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Abstract

The cortical surface atlases constructed from a large representative population of neonates are 

highly needed in the neonatal neuroimaging studies. However, existing neonatal cortical surface 

atlases are typically constructed from small datasets, e.g., tens of subjects, which are inherently 

biased and thus are not representative to the neonatal population. In this paper, we construct 

neonatal cortical surface atlases based on a large-scale dataset with 764 subjects. To better 

characterize the dynamic cortical development during the first postnatal weeks, instead of 

constructing just a single atlas, we construct a set of spatiotemporal atlases at each week from 39 

to 44 gestational weeks. The central idea is that, for all cortical surfaces, we first group-wisely 

register them into the common space to ensure the unbiasedness. Then, rather than simply 

averaging over the co-registered cortical surfaces, which generally leads to over-smoothed cortical 

folding patterns, we adopt a spherical patch-based sparse representation using an augmented 

dictionary to overcome the noises and potential registration errors. Through the group-wise 

sparsity constraint, we obtain consistent geometric cortical folding attributes on the atlases. Our 

atlases preserve the sharp cortical folding patterns, thus leading to better registration accuracy 

when aligning new subjects onto the atlases.

Index Terms
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1. INTRODUCTION

The neonatal brain undergoes dynamic development at the early postnatal weeks, which is 

believed to be closely related to the later cognitive functions [1]. Therefore, high quality 

neonatal cortical surface atlases are in great demand for surface-based spatial normalization 

and analysis of the neonatal subjects, but still remain scarce. Currently, there are only two 

works on the construction of cortical surface atlases of term-born neonates. Moreover, these 

neonatal surface atlases were constructed from small datasets, typically, tens of subjects. For 

example, Hill et al. [2] constructed the first neonatal cortical surface atlas, PALS-term 12 

atlas, by co-registration of 12 term-born neonatal cortical surfaces, based on manually 
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delineated sulcalgyral landmark curves. Bozek et al. [3] created neonatal cortical surface 

atlases from 39 to 42 weeks of gestation, based on 44 subjects, by co-registering all 

spherical cortical surfaces in each week group. Given the small numbers of subjects and 

highly convoluted cortical folding with large inter-subject variations [4], these neonatal 

cortical surface atlases are inherently biased and thus are not representative to the neonatal 

population.

To address this issue, we unprecedentedly construct a set of neonatal cortical surface atlases 

from a large-scale dataset with 764 term-born neonates, which is the largest neonatal dataset 

to the best of our knowledge. To better characterize the dynamic cortical development during 

the first postnatal weeks, instead of constructing a single atlas, we construct a set of 

spatiotemporal atlases at each week from 39 to 44 gestational weeks. To preserve sharp 

cortical folding patterns on the surface atlases, rather than simply averaging of cortical 

folding attributes over the age-matched co-registered cortical surfaces as done in the 

conventional method, we develop a spherical patch-based sparse representation method 

using the augmented dictionary to overcome the potential registration errors. To ensure the 

consistency across different cortical folding attributes on the atlases, we adopt the group-

wise sparsity constraint. The sharp cortical folding patterns on the spatiotemporal atlases 

lead to high registration accuracy when aligning new subjects onto the atlases.

2. DATASET AND IMAGE PROCESSING

The T2-weighted brain MR images were acquired from 764 term-born neonates from 39 to 

44 gestational weeks. The subject number and gender information at each age are reported 

on top of Fig. 1, with M indicating male subjects, and F indicating female subjects. All 

images were processed by the UNC Infant Cortical Surface Pipeline [5]. Briefly, it included 

the following major preprocessing steps: a) intensity inhomogeneity correction; b) skull 

stripping; c) cerebellum and brain stem removal; d) tissue segmentation using LINKS [6]; e) 

masking and filling the non-cortical structures, and separation of the left and right 

hemispheres.

Topologically correct and geometrically accurate inner (the white/gray matter interface) and 

outer (the gray matter/cerebrospinal fluid interface) cortical surfaces were reconstructed 

using a topology-preserving deformable surface method based on tissue segmentation results 

[7]. Specifically, to reconstruct the inner cortical surface, firstly, topological defects were 

corrected on the white matter volume to ensure a spherical topology of each hemisphere [8]. 

Then, the corrected white matter volume was tessellated as a triangular mesh. Next, the 

triangular surface mesh was deformed by preserving its initial topology to reconstruct the 

inner and outer cortical surfaces. The inner cortical surface was further smoothed, inflated, 

and mapped to a sphere by minimizing metric distortion between the original cortical 

surface and its spherical representation [9].

3. METHOD

Our main framework for the construction of neonatal cortical surface atlases includes three 

steps. First, we establish the unbiased cortical correspondences across all subjects by using 
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the group-wise spherical surface registration. Second, for each local spherical surface patch 

in the atlas space at each week, we build a dictionary of cortical folding attributes for sparse 

representation. This dictionary includes not only the corresponding patches from age-

matched co-registered cortical surfaces, but also the spatially neighboring patches to account 

for the possible registration errors. Finally, we jointly and sparsely represent the cortical 

folding attributes on the atlas patch by using the folding attributes of patches in the 

dictionary, via a group-wise sparsity constraint. Specifically, the joint representation is 

formulated as a multi-task sparse representation problem, i.e., the dirty model [10], with 

each task corresponding to the sparse representation of a certain folding attribute. Using the 

above-described steps, we can not only preserve sharp patterns of the folding attributes, but 
also maintain the consistency across different folding attributes on the constructed surface 

atlases.

Establishing Cortical Correspondences

To establish the unbiased inter-subject cortical correspondences across all subjects at all 

ages, we use the group-wise spherical surface registration method, i.e., spherical demons 

[11], based on the cortical folding geometric attributes. Then, all spherical surfaces are 

resampled using the same mesh tessellation. After registration and resampling, a 

straightforward method to construct the cortical surface atlas is to average cortical folding 

attributes over all co-registered cortical surfaces. However, due to potential registration 

errors and substantial inter-subject variation of cortical folding, the simple average generally 

leads to over-smoothed cortical folding patterns, which will degrade the registration 

accuracy when aligning new subjects onto the atlases. To preserve sharp cortical folding 

patterns on atlas, we develop a spherical patch-based sparse representation method, which 

uses the augmented dictionary to overcome the potential registration errors in the co-

registered surfaces.

Building Dictionary

To build a representation dictionary, we need comparable patches for spatially neighboring 

vertices. Due to the local mesh structures differences at different vertices, the original mesh 

patches of neighboring vertices on the sphere are not directly comparable, since they may 

have different number of neighbors and inconsistent size [12]. To obtain comparable 

neighboring patches for building the dictionary at current location, we rotate the current 

local patch to its spatially neighboring vertices. The rotated patches on neighboring vertices 

will have the same patch size and structure. Then, these rotated patches with resampled 

folding attributes formulate the comparable patches for spatially neighboring vertices.

With the comparable neighboring patches, for each atlas patch, we can build a representation 

dictionary. For a local patch centered at vertex vi, we extract all corresponding patches from 

N co-registered cortical surfaces and then include them into the dictionary, denoted as 

pℳ j
(n) (vi), where n=1,…,N denotes the subject index; ℳj indicates a cortical folding attribute 

in the current patch. In this paper, ℳj,j ∈{A,C}, indicates the average convexity (ℳA) or 

mean curvature (ℳC), respectively. Both of them are frequently used to drive the cortical 

surface registration. To increase the robustness to registration errors, patches that are 
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spatially neighboring to corresponding local patches are also extracted and included into the 

dictionary, denoted as pℳ j
(n) (vi

k), where vi
k is the k-th vertex that is neighboring to the vertex vi. 

Herein, we denote the dictionary for ℳj at vi as 𝓓ℳj(vi).

Constructing Atlases with Sparse Representation

With the built dictionaries, estimating the cortical folding attributes on the atlases becomes 

finding the best representation of the population folding attributes using the respective 

dictionary. For a cortical folding attribute (e.g., ℳA), given an atlas patch at vi, N 
corresponding local patches from N co-registered cortical surfaces can be obtained. 

However, some patches may have less agreement with population folding attributes. An 

effective way to filter out these untypical patches is to use the following 3 steps. 1) The 

group center patch is computed as the average over the N patches; 2) The correlation 

coefficient between each patch and the group center patch is then computed; 3) Finally, the 

top M (M ≤ N) patches corresponding to the top M correlation coefficients are selected, 

denoted as pℳA
(m) (vi), with m=1,…,M. These M patches can be regarded as carrying the 

population folding attributes, and then we use the built dictionary to sparsely represent these 

top M patches.

Since each cortical folding attribute can be regarded as a specific view of the cerebral cortex, 

therefore, they should be consistent on atlases. To this end, instead of independently 

representing each attribute, we jointly represent them using a multi-task sparse 

representation with group-wise sparsity constraint, where each task corresponds to the 

representation of a specific cortical folding attribute. To further address the inevitable noises 

contained in the folding attributes, we use the dirty model for sparse representation, which 

can be formulated as the following minimization problem:

arg min
ω

∑ j∑m = 1
M 𝓓ℳ j

(vi)ω j(vi) − pℳ j
(m)(vi) 2

2 + ρ1‖P‖∞, 1 + ρ2‖Q‖1 (1)

st . W = P + Q (2)

Where pℳ j
(m)(vi) denotes the m-th extracted patch from the top M patches with the cortical 

folding attribute ℳj, j ∈{A,C}. 𝓓ℳj(vi) is the dictionary of ℳj for the local patch centered at 

vi, and ωj is the representation (column) vector for ℳj, W = [ωA(vi), ωC(vi)] is the matrix 

containing 2 sparse representation vectors for 2 folding attributes, and it is composed of two 

matrices: P and Q. The first term in (1) is the fitting error for multi-task representation. It 

encourages the constructed folding attribute 𝓓ℳj(vi)ωj to be similar to each respective 

pℳ j
(m)(vi). The second term is the group-wise sparsity regularization term. ||P||∞,1 is a 

combination of both ∞ and 1 norms, in which the ∞,1 norm is imposed to each row of 

the matrix P for making different cortical folding attributes on the same atlas patch share the 
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similar sparsity structure. The third term is the element-wise sparsity component, to handle 

the potential noise included in the data that cannot be group-wisely represented. Equation 

(2) constrains the relationship of W with P and Q. With this modeling, we can impose 

group-wise sparsity through P to preserve the consistency across cortical folding attributes, 

and also handle the potential noises in cortical folding attributes through Q. ρ1 and ρ2 are the 

two non-negative parameters used to balance different terms.

Using the above method, the cortical folding attributes on the atlas patch centered at vertex 

vi is jointly represented via the estimated representation coefficient matrix W. Notably, due 

to the patch overlapping, each vertex on the atlases will be covered by multiple patches. 

Thus, we average over all covering patches to obtain the final cortical folding attribute for 

this vertex.

4. RESULTS

In the experiments, we used the following parameter setting for constructing the atlases. The 

top 60% highly-correlated patches are selected to define the top M patches. Each patch is 

defined by the 2-ring neighbors, while the neighboring vertices used to augment patches are 

set as the 3-ring neighbors on the surface mesh with 163,842 vertices. Herein, the 2-ring or 

3-ring means the neighbor size on the surface mesh. The parameter ρ1 and ρ2 are set to 1 and 

0.5, respectively, which are learned from cross-validation.

We assess the constructed spatiotemporal cortical surface atlases both visually and 

quantitatively. Fig. 1 shows the constructed cortical surface atlases with the color-coded 

average convexity and mean curvature at each week on both spherical surfaces (a) and 

average inner surfaces (b). From this figure, it can be seen that the cortex has considerable 

development from 39 to 44 weeks, especially for the parietal region (zoomed for better 

inspection in Fig. 1(c)).

To better show the advantage of our method, we compared our atlases based on sparse 

representation (namely the sparse atlas) to the atlases constructed by simply averaging over 

the co-registered cortical surfaces (namely the average atlas). Fig. 2 shows the curvature 

patterns on these two atlases at 41 weeks. It can be seen that our atlas preserves much clearer 

folding patterns, compared to the average atlas.

To quantitatively evaluate the constructed atlases, we randomly separate the subjects at each 

age into 2 groups. In particular, 1 group (with 2/3 subjects) is used for constructing atlases 

(average atlas and sparse atlas), and the other group (with 1/3 subjects) is used for testing. 

Then, we align the cortical surfaces in the testing group onto the constructed atlases. The 

atlases with the sharp folding patterns are expected to have better registration accuracy. 

Since there is no ground truth for the cortical surface registration, we follow the evaluation 

strategy in [13] to assess the registration accuracy. For any two subjects in the testing 

dataset, after registered them onto the atlases, we computed the correlation coefficient of 

their average convexity maps. Then, for all possible pairs of subjects, we obtained the 

average correlation coefficient. Clearly, higher average correlation coefficients indicate 

better alignment of the cortical folding patterns. Fig. 3 shows the average correlation 
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coefficient and its standard deviation after aligning the testing subjects onto the average 

atlases and our atlases. Our atlases lead to statistically significantly (with p=0.0004) better 

registration accuracy than the average atlases, which indicates that our atlases have clearer 

cortical folding patterns compared to average atlases.

5. CONCLUSION

To comprehensively characterize the dynamic cortical development during early postnatal 

weeks, we have constructed a set of spatiotemporal neonatal cortical surface atlases at each 

week from 39 to 44 gestational weeks using a large cohort of term-born neonates with 764 
subjects. Moreover, by leveraging sparse representation, we preserved sharp cortical folding 

patterns on the atlases, leading to boosted registration accuracy when aligning new subjects 

onto the atlases. In the future, we will incorporate more cortical folding attributes into the 

atlases, do more validation, and publically release our spatiotemporal neonatal cortical 

surface atlases as a complementary for our UNC 4D infant surface atlas [15]. We will also 

explore the folding patterns and built multiple atlases [14] to capture these patterns for better 

studying early brain development.
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Fig. 1. 
The constructed spatiotemporal neonatal cortical surface atlases from 39 to 44 weeks. (a-1) 

and (a-2) show the color-coded average convexity and mean curvature on the spherical 

surfaces, respectively. (b-1) and (b-2) show the color coded average convexity and mean 

curvature on the averaged inner surfaces. (c-1) and (c-2) zoom a respective region for better 

inspection of the folding development.
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Fig. 2. 
Curvature pattern on the average-based atlas (left) and our sparse representation-based atlas 

(right) at 41 gestational weeks. (a-1) and (a-2) show the color coded mean curvature on the 

spherical surfaces. (b-1) and (b-2) show the color coded mean curvature on the averaged 

inner cortical surfaces.
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Fig. 3. 
Average correlation coefficient and standard deviation after aligning individual subjects onto 

average atlases and our sparse atlases at each week.
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