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Introduction
Adipose cells have traditionally been viewed as simple, 
passive energy storage depots for triglycerides, which 
release energy in the form of fatty acids through lipolysis 
during times of metabolic stress. However, in recent years 
it has become clear that adipose cells are highly dynamic, 
and have important endocrine, metabolic, haematological, 
immune and structural functions. For example, adipose 
cells secrete a wide variety of hormones, growth factors, 
cytokines, matrix proteins and enzymes which interact with 
diverse organ systems including the hypothalamo-pituitary 
axis, pancreas, liver, kidneys, endothelium, skeletal muscle 
and immune system.1 Leptin is the most well-known of 
these factors and has an important role in the regulation 
of satiety,2 but a number of other “adipocytokines” also 
contribute to the regulation of food intake, metabolism, 
immunity and blood pressure homeostasis.3 These adipo-
cytokines include adiponectin, which is thought to increase 
insulin sensitivity,4 and tumour necrosis factor-α, which is 
an inflammatory cytokine and may contribute to insulin 

resistance  (IR)and the pro-inflammatory state which is 
observed in obese patients.5 Adipose tissue expresses all the 
components of the renin-angiotensin-aldosterone system, 
which contributes to the regulation of blood pressure and 
platelet function,1 and secretes plasminogen activator 
inhibitor-1, which is involved in fibrinolysis and is altered 
in obesity.1

Importantly, adipose cells in different locations may have 
different precursors, cytokine profiles and functions.1,6 The 
primary site for adipose cells is in adipose tissue, which 
consists of subcutaneous adipose tissue, found immediately 
under the skin, and visceral adipose tissue which surrounds 
organs such as the liver, bowel, pancreas, kidneys and heart. 
Additionally, fat can accumulate within organs, including 
the liver, pancreas, heart, muscle and bone marrow; these 
fat deposits are described as “ectopic fat depots”.7 There is 
a growing appreciation of the importance of ectopic fat in 
the pathogenesis of disease;8–10 e.g. hepatic fat is implicated 
in the pathogenesis of metabolic syndrome, and predicts IR 
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Abstract

Adipose cells have traditionally been viewed as a simple, passive energy storage depot for triglycerides. However, in 
recent years it has become clear that adipose cells are highly physiologically active and have a multitude of endocrine, 
metabolic, haematological and immune functions. Changes in the number or size of adipose cells may be directly 
implicated in disease (e.g. in the metabolic syndrome), but may also be linked to other pathological processes such 
as inflammation, malignant infiltration or infarction. MRI is ideally suited to the quantification of fat, since most of the 
acquired signal comes from water and fat protons. Fat fraction (FF, the proportion of the acquired signal derived from 
fat protons) has, therefore, emerged as an objective, image-based biomarker of disease. Methods for FF quantification 
are becoming increasingly available in both research and clinical settings, but these methods vary depending on the 
scanner, manufacturer, imaging sequence and reconstruction software being used. Careful selection of the imaging 
method—and correct interpretation—can improve the accuracy of FF measurements, minimize potential confounding 
factors and maximize clinical utility. Here, we review methods for fat quantification and their strengths and weaknesses, 
before considering how they can be tailored to specific applications, particularly in the gastrointestinal and muscu-
loskeletal systems. FF quantification is becoming established as a clinical and research tool, and understanding the 
underlying principles will be helpful to both imaging scientists and clinicians.
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independent of visceral adipose tissue volume.10 Similarly, bone 
marrow adipose tissue has a unique role in the regulation of 
haematopoiesis, bone turnover and systemic metabolism,11 and 
derangements in marrow fat are seen in osteoporosis, obesity, 
diabetes, metastatic malignancy and haematological disorders. 
Increased awareness of the importance of these fat depots has led 
to a demand for noninvasive techniques for measuring organ fat 
content, in both clinical and research settings.

Proton MRI is ideally suited to fat quantification since the 
majority of the acquired signal originates from protons in water 
and fat molecules. Fat and water protons produce signals with 
slightly different frequencies because their chemical environ-
ments give rise to subtle differences in the local magnetic fields 
they experience; the MR signal, therefore, consists of multiple 
spectral components which have frequencies separated by a few 
parts per million (ppm). In a chemical shift-encoded MRI (CSE-
MRI) experiment, the interference of these components leads 
to oscillation in the signal over time, and repeated sampling of 
the signal at varying echo times (TEs) enables quantification of 
the fat and water signals.12 The fat fraction(FF) is defined as the 
signal arising from fat protons divided by the sum of the signals 
from fat and water protons. The FF can be used as a quantitative 
image-based indicator of biological and pathological processes—
an imaging biomarker.13

Recent years have seen a rapid expansion in the number MR 
methods available for measuring the FF, each with its own 
strengths and weaknesses. These methods are being used in 
clinical trials and in clinical practice,14–16 but approaches to 
fat quantification are inconsistent. In clinical practice, simple 
“in  phase and out  of  phase” imaging is commonly used, but 
can be misinterpreted and may be inaccurate in the presence 
of iron or bone.9,17 In this work, we aimed to highlight the 
strengths and weaknesses of different MR techniques for fat 
quantification, and to explain potential confounding factors 
which may introduce bias into FF measurements. Further-
more, we describe a wide variety of existing and potential 
applications of FF mapping, including established applications 
in the liver and more recently introduced applications in bone, 
muscle and heart. We will argue that, quite apart from its role 
in passive energy storage, the presence and quantity of fat in 
a tissue can directly inform us about underlying pathophysio-
logical processes in a wide variety of diseases.

MR Methods for Fat Quantification
Dixon’s method
The original imaging method for fat quantification (“simple 
proton spectroscopic imaging”) was described by WT Dixon.12 
In Dixon’s method, magnitude images were acquired at both 
“in phase (IP)” and “opposed phase (OP)” TEs, at which times 
water and fat would constructively and destructively interfere 
(Figure 1). Water-only and fat-only images (Figure 2) could then 
be obtained at each voxel by adding and subtracting the two 
images, respectively.

However, Dixon’s original method suffered from a major draw-
back. To overcome problems with background magnetic field 

(B0) inhomogeneity, Dixon used only magnitude images for the 
reconstruction (signal phase data were discarded). Any tissue 
consisting of either pure fat or pure water would, therefore, 
have approximately equal signal on the IP and OP images. As a 
result, fatty tissues (such as subcutaneous fat) have high signal 
on the water images but low signal on the FO images, meaning 
that the FF measured would be (incorrectly) close to 0%. This 
phenomenon can potentially cause misinterpretation in clin-
ical practice when in-phase and opposed-phase images are 
visually compared, since lesions consisting of pure fat exhibit 
little signal drop-out on opposed images. Furthermore, this 
is a severe limitation if CSE-MRI is used quantitatively, since 

Figure 1. Principles of Dixon imaging. If the image is acquired 
when the water and fat have the same phase (a), the signals 
from water (W) and fat (F) constructively interfere, and the 
total signal S = W + F. If the image is acquired when water 
and fat are in opposed phase (b), W and F destructively 
interfere and S = W− F. (c) Shows data from a single voxel 
in normal bone marrow (which contains both water and fat), 
using a gradient echo-based Dixon acquisition with very 
closely spaced echo times. This data explicitly shows the sig-
nal oscillation over time as the fat and water signals dephase, 
come back into phase,and then dephase again. There is also a  
progressive reduction in the height of the IP peaks with 
increasing  echo timeowing to signal decay (in this case with 
the time constant T2*). 

http://birpublications.org/bjr


3 of 14 birpublications.org/bjr Br J Radiol;90:20170344

BJRReview article: Fat fraction mapping using MRI

measured FF values will be inaccurate or heavily biased by 
fat-water ambiguity.

Extended two-point methods
To overcome the fat-water ambiguity problem, several authors 
extended Dixon’s method to enable resolution of the ambiguity 
between water-dominant and fat-dominant tissues.18,19 These 
extended methods involve the acquisition of complex-valued 
images (i.e. images with both magnitude and phase data) at in 
phase and out of phase echo times; the phase data is used to 
distinguish between fat-dominant and water-dominant tissues.

Although these extended two-point methods are a substantial 
advance on Dixon’s original method, they are somewhat suscep-
tible to the effects of B0 inhomogeneity, since it can be difficult 
to differentiate between phase shifts owing to B0 effects and 
phase shifts due to chemical shift. One approach to reducing 
the effect of B0 inhomogeneity is to combine these two-point 
methods with phase-unwrapping or region-growing algorithms 
(fat-water separation is usually straightforward if the phase can 
be successfully unwrapped).18,19 Unfortunately, these algorithms 
are somewhat complex and tend to fail in areas of signal cancel-
lation, particularly where the fat and water signals have similar 
magnitude.

Three-point methods
To eliminate the need for complex region-growing methods 
and to improve estimation of B0 inhomogeneity, Glover and 
Schneider introduced a three-point CSE-MRI method enabling 
direct estimation of field inhomogeneity to remove its effects 
from the signal.20 In this method, one IP echo and two OP 

echoes are used; any phase shift between the two opposed 
phase echoes can be attributed to B0 inhomogeneity, which 
can be used to correct the acquired signals. Glover and Schnei-
der’s method was subsequently extended to allow greater flex-
ibility with regard to echo times by Xiang and An21, and a 
three-point method using a similar approach has recently been  
introduced for whole body imaging.22 These three-point methods 
form the basis of a number of manufacturers' methods for rapid 
fat-suppressed imaging, primarily due to their speed and relative 
robustness to artifacts.23,24 However, where FFs need to be calcu-
latedly accurately, a different approach is necessary.

Maximum -likelihood estimation
The extended two-point and three-point methods described 
above were only intended to separate two species (water and fat). 
In practice, the two-species assumption leads to inaccuracies in 
fat quantification, since human fat actually consists of a number 
of spectral fat components (the “main” fat peak comes from 
hydrogen atoms in methylene residues, but methyl, allylic and 
olefinic residues also contribute substantially to the measured 
signal).25 Furthermore, these methods do not account for T2* 
decay, which can introduce a further source of bias.25,26

To account for the effects of spectral fat complexity and T2* decay 
and thereby reduce bias, a maximum-likelihood method can be 
used to find the parameters in a pre-specified signal model which 
will most closely fit the acquired data.27 This approach was first 
proposed by Xiang and An, who used a non-linear least squares 
(NLLS) method with a signal model assuming multiple spec-
tral fat components.  Subsequently, a more general maximum- 
likelihood method—echo asymmetry and least squares  
estimation [IDEAL (iterative decomposition of water and fat with 
echo asymmetry and least squares estimation)]—was proposed 
and developed by Reeder et al28,29 The IDEAL method enables 
an arbitrary choice of echo times (and, importantly, can be 
easily applied to acquisitions with more than three echoes) and 
arbitrary numbers of spectral components. IDEAL can also be 
adapted to account for T2* decay, which substantially improves 
the accuracy of fat quantification in the presence of liver, and 
has been shown to be an accurate measure of fat content both in 
phantoms and in patients with hepatic steatosis.9,25 IDEAL has 
formed the basis of a number of commercially  available algo-
rithms for fat quantification designed for liver imaging, and has 
been widely used in medical imaging research.30–33

Nonetheless, IDEAL also has limitations. The critical step in the 
IDEAL algorithm is the estimation of the B0 field map; however, 
this always involves a degree of ambiguity, and an incorrect B0 
estimation may occur in areas of large inhomogeneity. Modifica-
tions to the IDEAL method using region-growing or graph-cut 
methods can be used to improve performance in the presence 
of B0 inhomogeneity,34,35 but fat-water swaps remain difficult to 
prevent entirely, and algorithm development remains an area of 
active research.

MR spectroscopy
The “gold standard” modality for fat quantification is magnetic 
resonance spectroscopy (MRS), which typically uses point- 

Figure 2. Examples of CSE-MR images. In a two-point CSE-
MRI (Dixon) experiment, images are acquired at IP and OP 
TEs. Addition and subtraction of these images produces 
water only (WO) and fat only (FO) images, respectively. Fat 
fraction (FF) maps can then be generated from the WO and 
FO images as described above.
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resolved spectroscopy or stimulated echo acquisition mode 
single-voxel sequences.9,33,36 Spectra can be used to determine 
both the fat fraction and the specific composition of the fat, 
including fatty acid composition parameters. However, MRS 
cannot be used to generate FF maps, and CSE-MRI methods, 
which allow for high-resolution imaging, are therefore more 
attractive for medical applications. This is particularly important 
in the measurement of organ fat where distribution may be 
spatially heterogenous.

The fat fraction as a biomarker: properties and 
confounders
Two characteristics of primary importance when measuring FF are 
accuracy and precision.37 Accuracy can be viewed as the correct-
ness of a biomarker measurement in comparison to a reference 
standard (an accurate biomarker demonstrates low bias and high 
linearity), whilst precision is a measure of measurement consis-
tency.13,37 The accuracy of FF measurements can be determined 
using fat-water phantoms, typically consisting of emulsions of fat 
and water which are solidified using agar or thickened using carra-
geenan.25,38 Measured FF values can then be directly compared with 
known fat fraction values in the phantom. Precision (repeatability 
and reproducibility) of measurements is typically determined using 
repeat scans, often across multiple scanners and sites.39

Depending on the acquisition, FF measurements may be biased 
by T1 and T2/T2* relaxation, the presence of multiple fat peaks 
noise, phase errors, B1-inhomogeneity and J-coupling.13 The bias 
may be minimized by optimizing acquisition parameters, and/or 
by using post-processing correction strategies.

T1-bias can be minimized by using a low flip angle (typically 5° 
or less) and long repetition times. For gradient echo acquisitions, 
an important consideration is the number of echoes acquired, 
since later echoes are subject to a longer period of T2* decay.40 
Using maximum-likelihood estimation, T2* decay can be incor-
porated into signal models and, therefore, corrected for—this is 
particularly important in organs containing significant quan-
tities of iron or mineralized bone where T2* will be short.26,41 
To minimize the effect of the spectral complexity of fat, a pre- 
defined fat spectrum can be assumed. All CSE-MRI algorithms 
are also dependent on the choice of echo time, echo spacing and 
the presence of noise.42

If all potential sources of bias are eliminated, the FF can then 
be described as a proton density fat fraction (PDFF)—this is 
the ratio of unconfounded fat signal to the sum of the uncon-
founded fat and water signals.43FF measurements which are 
still biased by one or more of these factors may be referred to 
as signal FFs (sFF). Accurate measurement of PDFF potentially 
enables comparison of values between scanners, and across 
multiple sites. Data from multisite, multivendor studies suggest 
that the reproducibility of “confounder-corrected” PDFF 
measurements is excellent in the liver,39,44 although further 
work is required to examine reproducibility for other appli-
cations. Reproducibility is a major strength of CSE-MRI and 
makes this technique attractive for use in research and clinical 
practice.

Practical implementation: choosing a technique
Deciding on an imaging acquisition and post-processing method 
for FF mapping can be a somewhat bewildering process, owing 
to the large variety of acquisition and post-processing methods 
available. The most important choice is whether to use a manuf 
acturer-implemented solution, with inline processing on the 
scanner, or to acquire raw data for offline processing. On most 
modern scanners, users should have access to simple two- or 
three-point methods. The major manufacturers also offer dedi-
cated packages for PDFF measurement, which measure and 
correct for T2* decay and other confounds, and produce PDFF 
maps inline. The major advantage of this approach is ease of 
use; the disadvantage is that the details of the processing meth-
odology are generally not available to the user. Conversely, 
acquiring raw magnitude and phase images enables offline 
processing using a chosen reconstruction method, but is 
dependent on the availability of local expertize and may not be 
feasible for some centres. However, a number of commonly used 
methods for post-processing, including analytical three-point 
methods, versions of the IDEAL algorithm and graph cut-based 
methods, are available through the International Society of 
Magnetic Resonance in Medicine fat-water toolbox.13 This 
toolbox enables the user to try different algorithms on their own 
datasets, enabling them to find a method which works well with 
their data and suits their specific requirements. At our institu-
tion  UCLH/UCL), we typically use a 3D multiecho gradient 
echo acquisition from which we are able to reconstruct both 
PDFF and R2* maps using the manufacturer PDFF product, 
and also extract raw magnitude and phase images for offline- 
reconstruction. Typical acquisition parameters for manuf 
acturer-implemented sequences for PDFF measurement are 
given in Table  1; similar parameters can also be used if raw 
complex data is acquired. For abdominal applications, these 
parameters allow for good anatomical coverage with a scan time 
short enough for acquisition within a breath-hold.

How many points?
The ideal situation is to use an acquisition which allows for 
true PDFF measurement, which generally involves acquiring 
more than three echoes (at our institution we use six). However, 
depending on the clinical problem, meaningful FF measurements 
may be obtained using simple two- or three-point methods. For 
example, patients with haematological malignancies undergo 
relatively large changes in FF compared to normal marrow (and 
with treatment) and a simple sFF measurement is sufficient to 
demonstrate a clinically meaningful effect.45 Conversely, in 
patients with hepatic steatosis, relatively small variations in FF 
can be clinically relevant, whilst T2* effects can cause a signif-
icant bias—a true PDFF measurement is, therefore, required.9 
The choice of acquisition, therefore, depends on the range of 
values expected in normal tissue, the size of the change expected 
in disease and the post-processing software which is available to 
the user.

Echo times
When setting up a CSE-MRI acquisition, the first echo time 
(TE1) and echo spacing (ΔTE) need to be optimized. In general, 
using a shorter ΔTE reduces the sensitivity of the technique to 
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B0 inhomogeneity (effectively increasing the spectral resolution), 
thereby improving the quality of fat-water decomposition.13 
However, a balance needs to be struck between image resolution 
(higher resolution necessitates longer readouts, and therefore 
larger ΔTE), and fat-water decomposition quality. At our institu-
tion, we typically use a multiecho acquisition with TE1 of 0.5–1.5 
ms and ΔTE 0.8–1.5 ms.

Applications
Hepatic steatosis and the metabolic syndrome
Metabolic syndrome (MetS) is a group of risk factors for cardio-
vascular disease, diabetes and stroke, which includes obesity, 
dyslipidaemia, hypertension and raised fasting blood glucose.46 
Although current definitions of MetS do not include hepatic 
steatosis, the association between liver fat and MetS is becoming 
increasingly clear.47–49 Furthermore, non-alcoholic fatty liver 
disease (NAFLD) is the most common cause of chronic liver 
disease in the Western world.50 As such, there is a clinical need 
for simple, non-invasive tools for measuring liver fat. Hepatic 
steatosis (increased liver fat content) was one of the earliest 
applications of the Dixon method, and remains one of the most 
important.

Hepatic steatosis may be either primary (in the case of NAFLD), 
or secondary, e.g. owing to alcoholic liver disease, drug- 
toxicity, hepatitis, pregnancy and parenteral nutrition. NAFLD is 
defined by the presence of hepatic steatosis in the absence of any 
secondary cause, and lies on the benign end of a spectrum with 
non-alcoholic steatohepatitis (NASH), which is a more aggres-
sive disease entity associated with cirrhosis, hepatocellular carci-
noma and end-stage liver disease.

Underpinning MetS is the phenomenon of insulin resistance (IR), 
whereby increasing insulin levels are required to achieve a normal 

metabolic response, or normal insulin levels fail to provide a 
normal metabolic response.51 Accumulation of fat within hepato-
cytes is driven by IR through increases in peripheral lipolysis and  
de novo lipogenesis, and through reductions in beta-oxidation  
of fatty acids within hepatocytes.52,53 Accumulation of intracel-
lular lipid within hepatocytes is the first part of the “two-hit” 
hypothesis,54 after which increased vulnerability to oxidative 
stress, lipid peroxidation, inflammation and mitochondrial 
dysfunction in combination cause chronic hepatocyte injury, 
fibrosis and NASH.55 The widespread prevalence of NAFLD has 
thus become a major healthcare focus, not only to try to avoid 
the much more aggressive NASH phenotype which may evolve 
if untreated, but also as a potential therapeutic target to address 
cardiovascular disease and diabetes mellitus.

The diagnosis of steatosis can be made histologically, but both the 
European Association for the Study of the Liver56 and the Amer-
ican Association for the Study of Liver Disease57 use MRI-based 
criteria to define the condition. For example, the EASL guidelines 
use a threshold of > 5% as measured using PDFF, or > 5.6% by 
MRS. MRS has been seen as the non-invasive gold-standard for 
quantitative assessment of liver fat,8 but the technical complexity 
associated with MRS acquisitions and the spatial heterogeneity of 
hepatic steatosis have led to the widespread use of imaging-based 
methods for assessment of steatosis.58

Numerous studies have now demonstrated the accuracy of 
PDFF measurements using CSE-MRI as compared with MRS,8,59 
histology60–62 or both,24,60,63–65 and the reproducibility of PDFF 
measurements is excellent—Hernando et al39 found an overall 
intraclass correlation coefficient of 0.999 on repeat scans across 
sites, field strengths and vendors  (example of PDFF of normal 
liver and NAFLD shown in Figure 3). Similarly, a large meta-anal-
ysis including data from > 1000 patients has demonstrated 95% 

Table 1. Typical imaging parameters for liver PDFF imaging using manufacturer-implemented PDFF products

Parameter Philips Siemens GE
PDFF manufacturer-supplied package mDixon Quant DIXON FQ in Liver Lab package IDEAL IQ

Sequence variant 3D spoiled gradient echo 3D spoiled gradient echo 3D spoiled gradient echo

Imaging time Breath-hold (<20 s) Breath-hold (< 20 s) Breath-hold (< 20 s)

TR Shortest (5–10ms) Shortest (5–10ms) Shortest (5–10ms)

Number of echoes 6 6 6

TE of first echo (TE1) Shortest (~0.8–1.5ms) Shortest (~ 0.8–1.5ms) Shortest (~ 0.8–1.5ms)

Echo spacing (ΔTE) Shortest (~0.8–1.5ms) Shortest (~ 0.8–1.5ms) Shortest (~ 0.8–1.5ms)

Flip angle 3° 3° 3°

Parallel imaging factor 2 2 2

Number of averages 1 1 0.5

Number of shots – – 2

Reconstructed images Fat-only image
Water-only image
PDFF map
T2* map

Fat-only image
Water-only image
PDFF map
T2* map

Fat-only image
Water-only image
PDFF map
T2* map

IDEAL, iterative decomposition of water and fat with echo asymmetry and least squares estimation; PDFF, proton density fat fraction; TE, echo 
time; TR, repetition time.
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Bland-Altman limits-of-agreement of  ±  4% for liver PDFF  vs  
MRS, with liver PDFF reproducibility coefficients of 4.3% across 
different scanner vendors.66 PDFF measurements are strongly 
correlated with quantitative histopathological assessment of liver 
fat.61,63,67,68 Furthermore, longitudinal studies have suggested 
that PDFF may be more sensitive than histological quantification 
for early steatosis.69,70

The data from these validation studies have supported the use 
of liver PDFF measurements in clinical trials. PDFF measure-
ments have recently been used as endpoints in double-blind 
randomized, placebo-controlled trials of colesevelam and ezeti-
mibe for NASH,14,69 and of insulin glargine and liraglutide for  
poorly controlled Type2 diabetes.71 These studies highlight the 
value of PDFF measurements as primary outcome measures for 
high quality randomized controlled trials evaluating the next 
generation of treatments for NASH, NAFLD and diabetes.

With a progressively established role for liver PDFF measure-
ments in the research setting, there are several challenges facing 
routine clinical implementation. Hepatic steatosis is a spatially 
heterogeneous process,72 and there is some debate about how 
to condense the information stored in imaging maps into  
simple indices that can be used by clinicians.71,73,74 Quantitative 
liver imaging remains in its infancy, but PDFF has a justified role 
alongside other quantitative methods (such as T1 mapping) in 
multiparametric MRI.75 One of the major advantages of PDFF 
acquisitions is that T2* maps, which have a role in the quantifi-
cation of liver iron, can be generated simultaneously. This means 
that two quantitative parametric maps reflecting different aspects 
of liver physiology can be generated quickly and simply.

Pancreatic fat – the missing link?
Qualitative assessment of pancreatic fat accumulation is readily 
undertaken using anatomical MRI, but it can be difficult to 
separate “fatty infiltration” from small volume “fatty replace-
ment” as these can often occur simultaneously.76 Structural 
imaging changes in pancreatic steatosis include accumulation 

of extra-, inter- and intralobular fat, in addition to intracellular 
accumulation of fat, yet the clinical significance of each of these 
processes remains unknown. As a result, some groups have 
recently begun to use quantitative MRI to investigate the role of 
pancreatic fat.

Pancreatic steatosis research has been hampered by confusing 
nomenclature (e.g. pancreatic lipomatosis, fatty pancreas, 
fatty infiltration), but the more recent label of non-alcoholic 
fatty pancreas disease is gradually gaining acceptance.77 Non- 
alcoholic fatty pancreas disease can occur secondary to several 
causes (age, viral infections including HBV and HIV, drug-re-
lated causes, haemochromatosis and congenital causes), but it 
is the association with metabolic causes (obesity and diabetes 
mellitus) that has driven interest in this area of research.78

Histologically, pancreatic steatosis is a heterogeneous process 
characterized by increased intracellular lipid accumulation 
followed by rising pancreatic adipocytes within pancreatic 
tissue.79 A recent meta-analysis quantified normal mean pancre-
atic fat at 4.5 ± 0.9% (based on pooled data across multiple MR 
methods and imaging modalities),80 but precise consensus thresh-
olds have yet to be defined. It is possible that triglyceride over-
load may contribute to beta-cell dysfunction in Type 2 diabetes, 
although a causal relationship between pancreatic steatosis and 
diabetes remains unproven.81 Current evidence regarding the 
relationship between pancreatic fat, body mass index, diabetes, 
MetS and IR is somewhat conflicting and the nature of these 
links remains unclear.82,83 Some large-scale studies have demon-
strated relationships with IR,84,85 but others have failed to find 
a consistent link between age, body mass index, incidence of  
Type 2 diabetes.84,86,87

Histological validation studies suggest reasonable agreement 
between histological measures and PDFF, although the repeat-
ability of the measurement is arguably suboptimal (Yoon 
et al88 found Bland-Altman 95% limits of agreement of ± 17% 
for pancreatic PDFF measurement).  There are several specific 

Figure 3. PDFF maps of a comparable axial slice through the abdomen in two subjects. Despite having comparable subcutaneous 
and intraperitoneal fat volumes, there is differing intravisceral fat with (a) low hepatic and pancreatic fat and (b) NAFLD, with 
heterogeneous left and right steatosis and pancreatic interlobular fatty infiltration. The pancreas is arrowed on both subjects, and 
regions of interest have been placed on the liver to demonstrate differences in hepatic PDFF.
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methodological issues which may contribute to problems with 
repeatability in the pancreas, including the presence of motion 
artefact, differences in the composition of fat compared to liver 
and the fact that pancreatic fat is separated into extra-, inter- and 
intralobular compartments. Just as in the liver, T2* decay needs 
to be accounted for (and may also be a useful biomarker in its 
own right), particularly in iron-deposition disorders such as 
haemochromatosis.89,90

Osteoporosis, obesity and the fat-bone connection
Osteoporosis and obesity are increasingly important public health 
problems, and are associated with a large burden of morbidity 
and mortality. Although these diseases are seemingly disparate, 
both can be traced to the dysfunction of a common progenitor 
cell—the bone marrow mesenchymal stem cell (MSC). MSCs 
can differentiate into either adipocytes or osteoblasts depending 
on their cytokine environment and stromal interactions.91 
Furthermore, adipocytes themselves (which express a variety of 
paracrine and endocrine factors) may actively influence MSC 
differentiation and, therefore, affect bone remodeling.91

Multiple studies have demonstrated an inverse relationship 
between marrow fat content and bone mineral density or bone 
formation rate,92–95 such that osteoblast activity and bone forma-
tion rates are both decreased at sites of high marrow fat.96,97 This 
has led to a the suggestion that osteoporosis is the “obesity of 
bone”.91 Several animal studies have indicated that adipose cells 
may directly reduce bone mass through the action of leptin.98,99 
However, the precise role of marrow fat in the regulation of 
bone formation in humans remains unclear, and changes in 
marrow fat content may partly reflect a passive response to bone 
loss.11,91,100,101 It may be that changes in marrow fat contribute 
to the pathogenesis of certain subtypes of osteoporosis, but not 
others.11

In patients with obesity per se, both visceral and bone marrow 
fat are again adversely associated with bone microarchitec-
ture.102 Visceral fat may negatively impact on bone health via 
modifying insulin-like growth factor-1 (IGF-1) levels; verte-
bral bone marrow fat in postmenopausal females is negatively 
associated with BMD and IGF-1, but positively associated with 
visceral fat.103 Since bone and fat cells have the same mesen-
chymal precursor, IGF-1 may influence BMD through its effect 
on MSC differentiation (into fat or bone lineages).103 Accord-
ingly, mice with IGF-1 suppression have fatty infiltration of the 
marrow and liver and markedly reduced BMD, although they 
are not obese.104

Impairments in bone microarchitecture are also observed in 
diabetic patients, who have an increased fracture risk.105 Again, 
this may occur because obesity and IR cause osteoblast and osteo-
clast dysfunction and, therefore, reduced bone turnover.105,106 
Studies of patients with Type2 diabetes have not revealed signif-
icant differences in marrow FF compared to controls, although 
multiple studies have found that diabetic patients have a greater 
proportion of unsaturated fat.107,108 Conversely, the proportion 
of unsaturated fat in the marrow is thought to decrease in oste-
oporosis, although the significance of this finding is unclear.109

Paradoxically, bone marrow fat is increased in anorexia nervosa 
despite losses in overall body fat.110,111 A possible explanation 
is that marrow adipose tissue increases represent a homeostatic 
response designed to increase appetite and promote insulin 
sensitivity;11 alternatively, marrow adipose tissue may be main-
tained in spite of overall adipose tissue loss owing to its role in 
haematopoiesis and bone turnover.11

FF as a marker of malignant infiltration in bone
In multiple myeloma (MM), the rapid development of novel 
therapeutic strategies requires improved disease staging tech-
niques. Whole-body MRI (WB-MRI) is now widely  avail-
able, relatively cheap and establishing itself as a first-line 
imaging modality in MM.112,113 CSE-MRI may be used as a fast 
“anatomical” imaging modality and enables the simultaneous 
generation of up to four image types using a single sequence (in 
phase, out of phase, WO and FO), which are used for qualitative 
interpretation. Additionally, quantitative FF measurements may 
be used as a marker of marrow composition, and are thought 
to reflect the proportion of haematopoietic (red) and fatty 
(yellow) marrow, which may be altered by malignant infiltra-
tion.114 Patients with symptomatic MM have significantly lower 
PDFF measurements than those with asymptomatic disease.114 
Furthermore, recent work analysing sFF measurements in 
focal MM lesions suggests that sFF measurements may stratify 
patients according to their depth of therapeutic response.45 sFF 
measurements appear to be better discriminator of response 
than alternative tumour volume or apparent diffusion coefficient 
(ADC) values.45

CSE-MRI may also be used to detect skeletal metastases in 
patients with solid tumours, and is reasonably sensitive and 
specific (70.8 and 89.1%, respectively).115 FF measurements are 
also reduced in patients with a malignancy but without skeletal 
involvement, possibly reflecting red marrow proliferation FF 
owing to systemic effects of malignancy or drugs.116

Figure 4. Emerging application of PDFF and R2* measure-
ment in spondyloarthritis. Areas of active inflammation (a, c) 
demonstrate a reduction in fat content, but no change in R2*. 
Areas of chronic inflammation (fat metaplasia) (b, d) demon-
strate an increase in fat content, and a reduction in R2* which 
may indicate local osteoporosis. 
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FF as a measure of skeletal inflammation
An emerging application for PDFF measurements is in patients 
with spondyloarthritis (SpA), in whom quantification of inflam-
mation is important for guiding disease-modifiying and biolog-
ical therapy.

MRI is commonly used to diagnose and monitor axial inflam-
mation in SpA,117 but current clinical imaging protocols consist 
mostly of conventional T1 weighted, T2 weighted and short tau 
inversion recovery spin echo sequences, which can be subjec-
tively interpreted by a radiologist to give a semi-quantitative 
inflammatory “score”.118 However, visual scoring of inflamma-
tion suffers from relatively poor reproducibility - Arnak et al119 
reported kappa coefficients of 0.85 for the presence of bone 
marrow oedema, and 0.61 for global diagnosis of SpA using 
MRI- and is, therefore, not widely used in clinical practice. PDFF 
measurements have, therefore, been investigated as an objec-
tive tool for quantifying active inflammation (i.e. bone marrow 
oedema) and chronic inflammation (which causes an increase in 
marrow fat content known as fat metaplasia) (Figure 4).120 PDFF 
measurements are reduced in areas of active inflammation (likely 
owing to an increase in water content caused by the inflamma-
tory exudate), but increased in areas of chronic inflammation, 
possibly owing to the effect of inflammatory cytokines on MSC 
differentiation.120FF measurements in bone marrow are accu-
rate in fat-water phantoms and have been found to offer excel-
lent reproducibility (reported intraclass correlation coefficient 
values for PDFF in bone vary from 0.87 to 0.98).120, 121 They may, 
therefore, provide a more reliable measurement of inflammatory 
severity than visual interpretation. A further advantage is that 
simultaneously  generated R2* (i.e. 1/T2*) maps are thought to 
report on BMD, and may provide a measure of new bone forma-
tion and bone destruction (both of which are key processes in 
SpA).120 

FF in neuromuscular diseases
Neuromuscular diseases involve a range of pathological processes 
including inflammation, muscle atrophy and fat infiltration, all 
of which may contribute to functional disability. The lack of 
sensitive, responsive outcome measures has been a barrier to the 
development of novel therapies for neuromuscular diseases, and 
there has, therefore been a drive to develop imaging markers of 
disease activity and muscle damage.

Morrow et al122 showed that whole muscle FF measurements 
were altered in patients with both Charcot-Marie-Tooth disease 
and inclusion body myositis, highly responsive to change 
and correlated with conventional functional measures.122 
Different imaging biomarkers appear to reflect different disease 
processes—Yao et al123 showed that muscle T2 and fat-corrected 
T2 measurements were correlated with visual inflammation 
scores, whilst FF measurements correlated with damage scores, 
in patients with idiopathic inflammatory myopathy.  Tech-
nical developments in CSE-MRI methods may enable simul-
taneous quantitation of inflammation and damage. Recently,  
Janiczek et al31 described a technique for simultaneous quan-
titation of T2 of water, T2 of fat and fat fraction in a patient 
with inclusion body myositis, which revealed disease-specific 

patterns of fat infiltration and oedema.  Similarly, in patients 
with myotonic dystrophy, Hiba et al demonstrated a clear rela-
tionship between disease severity and FF measurements in the 
tibialis anterior.124 There is preliminary evidence that subclinical 
progression may be reflected by changes in FF.122 FF measure-
ments also agree closely with histological measures of fat infil-
tration.125 Given the increases in fat content which invariably 
accompany muscle damage, FF measurements are likely to have 
an increasingly important role in therapeutic trials and, ulti-
mately, in the clinic.

Cardiac and vascular applications of CSE-MRI
Intramyocardial fat may arise in both ischaemic and nonischaemic 
cardiomyopathies, and is associated with a poor prognosis.126 
So-called “lipomatous metaplasia” is common in ventricular 
scar tissue following myocardial infarction,127–129 and the trans-
formation of compact scar into compressible “sliding” adipose 
tissue may worsen ventricular function, frequently resulting 
in severe heart failure.129 In patients with dilated cardiomyop-
athy, fat deposition is associated with increased end-diastolic 
and end-systolic volumes, decreased left ventricular ejection 
fraction and increased late gadolinium enhancement (a marker 
of fibrosis).130 A causal link between myocardial fat and func-
tional impairment is currently unproven, although accumulated 
fat (either within adipocytes or the myocytes themselves) may 
be directly toxic to the myocardium. It has been suggested that 
lipid accumulation may sometimes be a precursor to myocar-
dial infarction, potentially due to metabolic changes resulting 
from low-grade ischaemia, although this suggestion remains 
unproven.131

Cardiac fat quantification studies have relied on multiecho 
Dixon-like methods, which are sensitive to small concentrations 
of myocardial fat.28–35 These methods are typically ECG-gated, 
which enables acquisition of data during diastole and a subse-
quent improvement in resolution compared to non-gated 
methods.132 Although “conventional” fat suppression using 
chemical shift selective pulses can also be used in the heart, 
Dixon-like methods offer superior fat-water decomposition in 
the presence of B0 inhomogeneity.132 Similar to imaging other 
organs, T1 and T2* decay and noise can potentially confound FF 
measurements, but can be corrected for.133 Once this correction 
has been performed, PDFF measurements using Dixon MRI 
agree closely with MRS measurements.133

Finally, FF and R2* measurements may be valuable as markers 
of plaque composition in patients with carotid atherosclerosis – 
Koppal et al41 showed that FF measurements reflect lipid compo-
sition, whilst R2* measurements reflect intraplaque haemorrhage.

Perspectives and Conclusion
Far from being an inert energy store, adipose cells are highly 
physiologically active and have an extensive role in both 
normal physiology and disease. CSE-MRI is rapidly emerging 
as the primary clinical and research tool for fat quantification, 
and has a multitude of existing and emerging applications. 
Although abdominal fat quantification in obesity and metabolic 
syndromes are among the most obvious, there are a multitude of 
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