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Abstract
Variability quenching is a widespread neural phenomenon in which trial-to-trial variability (TTV) of

neural activity is reduced by repeated presentations of a sensory stimulus. However, its neural mech-

anism and functional significance remain poorly understood. Recurrent network dynamics are sug-

gested as a candidate mechanism of TTV, and they play a key role in consciousness. We thus asked

whether the variability-quenching phenomenon is related to the level of consciousness. We hypothe-

sized that TTV reduction would be compromised during reduced level of consciousness by propofol

anesthetics. We recorded functional magnetic resonance imaging signals of resting-state and

stimulus-induced activities in three conditions: wakefulness, sedation, and unconsciousness (i.e., deep

anesthesia). We measured the average (trial-to-trial mean, TTM) and variability (TTV) of auditory

stimulus-induced activity under the three conditions. We also examined another form of neural vari-

ability (temporal variability, TV), which quantifies the overall dynamic range of ongoing neural activity

across time, during both the resting-state and the task. We found that (a) TTM deceased gradually

from wakefulness through sedation to anesthesia, (b) stimulus-induced TTV reduction normally seen

during wakefulness was abolished during both sedation and anesthesia, and (c) TV increased in the

task state as compared to resting-state during both wakefulness and sedation, but not anesthesia.

Together, our results reveal distinct effects of propofol on the two forms of neural variability (TTV

and TV). They imply that the anesthetic disrupts recurrent network dynamics, thus prevents the sta-

bilization of cortical activity states. These findings shed new light on the temporal dynamics of neuro-

nal variability and its alteration during anesthetic-induced unconsciousness.
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1 | INTRODUCTION

A close relationship between spontaneous and stimulus-induced neu-

ral activities, based on the assumption of a linear superposition, is a

commonly held tenet of the neuroscientific literature (Arieli, Sterkin,

Grinvald, & Aertsen, 1996; Azouz & Gray, 1999; Becker, Reinacher,

Freyer, Villringer, & Ritter, 2011; Fox, Snyder, Zacks, & Raichle, 2006).

Given this assumption, the variance of the spontaneous and stimulus-

induced activities across trials should be additive as a direct conse-

quence of the law of total variance (He, 2013). Then, one would

expect to find an increase of total variability after stimulus onset.

A number of experiments have challenged this view by showing a

decrease in trial-to-trial variability (TTV), commonly called TTV reduc-

tion, after stimulus-onset. TTV reduction has been consistently

observed in cellular recordings (Chang, Armstrong, & Moore, 2012;

Churchland et al., 2010; Finn, Priebe, & Ferster, 2007; Monier, Chavane,

Baudot, Graham, & Frégnac, 2003; Scaglione, Moxon, Aguilar, & Foffani,

2011; White, Abbott, & Fiser, 2012), electroencephalography/electro-

corticography (EEG/ECoG) (He & Zempel, 2013; Schurger, Sarigiannidis,

Naccache, Sitt, & Dehaene, 2015), and functional magnetic resonance

imaging (fMRI; Ferri et al., 2015; He, 2013; Huang et al., 2017). These

data were collected across a variety of species and brain areas and

under a broad range of stimulus conditions suggesting that TTV reduc-

tion driven by stimulation or task was a widespread neural phenome-

non. These findings also demonstrated that the spontaneous and

stimulus-induced activities were not independent but interacting with

each. This interaction was thought to be mediated by active noise sup-

pression (White et al., 2012), characterized as negative interaction (He,

2013), or nonlinear phase-dependence (Huang et al., 2017).

Behaviorally, stronger TTV reduction is associated with faster

reaction time (He, 2013), superior perceptual abilities (Arazi, Gonen-

Yaacovi, & Dinstein, 2017; Baria, Maniscalco, & He, 2017; Schurger

et al., 2015), and superior memory recall (Xue et al., 2010). Therefore,

it is plausible to assume that neuronal mechanisms involved in TTV

reduction contribute to the disambiguation of environmental signals

and enhance the efficiency of cortical information processing

(Churchland et al., 2010; Finn et al., 2007; Monier et al., 2003; White

et al., 2012).

The mechanism underlying TTV reduction has been explored by a

series of neuronal network modeling studies. For instance, the TTV

reduction by stimuli can arise from recurrent processing during which

the states of cortical activity are stabilized by inputs (Deco & Hugues,

2012; Litwin-Kumar & Doiron, 2012; Mazzucato, Fontanini, & La

Camera, 2015; Rajan, Abbott, & Sompolinsky, 2010; Sussillo & Abbott,

2009). Recurrent network dynamics, consisting of distinct feedfor-

ward and feedback information flow, have been suggested as a mech-

anism of consciousness (Boly et al., 2011; Lamme & Roelfsema, 2000;

Mashour, 2014; Moutard, Dehaene, & Malach, 2015; Tononi, Boly,

Massimini, & Koch, 2016; Tononi & Edelman, 1998). This led us to ask

whether the stimulus-related TTV reduction also depends upon the

level of consciousness. We hypothesized that TTV reduction would

be reduced or absent when the level of consciousness is reduced. This

hypothesis was supported by previous studies demonstrating that

various anesthetics diminished recurrent processing through the

suppression of anterior–posterior cortical feedback signaling (Alkire,

Hudetz, & Tononi, 2008; Imas, Ropella, Ward, Wood, & Hudetz, 2005;

Lee et al., 2013; Mashour & Hudetz, 2018).

On the first sight, neural variability may seem detrimental for

accurate cognitive processing, perception, and potentially con-

sciousness. However, several studies suggest that temporal vari-

ability (TV), defined as a fluctuation of neural activity over time,

is beneficial for the neural system's adaptability, efficiency, and

cognitive performance (Dai et al., 2016; Garrett, Kovacevic,

McIntosh, & Grady, 2010, 2011, 2013; Garrett, Samanez-Larkin,

et al., 2013; McIntosh et al., 2010; McIntosh, Kovacevic, & Itier,

2008; Vakorin, Lippe, & McIntosh, 2011). Moreover, higher TV

may reflect greater network complexity that is more capable for

modulating its activity to explore a larger repertoire of brain

states (Faisal, Selen, & Wolpert, 2008; Garrett, McIntosh, & Grady,

2011; Hudetz, Liu, & Pillay, 2015; Mišić, Vakorin, Paus, &

McIntosh, 2011; Shew, Yang, Petermann, Roy, & Plenz, 2009;

Vakorin, Mišić, Krakovska, & McIntosh, 2011). Conversely, when

TV is low, such as during reduced level of consciousness, the

capacity of the brain to explore different configurations/states

would be reduced (Baria et al., 2018; Huang, Dai, et al., 2014;

Huang, Wang, et al., 2014; Huang et al., 2016; Hudetz et al.,

2015; Tagliazucchi, Chialvo, Siniatchkin, Brichant, & Laureys, 2016;

Zhang et al., 2018).

In summary, on one hand, higher neural variability appears impor-

tant for cognitive functioning and consciousness; on the other hand, a

reduction of variability seems essential for stimulus processing or task

response. The crucial point to dissolve the apparent contradiction is

the distinction between the two forms of neural variability—the

quenching of stimulus-induced variability (i.e., TTV reduction), and the

variability of ongoing neural activity across time (i.e., TV during

resting-state or entire task state). As alluded to above, the high TV of

ongoing activity can be considered as the brain's exploration of possi-

ble states within a region of neuronal activity space (Churchland et al.,

2010; Deco & Hugues, 2012; He, 2013; Nogueira, Lawrie, & Moreno-

Bote, 2018; Ponce-Alvarez, He, Hagmann, & Deco, 2015; Tononi

et al., 2016), whereas a superimposed stimulation would shrink the

available neuronal activity space to a subset with high stimulus-

relevance; thus reducing the neural states from “exploratory” to

“certainty.”

How the two forms of neural variability (TV and TTV) may be

affected in reduced states of consciousness has not been elicited in

the same experimental paradigm. Given its significance, we set out to

investigate this question by an approach using anesthetic modulation

of the level of consciousness. Specifically, we tested the hypothesis,

the lack of TTV reduction during anesthetic administration as deter-

mined from blood oxygen-level dependent (BOLD) signals of sponta-

neous (resting-state) and stimulus-induced activities in three

conditions: wakefulness, propofol-induced sedation, and unconscious-

ness (i.e., deep anesthesia). We measured the average (trial-to-trial

mean, TTM) and variability (TTV) of the stimulus-induced activity in

response to auditory stimuli. We also measured the TV of ongoing

activity during both resting-state and task, and calculated the TV dif-

ference between resting and task states (i.e., task modulation of TV),

under the three conditions.
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2 | MATERIALS AND METHODS

2.1 | Subjects

The study was approved by the institutional review board of Huashan

Hospital, Fudan University. Informed consent was obtained by all the

subjects to participant in the study. Twenty right-handed subjects

were recruited (male/female: 8/12; age: 32–64 years), who were

undergoing an elective transsphenoidal approach for resection of a

pituitary microadenoma. The pituitary microadenomas were diag-

nosed by their size (<10 mm in diameter without growing out of the

sella) based on radiological examinations and plasma endocrinal

parameters. These subjects were American Society of Anesthesiolo-

gists physical status I or II grade, with no history of craniotomy, cere-

bral neuropathy, vital organ dysfunction, or administration of

neuropsychiatric drugs. The subjects had no contraindication for an

MRI examination, such as vascular clips or metallic implants. Among

them, five subjects had to be excluded from the study and further

data analysis because of excessive movements. Also, see below for

more details on motion correction and subject exclusion.

2.2 | Anesthesia protocol

Subjects fasted for at least 8 hr from solids and 2 hr from liquids

before participating the study. During the fMRI study, vital signs

including blood pressure, heart rate, pulse oximetry (SpO2), and partial

pressure of carbon dioxide (PaCO2) were continuously monitored

(Table 1). The subjects received propofol sedation and deep anesthe-

sia, during which intravenous anesthetic propofol was infused through

an intravenous catheter placed into a vein of the right hand or fore-

arm. Propofol acts mainly on GABAA receptors, potentiating GABAer-

gic interneurons in the cortex and enhancing neuronal inhibition

(Brown, Purdon, & Van Dort, 2011; Franks, 2008). Propofol was

administered using a target controlled infusion (TCI) pump to obtain

constant effect-site concentration, as estimated by the pharmacoki-

netic model (Marsh, Morton, & Kenny, 1991). Remifentanil (1.0 μg/kg)

and succinylcholine (1.5 mg/kg) were administered to facilitate endo-

tracheal intubation at deep anesthesia. TCI concentrations were

increased in 0.1 μg/ml steps beginning at 1.0 μg/ml until reaching the

appropriate effect-site concentration. A 5-min equilibration period

was allowed to insure equilibration of propofol repartition between

compartments.

The TCI propofol were maintained at a stable effect-site concen-

tration of 1.3 μg/ml for sedation, and 4.0 μg/ml for deep anesthesia

of which the dose reliably induces an unconscious state (Xu et al.,

2009). The level of consciousness was evaluated clinically throughout

the study with the Ramsay scale (Ramsay, Savege, Simpson, &

Goodwin, 1974). The subjects were asked to strongly squeeze the

hand of the investigator. The subject was considered fully awake if

the response to verbal command (“squeeze strongly my hand!”) is clear

and strong (Ramsay 1–2), in mild sedation if the response to verbal

command is clear but slow (Ramsay 3–4), and in deep sedation or gen-

eral anesthesia if there is no response to verbal command (Ramsay

5–6). For each assessment, Ramsay scale verbal commands were

repeated twice (before remifentanil and succinylcholine were adminis-

trated at deep anesthesia) (Table 1). As anticipated, the corresponding

Ramsay scores (n = 11; mean � SD) for 1.3 μg/ml and 4.0 μg/ml of

propofol concentration were 3.8 � 1.7 and 6.0 � 0.

The subjects breathed spontaneously during wakefulness and

sedation. During deep anesthesia, the subjects were ventilated with

intermittent positive pressure ventilation, setting tidal volume at

8–10 ml/kg, respiratory rate 10–12 beats/min, and maintaining

PetCO2 (partial pressure of end tidal CO2) at 35–45 mmHg. Two cer-

tified anesthesiologists were present throughout the study, and com-

plete resuscitation equipment were always available. Subjects wore

earplugs and headphones during the fMRI scanning.

2.3 | Data acquisition

fMRI acquisition consisted of 8-min eyes closed resting-state and

18-min task-state (auditory stimuli) scans for each level of conscious-

ness (wakefulness, sedation, and anesthesia). The subject's head was

fixed in the scan frame and padded with spongy cushions to minimize

head movement. The subjects were informed to take a comfortable

supine position and to relax with their eyes closed during scanning

(with an eye patch). The subjects were instructed not to concentrate

on anything in particular during resting-state scan, and listen to the

sound during task scan. A Siemens 3 T scanner (Siemens MAGNE-

TOM, Erlangen, Germany) with a standard head coil was used to

acquire gradient-echo images of the whole brain via echo-planar imag-

ing, EPI (33 slices, repetition time/echo time [TR/TE] = 2,000/30 ms,

slice thickness 5 = mm, field of view = 210 mm, flip angle = 90�,

image matrix: 64 × 64); 240 scans (8 min) were acquired for the

resting-states, and 540 scans (18 min) were acquired for the task. In

addition, high-resolution anatomical images were acquired.

2.4 | Task-fMRI design

A sparse event-related design was adopted with 60 trials. This

included 30 own and 30 other (an unknown person's name) names

that were delivered in a pseudo-random order. The names were pre-

sented by a familiar voice (recorded from one of the patients' family

members) with an audio clip lasting for 0.5 s (see (Lipsman et al.,

2014; Qin et al., 2012) for details of this well-established paradigm).

TABLE 1 Propofol concentrations, vital signs and behavioral assessments

Propofol concentration Mean blood pressure (mmHg) Heart rate (beats/min) SPO2 PaCO2 (mmHg) Ramsay scores

Wakefulness
(0 μg/ml)

180 � 37/85 � 13
(mean � SD)

68 � 11 98% � 1% 40.2 � 3.6 1.0 � 0

Sedation
(1.3 μg/ml)

141 � 19/74 � 11 63 � 8 99% � 1% 46.0 � 7.5 3.8 � 1.7

Anesthesia
(4.0 μg/ml)

133 � 29/72 � 12 71 � 13 99% � 0% 41.0 � 4.4 6.0 � 0

HUANG ET AL. 4535



The unknown names were matched to the own name by gender and

number of syllables. In the presented study, own and other names

were collapsed into a single condition (auditory stimuli) in order to

increase the total number of trials which is beneficial for TTV calcula-

tion (see below). Each audio clip was followed by inter-trial-intervals

(ITIs) ranging unpredictably from 15.5 to 25.5 s (2 s-step). The benefit

of long ITIs was avoiding potential nonlinearities associated with over-

lapping hemodynamic responses between preceding and subsequent

trials, especially for TTV calculation (Huang et al., 2017). All stimuli

were programmed using E-Prime 2.0 (Psychology Software Tools,

Pittsburgh, PA) and delivered via an audiovisual stimulus presentation

system designed for an MRI environment. The volume of the head-

phones was adjusted to the comfort level. The subjects were required

to pay attention and passively listen to the names without behavioral

response or judgment.

2.5 | Data preprocessing

Preprocessing steps were implemented in AFNI (http://afni.nimh.

nih.gov/afni) including: (a) discarding the first four frames of each

fMRI run; (b) slice timing correction; (c) rigid body correction/realign-

ment within and across runs; (d) coregistration with high-resolution

anatomical images; (e) spatial normalization into Talaraich stereotac-

tic space; (f ) resampling to 3 × 3 × 3 mm3 voxels; (g) regressing out

linear and nonlinear drift (equivalent to a high-pass filtering of

0.0067 Hz), head motion and its temporal derivative, and mean time

series from the white matter and cerebrospinal fluid to control for

nonneural noise (Fox et al., 2005); (h) spatial smoothing with a 8 mm

full-width at half-maximum isotropic Gaussian kernel; (i) the time-

course per voxel was normalized into z-value by subtracting the

mean and dividing by the standard deviation (SD) of BOLD signals

across all scans, accounting for differences in variance of nonneural

origin (e.g., distance from head coil) (He, 2011; Stephens, Honey, &

Hasson, 2013).

The issue of motion artifacts was addressed rigorously as minor

group differences in motion have been shown to artificially create

between-groups differences (Power et al., 2014; Power, Barnes, Sny-

der, Schlaggar, & Petersen, 2012; van Dijk, Sabuncu, & Buckner,

2012). We first calculated the indices of the amount of motion (shift

and rotation) for each subject (Zang et al., 2007). Subjects whose head

motion's shift >3 mm or rotation >3� were excluded. For the remain-

ing subjects, frame-wise displacement (FD) motion censoring was cal-

culated using frame-wise Euclidean Norm (square root of the sum

squares) of the six-dimension motion derivatives. A frame (TR) and its

each previous frame were censored out from the data (using AFNI

function 3dTproject) if the given frame's derivative value has a Euclid-

ean Norm of FD > 0.4 mm (Huang, Liu, Mashour, & Hudetz, 2018).

Furthermore, to further exclude the potential confound of head

motion, the head motion indices was included as covariates during

group-level analysis.

It has been shown that including or excluding global signal regres-

sion (GSR) during preprocessing may affect the interpretations of the

results (Chai, Castañán, Öngür, & Whitfield-Gabrieli, 2012; Murphy,

Birn, Handwerker, Jones, & Bandettini, 2009; Murphy & Fox, 2017;

Saad et al., 2012). For this reason, we presented and compared the

results both with and without GSR for all the following analyses.

2.6 | The average of stimulus-induced activity

The average of stimulus-induced BOLD signal changes at each time

point across trials was calculated within the time window after stimu-

lus presentation (0–15 s). The averaged time-course of each voxel of

each subject was normalized by subtracting the mean value at stimu-

lus onset (0–1 s). The peak value of evoked activity (4–5 s) was

defined as TTM (trial-to-trial mean) index. Unlike conventional general

linear model (GLM) analysis, we adopted TTM to quantify the

stimulus-evoked activity and thus to make the results comparable

with the TTV index (see below). Also note that we compared the

results between TTM and estimated activity (regression coefficients, β

value) using GLM; the results of the two were approximately the

same. Whole-brain voxel-wise one sample t tests against zero were

performed at the group level for each condition, that is, wakefulness,

sedation, and deep anesthesia. Unless otherwise stated, all resulting z-

maps were thresholded at α < 0.05 at the cluster level, where the cor-

responding p value at the voxel level was 0.005 with a cluster size of

85 voxels. This was achieved using AFNI's upgraded function 3dClust-

Sim that simulates noise volume assuming the spatial auto-correlation

function is given by a mixed-model rather than a Gaussian-shaped

function (Cox, Chen, Glen, Reynolds, & Taylor, 2017).

2.7 | The variability of stimulus-induced activity

The SD of BOLD signal changes at each time point across trials was

calculated within the time window after stimulus presentation

(0–15 s). The SD time-course of each voxel of each subject was nor-

malized by subtracting and dividing by the SD at stimulus onset

(0–1 s) (He, 2013; Huang et al., 2017). The normalized SD value during

the peak of evoked activity (4–5 s) was defined as TTV index (Huang

et al., 2017). Whole-brain voxel-wise one sample t tests against zero

were performed at the group level.

2.8 | Analysis of TV—Task versus rest

The SD of BOLD signal changes across time for the entire task and

rest periods, respectively, was calculated for each condition (wakeful-

ness, sedation, and deep anesthesia), yielding six SD maps per subject.

The task-modulation of TV was defined as the difference map

between task and rest (task minus rest) for each condition. The signifi-

cance of task-modulation effect of TV was examine for each network

(see below for the network definition) using one sample t tests against

zero at the group level with FDR correction.

2.9 | Definition of functional networks

We adopted a well-established network template derived from

CONN's ICA analyses of HCP data set in 497 subjects (www.

conn-toolbox.org). The network template included the default mode

network (DMN), frontoparietal (FP), salience/cingulo-opercular (Sal),

language (Lan), dorsal attention (DA), sensorimotor (SM), and visual

(Vis). In addition to these networks, we also included two brain areas
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(defined by AFNI atlas): bilateral primary auditory cortex (Audi) and

thalamus (Tha). They were chosen due to the nature of our task design

(auditory stimuli) such that we expected to see robust stimulus-

induced activity in these regions.

3 | RESULTS

3.1 | The average and variability of stimulus-induced
activity (TTM vs. TTV)

We found graded diminished TTM in both amplitude and spatial

extension from wakefulness over sedation to deep anesthesia, where

the TTM was limited to primary auditory cortices during anesthesia

(Figure 1a). After GRS, it revealed “deactivation” in several brain areas

including frontal, parietal, and visual cortices during wakefulness,

while there was minimal impact of GSR on the results of sedation and

deep anesthesia (Figure 1b).

We observed significant TTV reduction after stimulus onset in

especially the posterior part of brain including bilateral inferior parietal

lobe and posterior cingulate cortex during wakefulness (Figure 2b).

Note that these significant TTV values were negative (namely, reduc-

tion), because of the normalization performed against the stimulus

onset (see Section 2); it thus indicated how the TTV changes relative

to the baseline. Furthermore, the GSR helped identify a few more

regions including angular gyrus, auditory, medial frontal, and anterior

cingulate cortices (Figure 2b). In contrast, no significant TTV change

was found during either sedation or deep anesthesia.

We further examined the TTM and TTV in various functional net-

works (see Figure 3 for Audi and DMN as example regions; Figure 4a

for network template illustration). During wakefulness, significantly

increased TTM was seen in Audi, Sal, Lan, SM, and Tha without GSR.

After GSR, the statistical significance was improved with a few more

regions detected including positive activation in SM and deactivation

in DMN, FP, and Vis (Figure 4b). During sedation, a significant increase

of TTM was only seen in Audi, while significant increases of TTM were

also found in Lan and SM after GSR (Figure 4b). During deep

anesthesia, Audi was the only network showing significant TTM

increase both with and without GSR (Figure 4b). For TTV during wake-

fulness, significant reduction was seen in Audi, DMN, and FP before

GSR; Sal and Lan were further detected using GSR. No significant

result of TTV was seen in either sedation or deep anesthesia

(Figure 4c).

3.2 | Task-modulation of TV (task TV vs. rest TV)

We first examined the TV differences between different conditions

(e.g., wakefulness vs. sedation) during the resting-state. We found sig-

nificantly decreased TV in FP and Sal during sedation, and DMN, FP,

and Vis during deep anesthesia, when compared to wakefulness; no-

GSR and GSR showed similar results (Figure 5a,c). We next tested the

TV differences during the task between different conditions. No TV

difference was found between wakefulness and sedation, while many

networks including DMN, FP, Lan, DA, and Vis, showed significant dif-

ferences between wakefulness and anesthesia. The SDs of BOLD sig-

nals across trials during stimulus onset (0–1 s) and peak (4–5 s),

originally used for TTV calculation, were also presented in Figure 5 as

an additional support. Most importantly, we sought to examine how

the task context (repeated auditory stimuli with unpredictable ITIs)

modulates the TV compared with its resting-state in different condi-

tions. We observed significant task-modulation of TV (task > rest) in

Lan during wakefulness, and in Audi, FP, Sal, Lan during sedation

before GSR (Figure 5b). Interestingly, the GSR improved the signifi-

cance such that all significant networks seen during sedation came

out to be significant during wakefulness (Figure 5d). Lastly, no signifi-

cant task-modulation of TV was found during deep anesthesia either

with or without GSR (Figure 5b,d).

4 | DISCUSSION

We demonstrated distinct effects of propofol on the average (TTM),

variability (TV) of stimulus-induced activity, and the task modulation

of TV of ongoing activity (see Table 2 for a summary). There was a

graded attenuation of TTM from wakefulness through sedation to

FIGURE 1 The average of stimulus-induced activity across trials (trial-to-trial mean, TTM) during the peak period (4–5 s) in wakefulness,

propofol-induced sedation and deep anesthesia. Group-level z-maps (one sample t tests against zero) were corrected at α < 0.05 at the cluster
level. (a) Results without global signal regression (no-GSR). (b) Results with GSR [Color figure can be viewed at wileyonlinelibrary.com]
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anesthesia. Importantly, the stimulus-induced TTV reduction nor-

mally seen during wakefulness was abolished during both sedation

and anesthesia. In addition, there was an increase of TV in the task

state as compared to resting-state during both wakefulness and

sedation, but not anesthesia.

4.1 | Graded attenuation of TTM from wakefulness
through sedation to anesthesia

We found a gradual decease of TTM in both amplitude and spatial

distribution from wakefulness (widespread brain areas) through

sedation (auditory cortex, language, and sensorimotor networks) to

deep anesthesia (auditory cortex only). Our results are in line with

earlier observations that propofol attenuates stimulus-induced

activity during auditory and noxious stimulation (Adapa, Davis, Sta-

matakis, Absalom, & Menon, 2014; Davis et al., 2007; DiFrancesco,

Robertson, Karunanayaka, & Holland, 2013; Dueck et al., 2005;

Frölich, Banks, & Ness, 2017; Liu et al., 2012; Mhuircheartaigh

et al., 2010; Ní Mhuircheartaigh, Warnaby, Rogers, Jbabdi, &

Tracey, 2013). These effects may be due to an overall impairment

of hierarchy cortical processing and information integration (Alkire

et al., 2008; Davis et al., 2007).

FIGURE 3 Time courses of average and variability of stimulus-induced activity across trials within the time window after stimulus presentation

(0–15 s). The results are shown for the auditory cortex (Audi) and default-mode network (DMN). Shaded areas indicate the peak period (4–5 s) of
stimulus-induced activity, where trial-to-trial mean (TTM) and trial-to-trial variability (TTV) were calculated. Results without and with global signal
regression (no-GSR and GSR) are shown. Error bars indicate �SEM [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 The variability of stimulus-induced activity across trials (trial-to-trial variability, TTV) during the peak period (4–5 s) in wakefulness,

propofol-induced sedation and deep anesthesia. Group-level z-maps (one sample t tests against zero) were corrected at α < 0.05 at the cluster
level. (a) Results without global signal regression (no-GSR). (b) Results with GSR. Note that these significant TTV changes are negative values

(namely reduction), because of the normalization against the stimulus onset (see Section 2); it thus indicates how the TTV changes relative to the
baseline [Color figure can be viewed at wileyonlinelibrary.com]
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4.2 | Disrupted TTV reduction during sedation and
anesthesia

A series of neurophysiological and neuroimaging experiments have

demonstrated substantial TTV reduction after stimulus onset in wake-

ful animals and humans (Churchland et al., 2010; He, 2013; Huang

et al., 2017). Likewise, we found significant stimulus-induced TTV

reduction in various brain networks during wakefulness.

Extending the former studies, we also demonstrated that the TTV

reduction was abolished by the anesthetic propofol. Previous studies

showed that TTV reduction derives from a nonlinear interaction

between spontaneous and stimulus-induced activities (He, 2013;

Huang et al., 2017). We thereby tentatively suggest that anesthetics

may disrupt the nonlinearity of neural dynamics in response to exter-

nal stimuli. Propofol is known to potentiate postsynaptic inhibition by

FIGURE 4 Trial-to-trial mean (TTM) and trial-to-trial variability (TTV) in various functional networks. (a) Network template includes auditory

cortex (Audi), default mode network (DMN), frontoparietal (FP), salience/cingulo-opercular (Sal), language (Lan), dorsal attention (DA),
sensorimotor (SM), visual (Vis), and thalamus (Tha). (b) TTM values and statistical significances of different networks. (c) TTV values and statistical
significances of different networks. Results without and with global signal regression (no-GSR and GSR) are shown. Symbol (*) shows significant
differences against zero by one-sample t tests. Symbol (#) shows significant differences against wakefulness by paired sample t tests (i.e., sedation
vs. wakefulness, and anesthesia vs. wakefulness). Symbol ($) shows significant differences against sedation by paired sample t tests
(i.e., anesthesia vs. sedation). Error bars indicate �SEM. All results were FDR corrected. The insets in (b) and (c) show the effect size (Cohen's d)
for the mean differences against zero, where d = 0.2 is considered a “small” effect size, 0.5 represents a “medium” effect size and 0.8 a “large”
effect size. The range limit of y-axis is from 0 to 0.8 for illustrative purpose. Overall, all reported significant results are close to or above d = 0.8
[Color figure can be viewed at wileyonlinelibrary.com]
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GABAergic interneurons in the cortex, which may contribute to the

breakdown of anterior–posterior cortical feedback signaling (Alkire

et al., 2008; Imas et al., 2005; Lee et al., 2013). Thus, these effects

may corrupt the recurrent neural circuits necessary for TTV reduction.

To delineate the precise neural mechanisms underlying the anesthetic

modulation of TTV reduction will require further investigation.

The variability of spontaneous neural activity can be understood

to arise from a dynamic system that engages in an ongoing exploration

of metastable network configurations selected from a “dynamic reper-

toire” (Deco et al., 2014; Deco & Hugues, 2012; Hudetz et al., 2015;

Kelso, 2012; Litwin-Kumar & Doiron, 2012; Tagliazucchi et al., 2016).

Specifically, it is assumed that the network has access to a different

number of stable attractors during spontaneous versus stimulus-

induced activity. During spontaneous activity, the network explores

metastable configurations within a multi-attractor regime by means of

its inherent chaotic behavior. The presentation of stimulus reduces

the set of available attractors by eliminating the transition to other

attractors, resulting in a net decrease in neural variability across trials

(Deco & Hugues, 2012). The lack of TTV reduction during sedation

and anesthesia may reflect the reduced capacity of the dynamical sys-

tem to access or stabilize network states and form specific attractors

in response to external stimuli.

FIGURE 5 Temporal variability (TV) during resting-state (rest), task-state (task), as well as the SDs of BOLD signals across trials during stimulus

onset (onset) and peak period (peak) originally used for TTV calculation. (a) TV without global signal regression (no-GSR). Symbol (#) shows
Significant differences against wakefulness by paired sample t tests (i.e., sedation vs. wakefulness, and anesthesia vs. wakefulness). Symbol
($) shows significant differences against sedation by paired sample t tests (i.e., anesthesia vs. sedation). Error bars indicate �SEM. (b) A
visualization of the TV (no-GSR) in a variability “space” across brain networks to highlight the comparisons of task versus rest (task-modulation of
TV). Red frames indicate significant task-modulation effects of TV. Results with GSR are shown in (c) and (d). All results were FDR corrected. The
right panels in (b) and (d) show the effect size (Cohen's d) for task versus rest, where d = 0.2 is considered a “small” effect size, 0.5 represents a
“medium” effect size, and 0.8 a “large” effect size. The range limit of y-axis is from 0 to 0.8 for illustrative purpose. Overall, all reported significant
results are close to or above d = 0.8 [Color figure can be viewed at wileyonlinelibrary.com]
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4.3 | Reduced resting-state TV but preserved task-
modulation of TV during sedation

We observed a decrease of resting-state TV in frontoparietal net-

works during sedation, with a further decrease of TV in both fronto-

parietal and DMN regions during deep anesthesia. This observation is

in line with our prior finding that resting-state TV was closely related

to the level of consciousness (Huang, Dai, et al., 2014; Huang, Wang,

et al., 2014; Huang et al., 2016; Zhang et al., 2018); further supported

by a recent fMRI study in rats (Baria et al., 2018). The reduction of

resting-state TV is compatible with former studies suggesting a

decrease of the brain's dynamic repertoire during anesthesia, sleep,

and unresponsive wakefulness (Barttfeld, Uhrig, Sitt, Sigman, & Jar-

raya, 2015; Chennu et al., 2014; Hudetz et al., 2015; King & Dehaene,

2014; Sarasso et al., 2015; Tagliazucchi et al., 2016). However, the

exact linkage between the reduced TV of fMRI-BOLD signals and the

reduced TV of dynamic functional connectivity patterns (the dynamic

repertoire) during altered states of consciousness remains to be

determined.

Interestingly, we found significant task-modulation of TV (task >

rest) in auditory cortex and higher-order cortical regions (frontoparie-

tal, salience, and language networks) during both wakefulness and

sedation, whereas no such modulation was found during deep anes-

thesia. The increase of TV during task may indicate that the neural

system increased its dynamic range upon cognitive demand. One

could envision that the wider dynamic range would provide a larger

region of neuronal activity space to accommodate greater stimulus

uncertainty as compared to the resting-state in which cognitive

demand is lower due to less stimulus uncertainty. Thus, the task-

related TV increase may be the sign of an adaptive behavior of the

neural system engaged in enhancing its efficiency and cognitive per-

formance (Garrett, Kovacevic, et al., 2013; Garrett, Samanez-Larkin,

et al., 2013).

In summary, the higher TV in task-state versus resting-state during

sedation suggests that the relevant brain regions preserved their respon-

siveness and adaptability in terms of their capacity to augment the

dynamic range of ongoing activity, presumably to accommodate the

external stimulus' demand. In contrast, during anesthesia, brain activity

appeared isolated from the external environment such that the cortical

activity space was dramatically shrunk, almost unresponsive to stimuli,

with TTV reduction and task-modulation of TV both abolished.

5 | CONCLUSIONS

Our results reveal distinct effects of propofol on the two forms of

neural variability—TTV and TV. They imply that the anesthetic dis-

rupts recurrent network dynamics, preventing the stabilization of cor-

tical activity states. These findings shed new light on the temporal

dynamics of neuronal variability and its alteration during anesthetic-

induced unconsciousness.

5.1 | Comments on GSR

We presented and compared the results both with and without GSR

to ensure our results are not artifactually driven by the fMRI global

signal itself (Murphy & Fox, 2017). Overall, GSR improved the signifi-

cance for all measurements while did not affect our general conclu-

sion. Specifically, more regions were detected with significant TTV

reduction after GSR during wakefulness, for both whole brain analysis

(Figure 2b) and network analysis (the right panel in Figure 4c). In addi-

tion, more networks showed significant task modulation of TV after

GSR during wakefulness (Figure 5d) comparing to the results without

GSR (Figure 5b). These improvements may due to the benefit of GSR

by further removing nonneuronal sources of global variance such as

respiration and movement (Power et al., 2014; Yan, Craddock, Zuo,

Zang, & Milham, 2013). Note that the above improvements did change

the sign (positive or negative) of TTV and TV values. However, we did

find the GSR changes the sign for TTM values that several brain

regions/networks became “deactivated” (Figure 1b and the right panel

in Figure 4b). The question on whether these regions were truly deac-

tivated in response to stimuli may be analogous to asking if there

exists true negative correlations (anticorrelations) during resting-state

in the context of GSR. This, however, is still under debate (Murphy &

Fox, 2017). We would tentatively suggest that the deactivations of

TTM may be relative values against the global signal; it would be oth-

erwise considered to be true deactivations if we could observe them

for both GSR and no-GSR. Taking a step back, if we assume that the

apparent deactivations have some functional significance (albeit

TABLE 2 A summary of the main results with GSR

Trial-to-trial mean (TTM) of
stimulus-induced activity

Trial-to-trial variability (TTV) of
stimulus-induced activity

Task-modulation of temporal
variability (TV)

Wakefulness Sedation Anesthesia Wakefulness Sedation Anesthesia Wakefulness Sedation Anesthesia

Audi " " " # ─ ─ " " ─

DMN # ─ ─ # ─ ─ ─ ─ ─

FP # ─ ─ # ─ ─ " " ─

Sal " ─ ─ # ─ ─ " " ─

Lan " " ─ # ─ ─ " " ─

DA ─ ─ ─ ─ ─ ─ ─ ─ ─

SM " " ─ ─ ─ ─ ─ ─ ─

Vis # ─ ─ ─ ─ ─ ─ ─ ─

Tha " ─ ─ ─ ─ ─ ─ ─ ─

Notes. " = significantly increase; # = significantly decrease; ─ = no change.
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unknown at this point), then the fact that no such deactivation was

seen in either sedation or anesthesia may point to another dysfunction

induced by propofol anesthetics that warrants future investigations.

5.2 | Limitations

Several limitations of our study need to be considered:

1. We here used a passive name listening paradigm instead of goal-

directed tasks (visual stimulus detection or semantic judgments)

requiring button responses as previous fMRI reported (He, 2013;

Huang et al., 2017). This was due to the consideration that the

subjects were unable to make explicit motor response during

anesthesia; it would thus be otherwise incomparable between dif-

ferent conditions (e.g., with motor response during wakefulness

vs. without motor response during anesthesia). It is noteworthy

that the evidence of TTV reduction from previous studies was not

solely drawn from goal-directed tasks. For instance, neuronal TTV

reduction was seen in wakeful rats during passive visual stimula-

tion (e.g., white-black flashing) (White et al., 2012), as well as in

monkeys and cats during presenting visual sine-wave gratings

(Churchland et al., 2010). Therefore, the TTV reduction through a

presumed active noise suppression mechanism (White et al.,

2012) may not be necessarily associated with active behavioral

response (e.g., goal-directed).

2. We did not observe widespread TTV reduction across the entire

cortex as previously shown (He, 2013; Huang et al., 2017). This

may be due to the simplicity of the task with lower cognitive load

and task demands, as well as a relatively lower number of trials in

a sparse-event related design within limited clinical fMRI scan-

ning time.

3. Churchland et al. (2010) reported a TTV reduction of the

stimulus-induced neuronal activity in many cortical areas regard-

less of whether the animal is anesthetized or awake. However,

both our data in humans and a previous study in rats (White et al.,

2012) showed that the TTV reduction was not maintained under

anesthetized states. It remains an open question about which of

the observations are closer to the physiological reality, and/or to

what extent the TTV reduction depends upon tasks, modalities

(visual, auditory, tactile, etc.), attentional, and conscious states.

4. It remains to be determined if our results can be generalized to

other classes of general anesthetics, including halogenated ethers

such as sevoflurane or non-GABAergic drugs such as ketamine.

Therefore, future investigation of both forms of neural variability

in those drugs where consciousness is lost is necessary to flesh

out the full scientific and clinical implications of our findings.
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