synaptic cell’s 

overall preferred disparity (as determined by its both position and phase shifts) matches the 
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post-synaptic cell’s position shift. A second prediction is that the smallest disparity 

separation between two transparent surfaces that can be resolved perceptually is determined 

by the RF sizes of the finest scale in the coarse-to-fine process. This could be tested by 

examining whether the smallest resolvable disparity separation increases with retinal 

eccentricity. Our model also predicts that disparity averaging should be weighted by dot 

densities (Fig. 11).

In conclusion, we have extended Chen and Qian (2004)’s coarse-to-fine disparity energy 

model to solve the difficult problem of stereo transparency with biologically plausible 

mechanisms. The model uses both position-shift and phase-shift RF components and works 

well on a variety of transparent and non-transparent stereograms. Although large-scale cells 

tend to average stimulus disparities and small-scale cells cannot compute large stimulus 

disparities, combining information through the coase-to-fine process solves the transparency 

problem. Our model also makes specific predictions on connectivity between disparity tuned 

cells of different scales and on our perception of stereo transparency.
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Appendix

Quadrature pair responses and preferred disparities

The derivations here are similar to our previous derivations (Chen and Qian, 2004) but with 

stimulus disparities evenly divided between the two eyes’ oriented RFs with both position 

and phase shifts.

The RFs of simple cells in a quadrature pair are defined in Eqn. 2, 3, 4, and 5 of the text. For 

a stimulus I (x, y) with disparity D, the images for the two eyes are

IL(x, y) = I(x − D
2 , y) (20)

IR(x, y) = I(x + D
2 , y) (21)

Without loss of generality, for position (0, 0) Eqn. 6 and 7 become
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r1(0, 0) = ∫ dxdyI(x − D
2 , y) 1

2πσ⊥σ∥
e

−
x1
2

2σ⊥
2 −

y1
2

2σ∥
2

cos ωx1 − Δϕ
2

+ ∫ dxdyI(x + D
2 , y) 1

2πσ⊥σ∥
e

−
x2
2

2σ⊥
2 −

y2
2

2σ∥
2

cos ωx2 + Δϕ
2

(22)

r2(0, 0) = ∫ dxdyI(x − D
2 , y) 1

2πσ⊥σ∥
e

−
x1
2

2σ⊥
2 −

y1
2

2σ∥
2

sin ωx1 − Δϕ
2

+ ∫ dxdyI(x + D
2 , y) 1

2πσ⊥σ∥
e

−
x2
2

2σ⊥
2 −

y2
2

2σ∥
2

sin ωx2 + Δϕ
2

(23)

in which x1, y1, x2, y2 are rotated coordinates defined as

x1
y1

= sin θ cos θ
−cos θ sin θ

x − d
2

y
(24)

x2
y2

= sin θ cos θ
−cos θ sin θ

x + d
2

y
(25)

Therefore, the quadrature-pair response is
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rc = 1
2πσ⊥σ∥

∫ dxdyI(x − D
2 , y)e

−
x1
2

2σ⊥
2 −

y1
2

2σ∥
2

e
i(ωx1 − Δϕ

2 )

+ ∫ dxdyI(x + D
2 , y)e

−
x2
2

2σ⊥
2 −

y2
2

2σ∥
2

e
i(ωx2 + Δϕ

2 )

2

= 1
2πσ⊥σ∥

e
iω sin θ(D − d) − Δϕ

2 ∫ dxdyI(x, y)e
−

x′1
2

2σ⊥
2 −

y′1
2

2σ∥
2

eiω(sin θx + cos θy)

+ e
iω sin θ( − D + d) + Δϕ

2 ∫ dxdyI(x, y)e
−

x′2
2

2σ⊥
2 −

y′2
2

2σ∥
2

eiω(sin θx + cos θy)

2

(26)

with

x′1
y′1

= sin θ cos θ
−cos θ sin θ

x − d − D
2

y
(27)

x′2
y′2

= sin θ cos θ
−cos θ sin θ

x + d − D
2

y
(28)

The first order approximation of exp − (x + Δx)2

2σ2  with respect to Δx is

exp − x + Δx 2

2σ2 ≈ exp − x2

2σ2 1 − xΔx
σ2 (29)

Define a Gaussian envelope as
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GGauss(x, y) = 1
2πσ⊥σ∥

exp − (sin θx + cos θy)2

2σ⊥
2 − ( − cos θx + sin θy)2

2σ∥
2 (30)

and define the original image filtered by this Gaussian envelope and its scaled first partial 

derivative with respect to x as

I1(x, y) = GGauss(x, y)I(x, y) (31)

I2(x, y) = σ⊥
∂GGauss(x, y)

∂x I(x, y)

= − sin θ(sin θx + cos θy)
σ⊥

− −cos θ( − cos θx + sin θy)
k2σ⊥

I1(x, y)

(32)

where k =
σ∥
σ⊥

 is the RF aspect ratio. The Fourier component at frequency (ω sin θ, ω cos θ) 

of I1 and I2 are

A = ∫ dxdyei(ω sin θx + ω cos θy)I1(x, y) (33)

B = ∫ dxdyei(ω sin θx + ω cos θy)I2(x, y) (34)

With these notations, along with δ = ω sin θ(D − d) − Δϕ
2 , the complex cell response is

rc ≈ eiδ A − d − D
2σ⊥

B + e−iδ A + d − D
2σ⊥

B
2

= 2A cos δ + iD − d
σ⊥

B sin δ
2

≈ 4 A 2 cos2 δ + D − d
σ⊥

2
B 2 sin2 δ

(35)

which is an approximation to the second order of D − d
σ⊥

. If the stimulus disparity D is largely 

offset by cells’ position shift d, then the second term is small, and the cells’ preferred 

disparity is determined by the first term, resulting in Eqn. 10 in the text.

Li and Qian Page 15

Neural Comput. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Eqn. 35 also demonstrates that phase-shift population responses (from cells with a fixed d 
but a full range of Δϕ) are more reliable than position-shift population responses (from cells 

with a fixed Δϕ but a range of d) even when disparity is evenly divided between the two 

eyes. Specifically, the second term of Eqn. 35 can be made small when D is largely offset by 

a fixed d, and the cells with this d and the full range of Δϕ have a reliable peak determined 

by the first term. In contrast, the second term cannot always be small for a fixed Δϕ and a 

range of d, contaminating the first term. Also note that when Δϕ = 0, the position-shift 

population response is symmetric around d − D (Read and Cumming, 2007). However, this 

symmetry only holds for the special case of uniform disparity.

Disparity decoding in discrete form

We explain the detailed implementation of disparity decoding. As mentioned in Sec. 2.3, we 

aim to find D satisfying Eqn. 16, 17 and 18. We can only approximately achieve this goal 

since the population responses are sampled from cells with a discrete set of parameters d and 

Δϕ.

For a given scale (σ) and spatial location (x and y), local population responses r(di, Δϕ j) are 

stored in a 2-D array,

ri, j = r(di, Δϕ j)

in which di and Δϕj indicate the position- and phase-shift parameters of the cells. For 

convenience, we use j0 to index the cell whose Δϕj0 = 0.

The algorithm first finds all i’s satisfying

ri, j0
> ri − 1, j0

, ri, j0
> ri + 1, j0

and ri, j0
> α max

i
ri, j0

Then, for each di so determined, it is reasonable to assume that D falls within [di− 1, di+1]. 

Define Δd ≡ di − di−1 = di+1 − di. We search for j over 
Δϕ j

ω ∈ [ − Δd, Δd] according to 

ri, j > ri, j − 1 and ri, j > ri, j + 1. Apply parabolic interpolation on ri, j − 1, ri, j and ri, j + 1, we 

find the peak position of Δϕ*, and let:

D = di + Δϕ*
ω
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Figure 1: 
Chen and Qian (2004)’s model applied to a transparent random-dot stereogram with two 

overlapping planes of 3 and −2 pixels of disparities, respectively. The model can decode 

only one disparity at each position, resulting in a patch-wise map of the two actual 

disparities.
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Figure 2: 
Schematic drawing of the multiplicative connections from cells of a larger scale to cells of 

the next smaller scale (Eqn. 14). For each scale and image location, the cells are indexed by 

their position-shift and phase-shift parameters. To avoid clutter, only the strongest 

connections from three pre-synaptic cells to three post-synaptic cells are shown. The three 

pre-synaptic cells lie on a negative diagonal line and thus have the same total preferred 

disparity (Eqn. 10). The three post-synaptic cells have the same position shift equal to the 

pre-synaptic cells’ total preferred disparity. Each cell’s RFs also receive inputs from stimuli 

(not shown) to compute energy responses.
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Figure 3: 
The energy responses (top row) and the responses multiplied by the coarse-to-fine gains 

(bottom row) at a fixed position in the transparent random-dot stereogram of Fig. 1. 

Different columns show results from different scales. In each panel, the horizontal axis 

represents the cells’ phase-shift parameter Δϕ (divided by ω to covert to disparity), and the 

vertical axis represents their position-shift parameter d. Dotted lines indicate combinations 

of phase and position shifts that equal the true disparities of the stimulus.
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Figure 4: 
Model performance on the same transparent random-dot stereogram as in Fig. 1 with two 

overlapping fronto-parallel planes. The stereogram is shown in the top. The true disparity 

map and computed maps at the five scales are shown in the bottom.
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Figure 5: 
Model performance on a standard non-transparent stereogram with a floating square.
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Figure 6: 
Model performance on a transparent stereogram with a floating square.
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Figure 7: 
Model performance on a non-transparent stereogram with a slanted plane.
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Figure 8: 
Model performance on a transparent stereogram with overlapping slanted planes.
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Figure 9: 
Model performance on a natural-image stereogram. The top row shows the image pair of 

“Cloth4” stereogram from Middlebury Stereo Datasets (Hirschmuller and Scharstein, 2007; 

Scharstein and Pal, 2007). The ground truth and the model performance are shown below. 

The original image pairs were shifted by 125 pixels and down-sampled by a factor of 10 so 

that the disparities are within the range covered by the model cells.
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Figure 10: 
Disparity interactions in stereo transparency. In the top panel, each column shows a 

decoded-disparity histogram for each actual disparity separation between the two planes in a 

transparent random-dot stereogram. Brighter colors indicate more frequently decoded 

values. The two actual disparities are represented by the two black dashed lines. The model 

explains three observed perceptual regimes with increasing disparity separation, namely 

depth averaging (one plane), pyknostereopsis (thickening), and transparency (two planes). 

The bottom panel shows the decoded disparity separation, according to the peaks of the 

histograms, against the actual disparity separation. The dashed line marks equality between 

the computed and actual disparity separations. The computed separations show attraction 

(below the dashed line) and repulsion (above the dashed line) depending on the actual 

disparity separation.
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Figure 11: 
Disparity averaging weighted by dot contrasts and dot density. We applied our model to a 

transparent random-dot stereogram with two planes at ±0.5 pixel of disparities, and varied 

the contrast (left panel) and density (right panel) of the dots of the two planes. Each panel 

plots the computed disparity against the average disparity weighted by the contrast (left) or 

density (right).
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Figure 12: 
Dependence of the model performance on parameters σd and α. We used the same 

transparent random-dot stereogram as in Fig. 4 with two overlapping planes of disparities −2 

and 3 pixels. The left panel shows the proportion of image positions with exactly two 

decoded disparities as a function of both σd and α. Brighter colors indicate higher 

proportions. The black curve marks the optimal α for each σd. The star marks the standard 

parameters used in all the simulations of this paper. The left panel shows the decoding RMS 

error as a function of σd. α is chosen to be optimal for each σd. The two lines are the 

decoding RMS errors for the two planes. The shaded areas indicate the standard deviations 

of the errors estimated from 10 different stereograms, and the darker areas indicate overlaps 

of the shades. The σd axis is in log scale for both panels.
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