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Abstract

Methane emissions from the U.S. oil and natural gas supply chain were estimated using ground-

based, facility-scale measurements and validated with aircraft observations in areas accounting for 

~30% of U.S. gas production. When scaled up nationally, our facility-based estimate of 2015 

supply chain emissions is 13±2 Tg/y, equivalent to 2.3% of gross U.S. gas production. This value 

is ~60% higher than the U.S. EPA inventory estimate, likely because existing inventory methods 

miss emissions released during abnormal operating conditions. Methane emissions of this 

magnitude, per unit of natural gas consumed, produce radiative forcing over a 20-year time 

horizon comparable to the CO2 from natural gas combustion. Significant emission reductions are 

feasible through rapid detection of the root causes of high emissions and deployment of less 

failure-prone systems.

One Sentence Summary:

A synthesis of recent measurements shows that methane emissions from the U.S. oil and natural 

gas supply chain exceed U.S. EPA estimates by ~60%.

Methane (CH4) is a potent greenhouse gas, and CH4 emissions from human activities since 

pre-industrial times are responsible for 0.97 W m−2 of radiative forcing, as compared to 1.7 

W m−2 for carbon dioxide (CO2) (1). CH4 is removed from the atmosphere much more 

rapidly than CO2, thus reducing CH4 emissions can effectively reduce the near-term rate of 

warming (2). Sharp growth in U.S. oil and natural gas (O/NG) production beginning around 

2005 (3) raised concerns about the climate impacts of increased natural gas use (4, 5). By 

2012, disagreement among published estimates of CH4 emissions from U.S. natural gas 

operations led to a broad consensus that additional data were needed to better characterize 

emission rates (4–7). A large body of field measurements made between 2012 and 2016 

(Table S1) has dramatically improved understanding of the sources and magnitude of CH4 

emissions from the industry’s operations. Brandt et al. summarized the early literature (8); 

other assessments incorporated elements of recent data (9–11). This work synthesizes recent 

studies to provide an improved overall assessment of emissions from the O/NG supply 

chain, which we define to include all operations associated with oil and natural gas 

production, processing and transport (Section S1.0) (12).

Measurements of O/NG CH4 emissions can be classified as either top-down (TD) or bottom-

up (BU). TD studies quantify ambient methane enhancements using aircraft, satellites or 

tower networks and infer aggregate emissions from all contributing sources across large 

geographies. TD estimates for nine O/NG production areas have been reported to date (Table 

S2). These areas are distributed across the U.S. (Fig. S1) and account for ~33% of natural 

gas, ~24% of oil production, and ~14% of all wells (13). Areas sampled in TD studies also 

span the range of hydrocarbon characteristics (predominantly gas, predominantly oil, or 

mixed), as well as a range of production characteristics such as well productivity and 

maturity. In contrast, BU studies generate regional, state, or national emission estimates by 
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aggregating and extrapolating measured emissions from individual pieces of equipment, 

operations, or facilities, using measurements made directly at the emission point or, in the 

case of facilities, directly downwind.

Recent BU studies have been performed on equipment or facilities that are expected to 

represent the vast majority of emissions from the O/NG supply chain (Table S1). In this 

work we integrate the results of recent facility-scale BU studies to estimate CH4 emissions 

from the U.S. O/NG supply chain, and then we validate the results using TD studies (Section 

S1). The probability distributions of our BU methodology are based on observed facility-

level emissions, in contrast to the component-by-component approach used for conventional 

inventories. We thus capture enhancements produced by all sources within a facility, 

including the heavy tail of the distribution. When the BU estimate is developed in this 

manner, direct comparison of BU and TD estimates of CH4 emissions in the nine basins for 

which TD measurements have been reported indicates agreement between methods, within 

estimated uncertainty ranges (Fig. 1).

Our national BU estimate of total CH4 emissions in 2015 from the U.S. O/NG supply chain 

is 13 (+2.1/−1.6, 95% confidence interval) Tg CH4/y (Table 1). This estimate of O/NG CH4 

emissions can also be expressed as a production-normalized emission rate of 2.3% (+0.4%/

−0.3%) by normalizing by gross natural gas production (33 tcf/y, (13) with average CH4 

content of 90 vol%). Roughly 85% of national BU emissions are from production, gathering, 

and processing sources, which are concentrated in active O/NG production areas.

Our assessment does not update emissions from local distribution and end use of natural gas, 

due to insufficient information addressing this portion of the supply chain. However, recent 

studies suggest that local distribution emissions are significant, exceeding the current 

inventory estimate (14–16), and that end-user emissions might also be important. If these 

findings prove to be representative, overall emissions from the natural gas supply chain 

would increase relative to the value in Table 1 (Section S1.5).

Our BU method and TD measurements yield similar estimates of U.S. O/NG CH4 emissions 

in 2015, and both are significantly higher than the corresponding estimate in the U.S. 

Environmental Protection Agency’s Greenhouse Gas Inventory (EPA GHGI) (Table 1, 

Section S1.3) (17). Discrepancies between TD estimates and the EPA GHGI have been 

reported previously (8, 18). Our BU estimate is 63% higher than the EPA GHGI, largely due 

to a more than two-fold difference in the production segment (Table 1). The discrepancy in 

production sector emissions alone is ~4 Tg CH4/y, an amount larger than the emissions from 

any other O/NG supply chain segment. Such a large difference cannot be attributed to 

expected uncertainty in either estimate: the extremal ends of the 95% confidence intervals 

for each estimate differ by 20% (i.e., ~12 Tg/y for the lower bound of our BU estimate can 

be compared to ~10 Tg/y for the upper bound of the EPA GHGI estimate).

We believe the reason for such large divergence is that sampling methods underlying 

conventional inventories systematically underestimate total emissions because they miss 

high emissions caused by abnormal operating conditions (e.g., malfunctions). Distributions 

of measured emissions from production sites in BU studies are invariably “tail-heavy”, with 
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large emission rates measured at a small subset of sites at any single point in time (19–22). 

The difference between the EPA GHGI and BU estimates derived from facility-level 

measurements is explained if measurements used to develop GHGI emission factors under-

sampled abnormal operating conditions encountered during the BU work. Component-based 

inventory estimates like the GHGI have been shown to underestimate facility-level emissions 

(23), probably because of the technical difficulty and safety and liability risks associated 

with measuring large emissions from, for example, venting tanks such as those observed in 

aerial surveys (24).

Abnormal conditions causing high CH4 emissions have been observed in studies across the 

O/NG supply chain. An analysis of site-scale emission measurements in the Barnett Shale 

concluded that equipment behaving as designed could not explain the number of high-

emitting production sites in the region (23). An extensive aerial infrared camera survey of 

~8,000 production sites in seven U.S. O/NG basins found that ~4% of surveyed sites had one 

or more observable high emission-rate plumes (24) (detection threshold of ~3–10 kg CH4/h 

was 2–7 times higher than mean production site emissions estimated in this work). 

Emissions released from liquid storage tank hatches and vents represented 90% of these 

sightings. It appears that abnormal operating conditions must be largely responsible, because 

the observation frequency was too high to be attributed to routine operations like condensate 

flashing or liquid unloadings alone (24). All other observations were due to anomalous 

venting from dehydrators, separators and flares. Notably, the two largest sources of 

aggregate emissions in the EPA GHGI – pneumatic controllers and equipment leaks – were 

never observed from these aerial surveys. Similarly, a national survey of gathering facilities 

found that emission rates were four times higher at the 20% of facilities where substantial 

tank venting emissions were observed, as compared to the 80% of facilities without such 

venting (25). In addition, very large emissions from leaking isolation valves at transmission 

and storage facilities were quantified using downwind measurement but could not be 

accurately (or safely) measured using on-site methods (26). There is an urgent need to 

complete equipment-based measurement campaigns that capture these large emission events, 

so that their causes are better understood.

Outdated component emission factors and temporal bias are unlikely to explain the 

difference between our facility-based BU estimate and the GHGI. First, an equipment-level 

inventory analogous to the EPA GHGI but updated with recent direct measurements of 

component emissions (Section S1.4) predicts total production emissions that are within 

~10% of the EPA GHGI, although the contributions of individual source categories differ 

significantly (Table S3). Second, we consider unlikely an alternative hypothesis that 

systematically higher emissions during daytime sampling cause a high bias in TD methods 

(Section S1.6). Two other factors may lead to low bias in EPA GHGI and similar inventory 

estimates. Operator cooperation is required to obtain site access for emission measurements 

(8). Operators with lower-emitting sites are plausibly more likely to cooperate in such 

studies, and workers are likely to be more careful to avoid errors or fix problems when 

measurement teams are on site or about to arrive. The potential bias due to this “opt-in” 

study design is very challenging to determine. We therefore rely primarily on site-level, 

downwind measurement methods with limited or no operator forewarning to construct our 

BU estimate. Another possible source of bias is measurement error. It has been suggested 

Alvarez et al. Page 4

Science. Author manuscript; available in PMC 2019 January 13.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



that malfunction of a measurement instrument widely used in the O/NG industry contributes 

to underestimated emissions in inventories (27); however, this cannot explain the >2× 

difference in production emissions (28).

The tail-heavy distribution for many O/NG CH4 emission sources has important 

implications for mitigation since it suggests that most sources – whether they represent 

whole facilities or individual pieces of equipment – can have lower emissions when they 

operate as designed. We anticipate that significant emissions reductions could be achieved 

by deploying well-designed emission detection and repair systems that are capable of 

identifying abnormally operating facilities or equipment. For example, pneumatic controllers 

and equipment leaks are the largest emission sources in the O/NG production segment 

exclusive of missing emission sources (38% and 21%, respectively; Table S3) with 

malfunctioning controllers contributing 66% of total pneumatic controller emissions 

(Section S1.4) and equipment leaks 60% higher than the GHGI estimate.

Gathering operations, which transport unprocessed natural gas from production sites to 

processing plants or transmission pipelines, produce ~20% of total O/NG supply chain CH4 

emissions. Until the publication of recent measurements (29), these emissions were largely 

unaccounted by the EPA GHGI. Gas processing, transmission and storage together 

contribute another ~20% of total O/NG supply chain emissions, most of which come from 

~2,500 processing and compression facilities.

Our estimate of emissions from the U.S. O/NG supply chain (13 Tg CH4/y) compares to the 

EPA estimate of 18 Tg CH4/y for all other anthropogenic CH4 sources (17). Natural gas 

losses are a waste of a limited natural resource (~$2 billion/y), increase global levels of 

surface ozone pollution (30), and significantly erode the potential climate benefits of natural 

gas use. Indeed, our estimate of CH4 emissions across the supply chain, per unit of gas 

consumed, results in roughly the same radiative forcing as does the CO2 from combustion of 

natural gas over a 20-year time horizon (31% over 100 years). Moreover, the climate impact 

of 13 Tg CH4/y over a 20-year time horizon roughly equals that from the annual CO2 

emissions from all U.S. coal-fired power plants operating in 2015 (31% of the impact over a 

100-year time horizon) (Section S1.7).

We suggest that inventory methods would be improved by including the substantial volume 

of missing O/NG CH4 emissions evident from the large body of scientific work now 

available and synthesized here. Such empirical adjustments based on observed data have 

been previously used in air quality management (31).

The large spatial and temporal variability in CH4 emissions for similar equipment and 

facilities (due to equipment malfunction and other abnormal operating conditions) reinforces 

the conclusion that significant emission reductions are feasible. Key aspects of effective 

mitigation include pairing well-established technologies and best practices for routine 

emission sources with economically viable systems to rapidly detect the root causes of high 

emissions arising from abnormal conditions. The latter could involve combinations of 

current technologies such as on-site leak surveys by company personnel using optical gas 

imaging (32), deployment of passive sensors at individual facilities (33, 34) or mounted on 
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ground-based work trucks (35), and in situ remote sensing approaches using tower networks, 

aircraft or satellites (36). Over time, the development of less failure-prone systems would be 

expected through repeated observation of and further research into common causes of 

abnormal emissions, followed by re-engineered design of individual components and 

processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of this work’s bottom-up (BU) estimates of methane emissions from oil and 

natural gas (O/NG) sources to top-down (TD) estimates in nine U.S. O/NG production areas. 

(O/NG) sources to top-down (TD) estimates in nine U.S. O/NG production areas. A: relative 

differences of the TD and BU mean emissions, normalized by the TD value, rank ordered by 

natural gas production in billion cubic feet per day (bcf/d, where 1 bcf = 2.8 × 107 m3). 

Error bars represent 95% confidence intervals. B: distributions of the 9-basin sum of TD and 

BU mean estimates (blue and orange probability density, respectively). Neither the ensemble 

of TD-BU pairs (A) nor the 9-basin sum of means (B) are statistically different (p=0.13 by a 

randomization test, and mean difference of 11% [95% confidence interval of −17% to 

41%]).
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Table 1.

Summary of this work’s bottom-up estimates of CH4 emissions from the U.S. oil and natural gas (O/NG) 

supply chain (95% confidence interval) and comparison to the EPA Greenhouse Gas Inventory (GHGI).

Industry segment
2015 CH4 Emissions (Tg/y)

This work (bottom-up) EPA GHGI (17)

Production 7.6 (+1.9/−1.6) 3.5

Gathering 2.6 (+0.59/−0.18) 2.3

Processing 0.72 (+0.20/−0.071) 0.44

Transmission and Storage 1.8 (+0.35/−0.22) 1.4

Local Distribution* 0.44 (+0.51/−0.22) 0.44

Oil Refining and Transportation* 0.034 (+0.050/−0.008) 0.034

U.S. O/NG total 13 (+2.1/−1.7) 8.1 (+2.1/−1.4)†

*
This work’s emission estimates for these sources are taken directly from the GHGI. The local distribution estimate is expected to be a lower bound 

on actual emissions and does not include losses downstream of customer meters due to leaks or incomplete combustion (Section S1.5).

†
The GHGI only reports industry-wide uncertainties.
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