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Abstract

Nanoparticle delivery systems offer advantages over free drugs, in that they increase solubility and 

biocompatibility. Nanoparticles can deliver a high payload of therapeutic molecules while limiting 

off target side effects. Therefore, delivery of an existing drug with a nanoparticle frequently results 

in an increased therapeutic index. Whether of synthetic or biologic origin, nanoparticle surface 

coatings are often required to reduce immune clearance and thereby increase circulation times 

allowing the carriers to reach their target site. To this end, polyethylene glycol (PEG) has long 

been used, with several PEGylated products reaching clinical use. Unfortunately, the growing use 

of PEG in consumer products has led to an increasing prevalence of PEG-specific antibodies in the 
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human population, which in turn has fueled the search for alternative coating strategies. This 

review highlights alternative bio-inspired nanoparticle shielding strategies, which may be more 

beneficial moving forward than PEG and other synthetic polymer coatings.
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Introduction

Nanoparticles have potential for drug delivery by solubilizing hydrophobic drug molecules 

and allowing for targeted delivery of toxic compounds, therefore limiting off-target effects. 

They offer hope for new therapies and provide opportunities to revitalize drugs taken off the 

market due to toxicity. Nanoparticles of diverse materials can be produced in many different 

shapes and sizes, and can be loaded with drugs, contrast agents, targeting ligands, and 

combinations thereof. One of the many advantages that nanoparticle engineering provides is 

the possibility of tuning the carrier to a specific biological problem. Nanoparticle research 

has rapidly grown in recent years, with over 21,000 papers published in 2017 alone. While 

the development pipeline is moving rapidly, many nanoparticle formulations fail to translate 

to the clinic.

Engineered nanoparticles face numerous biological barriers upon administration (reviewed 

in1). One of the first challenges is avoiding recognition and clearance by the immune 

system. Nanoparticles associate with serum proteins and other molecules (termed 

opsonization), leading to formation of a ‘protein corona’ which alters their in vivo 
properties.2–3 This corona is more prominent for synthetic nanoparticles than proteinaceous 

viral-based nanocarriers, but in both cases the corona can include immune proteins such as 

immunoglobulins and complement proteins.4–5 These proteins tag nanoparticles for 

clearance by phagocytic cells of the mononuclear phagocyte system (MPS), thereby 

preventing nanocarriers from ever reaching their target sites. Once enveloped with a protein 

corona, nanoparticles are sequestered in MPS organs, including the liver, spleen, and kidney.
6 These interactions with the innate immune system can also trigger the adaptive immune 

system, which can then lead to the production of neutralizing antibodies and/or carrier-

specific cellular immune responses, which can be especially challenging for nanotherapeutic 

or imaging strategies that require repeat administrations. Presence of carrier specific 

antibodies leads to accelerated blood clearance (ABC) of the nanoparticle and increased 
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accumulation in organs such as the liver, reducing the efficacy of nanoparticle formulations.7 

This event is often referred to as the ABC phenomenon.

PEG and other synthetic polymeric shielding strategies

Nanoparticles are frequently PEGylated to avoid immune recognition and to provide better 

pharmacokinetic profiles. PEG is a flexible hydrophilic polymer that was originally 

considered to have little to no immunogenicity and few biological interactions, and therefore 

was expected to be advantageous as a shielding agent.8 By grafting PEG to the surface of a 

nanoparticle formulation, protein adsorption and antibody binding are decreased, as is 

uptake by phagocytic cells. Reduced uptake occurs because the PEG layer forms a 

hydrophilic barrier on the surface of nanoparticles and blocks receptor interactions via steric 

hindrance.9 The effectiveness of PEG to increase circulation times has been demonstrated on 

nanoparticles with a range of shapes, sizes, and composition.10–14 In fact, several clinically 

approved nanoparticle therapies such as Doxil® include PEGylation. During the design of 

Doxil adding PEG to doxorubicin containing liposomes was found to increase the 

circulating half-life from approximately 10 min to over 40 hours.15 Nevertheless, choosing 

the correct PEG formulation can be tricky. PEG polymers can have different physical 

properties by varying characteristics such as chain length and number of branch arms. The 

conjugation density of the PEG molecules on the nanoparticle surface can alter the PEG 

conformation as well, allowing it to adopt either a mushroom like globular conformation at 

low density or a more extended brush like conformation at high density. The effectiveness of 

PEG as a shielding agent is dependent on the chosen physical characteristics,12–14 implying 

that optimization of the PEG shield is usually necessary. In practice nanoparticles have been 

optimized with various PEG formulations, for example 10 kDa molecular weight PEG best 

reduced clearance for chitosan/siRNA nanoparticles delivered intravenously, while 1 kDa 

molecular weight PEG was best for oral administration of prodrug-based micelles.16–17

Despite the successes with PEG as a shielding agent, there have been recent challenges. 

While initial reports on PEG suggested low immunogenicity, more recent reports indicate a 

significant level of immunogenicity as PEG-specific antibodies have been found in the 

general population. Data from 2012 indicate that up to 25% of the population have anti-PEG 

antibodies, up from 0.2% in 1984.18–19 This is likely due to the prevalence of PEG in 

everyday products. Not only is PEG used as an anti-fouling agent in biomedical 

applications, but it is also found in cosmetics and food products.19 Development of anti-PEG 

antibodies can be especially detrimental for nanoparticle formulations that require repeat 

administration. Newer nanoparticle formulations that rely on PEG shielding have struggled 

in clinical trials mainly because of the immunogenicity of PEG.

A Phase 1 clinical trial published in 2006 found that treatment of hyperuricemia in gout 

patients by PEGylated uricase led to induction of PEG-specific IgM and IgG antibodies in 5 

of 13 patients.20 PEG-uricase was cleared in these subjects by 10 days post injection, 

whereas the 8 patients who did not show measurable antibodies against PEG had circulating 

PEG uricase 21 days post injection (Figure 1). Another study demonstrated that antibodies 

against PEG affected the efficacy of a PEGylated asparaginase therapy for treatment of acute 

lymphoblastic leukemia patients.21 Rapid clearance of PEG-asparaginase was observed for 
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15 patients, of whom 12 had measurable antibodies against PEG. Since serum asparaginase 

levels need to remain elevated for 21 days to achieve a response in acute lymphoblastic 

leukemia, the authors concluded that rapid clearance by PEG-specific antibodies could 

render the treatment ineffective. Furthermore, a recent clinical trial of pegnivacogin, a 

PEGylated RNA aptamer, was halted after three patients displayed rapid allergic reactions 

minutes after administration of the therapy, which was correlated with pre-existing PEG-

specific antibodies.22 There are several other examples from pre-clinical and clinical studies 

which concluded that PEGylated nanoparticles are rapidly cleared upon repeat 

administrations because of a PEG-specific immune response.23–25 These data highlight the 

importance to revisit nanotechnology shielding strategies and to adapt to the increased 

prevalence of anti-PEG antibodies in the population.

One strategy to develop next-generation shielding strategies is to modify the PEG polymer 

or backbone to configurations not recognized by anti-PEG antibodies. To avoid antibody 

recognition by PEG-specific antibodies, one study, which investigated the effect of ethylene 

glycol (EG) oligomer length on antigenicity, found that the antigenicity of PEG can be 

reduced using nine side-chain EG repeats on a poly(methyl methacrylate) backbone.26 

Furthermore, using three side-chain EG repeats completely eliminated the antigenicity. Thus 

using these newly defined chemical design strategies, the next generation of EG oligomers 

combined with other polymer backbones could yield the next-generation of PEG-based 

shielding strategies.

While PEG is the most well characterized shielding polymer, other hydrophilic synthetic 

polymers have been studied. These alternative polymers are less commercially available and 

not used in as many products, but this may change over time. Based on the limited exposure 

of the public to these novel and alternative polymers, the risk of pre-existing antibodies 

against them in the general population is small. Nevertheless, their immunogenicity needs to 

be assessed in detail considering that many therapeutics require repeat administration. While 

a patient may not present with pre-existing antibodies, antibodies could develop over the 

course of treatment. While a diverse group of polymers with anti-fouling properties exists, 

each with their own advantages, to date there is sporadic data on their immunogenic 

properties after repeat exposure.

One example from our group in collaboration with Drs. Pokorski and Hore focused on the 

investigation of polynorbornene (PNB) polymer shields clicked to virus-like particle (VLPs) 

nanotechnologies. Similar to PEG, PNB was shown to reduce carrier-specific antibody 

recognition when grafted to VLPs from the bacteriophage Qβ, as shown in Figure 2A.27 

Cryo-electron microscopy was used in this study to reveal the nearly complete coverage of 

the viral surface with a compact PNB layer (Figure 2B, C).

Additional polymers have also been investigated for their anti-fouling and shielding effects, 

including polyoxazolines (POX/POZ), poly(N-vinylpyrrolidone) (PVP), polybetaines, 

poly(phosphoesters), poloxamers, poly(glycerols), polyacrylamides, and many others.28–38 

Nevertheless, as chemistries and products are being made available to wider audiences, the 

risk exists that these polymers are also formulated into everyday products thus leading to 

generation of acquired immunity against them. Furthermore, as pointed out above, the risk 
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also exists that patients could develop antibodies after repeated exposure, as has been 

observed for PEG. Therefore, a promising alternative approach may be to explore shielding 

agents based on biologically relevant molecules, including lipids, carbohydrates, and 

proteins – in particular those that the body would recognize as ‘self’.

Bio-inspired shielding strategies

The in vivo environment is diverse, with a plethora of cells, proteins, and small molecules 

circulating at any given moment. Bio-inspired shielding strategies harness the body’s 

complexity, by cloaking nanoparticles in biodegradable polymers and components normally 

found in circulation. Thus, nanoparticles are not just hidden from clearance mechanisms 

through ‘passive shielding,’ but are camouflaged within their environment through ‘active 

stealthing.’ In this section, various bio-inspired shielding strategies are discussed, including 

those based on carbohydrates, lipids, and proteins.

Carbohydrate-based shielding strategies

While carbohydrates can be found on foreign pathogens, such as lipopolysaccharides (LPS) 

in gram negative bacteria, they are also critical in the human body. They are used as energy 

sources and are found in extracellular matrices and on cell surfaces. For example, eukaryotic 

cells are coated with glycosaminoglycans (GAGs), a class of negatively charged 

polysaccharides which are frequently conjugated to proteins on the cell surface or within the 

extracellular matrix. Research has shown that these hydrophilic polysaccharides can provide 

shielding effects for nanoparticles by mimicking naturally occurring GAGs. Carbohydrate-

based shields have limited toxicity and immunogenicity. Furthermore, carbohydrate 

shielding mechanisms can also benefit from the natural functions of carbohydrates in the 

body by targeting certain carbohydrate-binding receptors (see discussion and references in 

the following section).

Polymers of sialic acid, a monosaccharide that frequently modifies amino acids in the body, 

have been investigated as a shielding strategy for proteins such as insulin, catalase, and 

asparaginase.39–42 In the case of asparaginase, conjugation of a polysialic acid (PSA) was 

shown to increase circulation times and reduce antigenicity to the protein in mice, even in 

mice with pre-existing antibodies against asparaginase (raised through immunization with 

PSA-coated asparaginase).43 Based on these promising results, more recent studies have 

investigated PSAs as a shielding agent in nanoparticle formulations, however these studies 

are still in early stages. One study developed PSA-coated micelles as an alternative to PEG 

coated micelles for the delivery of hydrophobic drugs. It was shown that PSA coated 

micelles did not affect the viability of synovial fibroblast cells in culture while allowing for 

uptake.44 It remains to be seen how these nanoparticles compare to PEG-coated 

nanoparticles in vivo. Another study investigated the chemotherapeutic doxorubicin loaded 

into nanoparticles composed of hydrophobically-modified PSA, and found that the 

nanoparticles had low toxicity in non-cancer tissue in mice, while demonstrating an 

antitumor effect similar to free doxorubicin.45 The authors attributed these results to the 

biodegradable and biocompatible nature of PSA.
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Heparin is a GAG known for its anticoagulant properties, as well as many other functions 

including inhibition of angiogenesis and inflammation.46 Not only that, but it can also 

provide shielding properties when used to coat numerous types of nanoparticles.47–51 One 

study found that low molecular weight heparin coating improved the biological properties of 

mesoporous nanoparticles by preventing recognition and uptake by macrophages.47 Heparin-

coated nanoparticles have also been shown to prevent angiogenesis and metastasis, making 

the carbohydrate an especially beneficial shielding agent for nanoparticles in cancer therapy.
52–53 It has been demonstrated that heparin-coated nanoparticles loaded with the 

chemotherapy doxorubicin suppressed tumor growth in a mouse model of squamous cell 

carcinoma.54 These nanoparticles showed reduced tumor growth compared to free 

doxorubicin or heparin coated nanoparticles alone (Figure 3). The authors concluded this 

was due to the extended circulation times, along with a combination of the cytotoxicity from 

doxorubicin and the anti-proliferative effects of heparin.

Another GAG, hyaluronic acid (HA), is ubiquitous within the body and found in high levels 

within the extracellular matrix.55 Stealth coatings based on HA have been shown to prevent 

cell interactions.56–57 One study revealed that HA-coated liposomes did not result in 

accelerated blood clearance and hypersensitivity upon repeat administrations. PEG-coated 

liposomes, on the other hand, had increased accumulation in the liver after repeat 

administrations due to the ABC phenomenon.58 Others have used HA not only to shield 

nanoparticles but also as a targeting ligand, as HA interacts with CD44 receptors, which are 

upregulated in some tumor tissues, including colon and ovarian cancers.59–61

Lipid membrane shielding strategies

Because lipid membranes coat all cells, nanoparticles enveloped with cell membrane-like 

shields can pass through circulation incognito. A significant portion of research into lipid 

shielding strategies has focused on membranes of blood particles, such as red blood cells, 

and platelets. However, studies have also investigated the use of membranes from other cell 

types, synthesized lipid coatings such as artificial membrane ‘wraps,’ and lipopeptide 

formulations.

A 2011 study first investigated the use of red blood cell (RBC) membranes as an alternative 

shielding strategy to polyethylene glycol. RBC-vesicles were derived from natural red blood 

cells harvested from mice, and used to coat polymeric nanoparticles (Figure 4A).62 By doing 

so, the RBC-coated particles retained the lipid bilayer structure and membrane proteins from 

the original cells. RBC coated particles exhibit reduced uptake into MPS organs and have 

longer circulation times compared to bare and PEGylated particles (Figure 4B, C).62–63 The 

biomimetic coating decreases macrophage uptake of nanoparticles and does not result in 

toxicity or accelerated blood clearance upon repeat administrations in vivo.63–64 RBC-

coating has also been shown to result in increased blood retention times and enhanced tumor 

uptake of nanoparticles.65–66 Based on the success of RBC coatings, many other 

nanoparticle formulations have begun to explore membrane-based shielding strategies.

Along the same vein, white blood cell membranes have also been harnessed for stealth 

coatings. Leukolike vectors (LLVs) are those coated with cellular membranes harvested 

from mouse macrophages or human monocytes. In doing so, LLVs avoid opsonization and 

Gulati et al. Page 6

Mol Pharm. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have reduced uptake by the phagocytic immune cells from which they were derived.67 LLVs 

can activate lymphocyte receptor-mediated pathways in vitro and have been shown to have 

enhanced vascular permeability in vivo.68 Macrophage cell membrane coated nanoparticles 

have also been found to have increased circulation times and reduced retention in the organs 

of the MPS.69 Another study showed that coating nanoparticles with cytotoxic T-lymphocyte 

membranes not only served to provide shielding properties such as reduced macrophage 

uptake, but also enhanced localization to gastric tumor tissue in vivo.70 This is likely 

because cytotoxic T-cells localize in gastric tissue, suggesting that the nanoparticle’s lipid-

based coating provides targeting as well as shielding.

Platelets have the ability to marginate to the vascular wall and interact with injury sites in the 

vasculature, thus it has been hypothesized that nanoparticles stealth-coated with platelet 

membranes could be beneficial in the treatment of diseases such as atherosclerosis and 

thrombosis-related diseases. In one study nanoparticles coated with platelet membranes 

reduced particle uptake and complement activation, which the authors attributed to the 

platelet membrane bound complement regulator proteins.71 The authors also found that the 

platelet cloaked particles benefitted from platelet like properties such as adhesion to 

damaged vasculature and binding to platelet-adhering pathogens.

Other cellular membranes have been explored for cloaking nanoparticles as well. Cancer 

cells, stem cells, and others have been used to provide membranes for nanoparticle cloaking 

for biomedical applications.72–74 Researchers have also investigated the possibility of 

designing synthetic lipid coatings that emulate biological membranes. For example, 

membrane ‘wraps’ are an artificial platform for shielding nanoparticles that can be tailored 

to target specific host organs.75 Lipopeptides can be inserted into liposomal nanoparticles to 

create a more biomimetic exterior, which helps limit serum protein adsorption.76

Protein and polypeptide shielding strategies

Proteins are essential for numerous functions in the cell, serving as transporters, enzymes, 

signaling molecules, scaffolds, and many other important roles. Because they are so diverse 

and are found universally throughout the body, protein-based strategies hold great promise 

for stealth coating. Some of these strategies are based on naturally occurring proteins, while 

others involve synthetically derived polypeptides. Much of the work in protein stealth-

coating strategies focuses on extending the half-life of protein-based therapies, but this 

approach holds promise for other nanoscale material applications as well. In the following 

section, we highlight some examples.

First, CD47 is a cell membrane glycoprotein that has been reported to be a ‘marker of self,’ 

preventing clearance signaling through CD172a, a phagocytic cell receptor.77–78 When used 

to coat nanoparticles, peptides derived from CD47 have been shown to mimic the CD47 

CD172a pathway, thus preventing macrophage mediated clearance.79 CD47 coating 

preferentially reduces nanoparticle uptake by M1 macrophages, as compared to PEG which 

decreases clearance by all macrophage phenotypes.80 This selective evasion may allow for a 

more rationalized approach for nanoparticle shielding control.
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Second, serum albumin (SA) is the most abundant protein in blood plasma. As such, it is a 

good candidate for camouflaging nanoparticles in the vascular environment. For example, 

we investigated SA-coatings on the plant viral nanotechnology platform derived from 

tobacco mosaic virus (TMV). SA-coated TMV nanoparticles exhibited reduced antibody 

recognition and increased circulation times compared to PEGylated TMV.81 Structural 

studies of SA-conjugated particles revealed that SA camouflage is likely due to steric 

hindrance as the SA molecules would prevent antibodies from reaching the nanoparticle 

surface.82 Immune studies of these particles revealed that antibodies to the SA-coating are 

not produced after repeat injections (Figure 5), which highlights the benefits of this biologic 

coating over traditional PEGylation.83

Third, elastin like peptides (ELPs) are a class of genetically engineered protein based 

polymers. They are based on a pentapeptide repeat of Val-Pro-Gly-X-Gly found in human 

elastin, where X can be any amino acid except proline. ELPs are thermally responsive. 

Below their transition temperature they are soluble in aqueous solutions. Above their 

transition temperature, ELPs transition into an insoluble colloid-rich “coacervate” phase.
84–85 ELPs have long circulation half-lives, which can be controlled based on their 

composition and chain length.86–87 Furthermore, ELP-protein conjugates in clinical trials 

did not induce a significant immune response in most subjects.88 However, while the 

potential application of ELP-based nanoparticle formulations has been reported, the use of 

ELPs as nanoparticle coatings has yet to be explored.

Fourth, PASylation is a synthetic peptide based alternative to PEGylation that uses small 

amino acids to create a hydrophilic uncharged polypeptide chain with properties similar to 

PEG, and provides prolonged pharmacokinetics and other advantageous in vivo properties.89 

These chains are comprised of prolines, alanines, and serines and can be genetically encoded 

into protein-based therapies. Recombinant proteins are typically cleared via the kidney due 

to their small size.90 PAS-fusion proteins have increased hydrodynamic radii, thus 

prolonging circulation times in vivo.89, 91–92 For example, intravital injection studies with a 

PASylated recombinant form of erythropoietin, a hormone that regulates the production of 

red blood cells, led to extended circulation times compared to non-shielded erythropoietin. 

However, it was noted that the half-life of the PASylated form was shorter than that of the 

PEGylated form of the protein.91 Nevertheless, PASylated proteins have been observed to 

have more activity than their PEGylated counterparts.92 It remains to be seen if PASylation 

can provide similar benefits for larger nanoparticles that are primarily cleared through the 

liver and spleen.

And lastly, a zwitterionic synthetic peptide with a sequence of Glu-Lys repeats has been 

developed to prevent nonspecific protein adsorption and mimic naturally occurring protein 

surfaces, as the amino acids used are the two most prevalent amino acids on protein surfaces.
93–94 Using this peptide based strategy also allows for easy addition of targeting sequences 

to the end of the stealth peptide.95 The zwitterionic peptide coating was shown to prevent 

nonspecific cell uptake of gold nanoparticles in both macrophage and endothelial cell lines.
95 However, the shielding effects of the zwitterionic peptide remain to be demonstrated in 
vivo.

Gulati et al. Page 8

Mol Pharm. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Together, these examples highlight the opportunities of protein and peptide-based shielding 

strategies and area with room for exploration.

Beyond shielding – Immune editing

For proteinaceous nanoparticles, an alternative to coating with shielding agents is to 

immune-engineer and render the particles themselves less immunogenic. Immune editing 

strategies have been explored for the application of viral vectors for gene therapy. For 

example, the antigenic epitopes of adeno-associated virus (AAV)-based gene delivery 

vectors have been mapped by a variety of techniques, including but not limited to directed 

evolution, peptide scanning, mutagenesis studies, and cryo-electron microscopy (cryoEM).96 

Mapping of antigenic regions can then be used to develop a new generation of vectors that 

are antigenically distinct. In one study, cryoEM guided antigenic footprinting was used to 

guide directed evolution and led to the production of AAV vectors with unique capsid 

antigenic motifs (CAMs) that evade anti-AAV antibodies in sera from mice, nonhuman 

primates, and humans without additional shielding molecules.97 The strategy of developing 

new non antigenic nanoparticles has drawbacks, however. Editing of immunogenic epitopes 

can only be implemented for proteinaceous nanoparticles. Modifying the vectors to be 

antigenically distinct may alter the ability of the virus to deliver as efficiently or alter which 

cells it can infect. Also, while second-generation vectors could evade pre-existing 

antibodies, there is a risk that newly engineered epitopes could be produced, limiting their 

use in repeated administrations. Nevertheless, this strategy shows promise for specific 

applications.

Conclusions

Nanoparticle formulations offer great opportunities in drug delivery. However, after 

administration immune recognition and clearance create challenges for nanoparticles 

remaining in circulation long enough to reach the site of disease. This can be especially 

detrimental upon repeat administration, when blood clearance can be accelerated. To address 

this issue, shielding strategies are frequently employed to coat nanoparticle formulations and 

to help them evade immune recognition. Typically, nanoparticles are coated with synthetic 

polymers, most commonly PEG. Polymeric coatings can effectively reduce nanoparticle-

protein interactions. However, the widespread use of PEG has limited its effectiveness 

because of the prevalence of PEG-specific antibodies that allow for recognition and 

clearance of PEGylated nanoparticles. Other polymeric coatings could suffer the same fate 

with increasing use. Biopolymers, namely carbohydrates, lipids, and proteins, can provide 

similar shielding effects to PEG, while also camouflaging nanoparticles as ‘self.’

Bio-inspired shielding strategies have general advantages over their synthetic counterparts: 

they are biocompatible, biodegradable, and may be chosen so that they have low 

immunogenicity. Furthermore, because they are derived from natural components, they 

provide not just passive evasion of immune recognition but an active mechanism of 

camouflage. In other words, by appearing as if they belong carbohydrate-based shielding 

strategies can mimic cell-surface polysaccharides, lipid-based strategies camouflage 
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nanoparticles as cell-like entities, and protein-based nanoparticle coatings blend in with the 

proteins found universally within the body.

As the shielding requirements of different nanoparticle formulations will vary depending on 

their application, several bio-inspired strategies have been developed. These shielding 

strategies offer immune evasion while also providing the ability of the shielding molecule to 

interact productively with other biological macromolecules. Carbohydrate-, lipid-, and 

protein-based coatings are generally biodegradable and thus do not lead to persistence of 

materials within the body. Alternative approaches also exist, such as making the nanoparticle 

itself less immunogenic, and these may have advantages in specific circumstances.

In moving towards translation for nanoparticle therapies, it will be important to consider the 

balance between immune evasion and nanoparticle targeting. Since they are derived from 

natural components that sometimes have built-in targeting ability, bio-inspired coatings may 

have the ability to deliver nanoparticles to specific sites in the body. However, redirecting 

bio-shielded nanoparticles may be an issue. For example, targeting platelet membrane-

coated nanoparticles away from vascular injury could prove difficult. The appropriate 

coating will need to be chosen based on the requirements of the nanoparticle application. 

Separate nanoparticle modifications may be needed for shielding and for targeting. It will be 

important to investigate whether the effects of targeting interfere with the stealth coating 

mechanism. It will also be important to consider the function of the nanoparticle cargo. For 

drug delivery, long-circulating nanoparticles are often the goal. However, when delivering 

contrast agents, it is not beneficial to have excessively long circulation times as imaging can 

be done within a matter of hours. Thus, having a way to control the half-life of a 

nanoparticle in the body by altering the coating would be advantageous, which could 

potentially be accomplished with a bio-inspired approach to shielding. Because they offer 

immune evasion with many other inherent advantages, bio-inspired shielding strategies will 

likely play a significant role in future nanoparticle drug delivery applications.
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Figure 1. 
Uricase activity in plasma over 21 days in subjects with and without PEG antibodies. A) 

Subjects without PEG antibodies had “long circulating” uricase after a single injection as 

indicated by detectable plasma uricase activity for 21 days. B) In contrast, subjects with anti-

PEG antibodies displayed “early elimination” of uricase. Each line in panels A and B 

represents an individual patient receiving either 4 (black), 8 (green), 12 (blue), or 24 (red) 

mg uricase. Reproduced with permission from20 from Biomed Central.
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Figure 2. 
Polynorbornene shielding effects on icosahedral Qβ nanoparticles. A) ELISA response to 

Qβ immunized sera with nanoparticles coated with PEG or PNB. B) Structure of Qβ by 

cryo-electron microscopy. C) Structure of PNB-shielded Qβ by cryo-electron microscopy, 

with Qβ density in blue and PNB density in red. Adapted with permission from27. Copyright 

2017 American Chemical Society.
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Figure 3. 
Antitumor effects of heparin nanoparticle (NP) formulation, doxorubicin, and doxorubicin-

loaded heparin-NP in mice model of subcutaneous squamous cell carcinoma. Reproduced 

with permission from54.
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Figure 4. 
RBC-membranes for use as camouflage for nanoparticles. A) Schematic of extraction of 

membranes from RBCs and method for coating nanoparticle surfaces. Adapted from62, 

copyright 2011 National Academy of Sciences, USA. B) Biodistribution of Fe nanoparticles 

coated with PEG or RBCs in mice 24 hrs post-injection. Adapted with permission from63, 

copyright 2016 IOP Publishing. C) Pharmacokinetics of Fe nanoparticles coated with PEG 

or RBCs and blood retention at 24 hrs post-injection in mice. Adapted with permission 

from63, copyright 2016 IOP Publishing.
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Figure 5. 
Repeated administration of SA-coated TMV NPs does not produce an appreciable immune 

response to the SA coating. A) SA-coated TMV NP administration schedule and assay 

protocol. B) Production of antibodies generated against the NP and the SA coating after 

repeat administrations of four differing SA-coated TMV constructs (SA-TMV 1, 2, 3, and 4) 

at days 0, 14, 28, and 56 (D0, D14, D28, D56). Constructs varied the amount of SA coating 

and linker length. PBS, TMV, and a non-conjugated mixture of SA and TMV (SA+TMV) 

served as controls. Adapted from83 with permission from Royal Society of Chemistry.

Gulati et al. Page 21

Mol Pharm. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Introduction
	PEG and other synthetic polymeric shielding strategies
	Bio-inspired shielding strategies
	Carbohydrate-based shielding strategies
	Lipid membrane shielding strategies
	Protein and polypeptide shielding strategies

	Beyond shielding – Immune editing
	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.

