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Abstract

Process modeling and understanding are fundamental for advanced human-computer interfaces 

and automation systems. Most recent research has focused on activity recognition, but little has 

been done on sensor-based detection of process progress. We introduce a real-time, sensor-based 
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system for modeling, recognizing and estimating the progress of a work process. We implemented 

a multimodal deep learning structure to extract the relevant spatio-temporal features from multiple 

sensory inputs and used a novel deep regression structure for overall completeness estimation. 

Using process completeness estimation with a Gaussian mixture model, our system can predict the 

phase for sequential processes. The performance speed, calculated using completeness estimation, 

allows online estimation of the remaining time. To train our system, we introduced a novel 

rectified hyperbolic tangent (rtanh) activation function and conditional loss. Our system was tested 

on data obtained from the medical process (trauma resuscitation) and sports events (Olympic 

swimming competition). Our system outperformed the existing trauma-resuscitation phase 

detectors with a phase detection accuracy of over 86%, an F1-score of 0.67, a completeness 

estimation error of under 12.6%, and a remaining-time estimation error of less than 7.5 minutes. 

For the Olympic swimming dataset, our system achieved an accuracy of 88%, an F1-score of 0.58, 

a completeness estimation error of 6.3% and a remaining-time estimation error of 2.9 minutes.

Keywords

Activity Recognition; Sensor Network; Multimodal; Deep Learning; Convolutional Neural 
Network; LSTM

1 INTRODUCTION

A sequence of activities that achieves a certain goal represents a work process. For instance, 

the trauma resuscitation process consists of pre-arrival, patient-arrival, primary survey, 

secondary survey, post-secondary survey, and patient-leave phases; each phase consists of 

one or more activities. Several successful systems have been introduced for image 

classification [25] and activity recognition [20]. We take a further step in this analysis by 

developing a system for real-time process progress estimation. Online progress estimation 

has applications for many real-world problems, including automated human-computer 

interaction systems. For example, online detection of a sports process phase can be used to 

guide the camera on overhead drones for the video broadcasting. Online progress 

information for a medical process, such as the process completeness and remaining time, can 

help medical providers organize resources and schedule treatment timing. We first analyzed 

the trauma resuscitation process and the Olympic swimming process, each with six process 

phases (Table 1). Then, we designed and evaluated our sensor-based system to estimate the 

work progress in three ways:

1. Process completeness, indicating the percentage completion of the whole 

process.

2. Process phase, indicating a major stage of the process progress. A phase may 

contain one or more logically-grouped activities that achieve a larger goal.

3. The remaining-time, representing the estimated time left until the process 

finishes.

Work processes can be roughly categorized into two types: sequential and parallel. Our 

current work does not model parallel processes. Linear sequential processes can be 
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partitioned into a set of “phases" that occur one after another in a fixed order. For example, 

during the trauma resuscitation process or the sports event broadcasting process, the phases 

are rarely skipped or duplicated. Nonlinear sequential processes allow phases to be repeated 

or performed in an arbitrary order. For example, when making a salad, the mixing, vegetable 

chopping, and sauce preparation can be performed in any order before serving. We focused 

on characterizing linear processes, although we demonstrated (Section 5) that our system 

could be modified to handle nonlinear processes.

Previous process-phase detectors can be roughly categorized into three types: manual, 

shallow-modeled, and deep-learning-based. The first type used manually-generated event 

logs or medical equipment signals [6, 21]. As these systems worked with relatively noise-

free datasets, they achieved good performance. However, manual detectors require manual 

log generation or signals from specific medical equipment, making them hard to implement 

and generalize. The use of sensors addressed these two issues at a cost: sensor data may be 

hard to obtain (e.g., wearable sensors are not preferred in medical settings as they may 

interfere with the work), and are subject to the hardware or environmental noise. The second 

type of phase detectors used shallow classifiers to predict phases from noisy sensor data [5, 

6, 23]. Yet, the features and model selection were often arbitrary and difficult to generalize, 

because different researchers using different features can only claim that those features 

worked best for their specific scenarios [20]. Due to its success in the image classification 

and speech recognition, deep learning and automatic feature extraction has given rise to the 

third type of phase detectors. All three approaches treated the process phase detection as a 

discrete classification problem, which overlooks the continuous nature of the processes and 

misses the associations between process phases and percentage completion. These 

limitations have caused systems to return logically impossible predictions [19].

We address these issues and estimate process completeness as a continuous variable. Our 

system is designed to work with sensor data, as opposed to manually-generated event logs. 

We designed a multimodal structure to make the system compatible with different types of 

input sources. Features in our model are automatically learned using a deep neural network. 

We introduce a deep regression model to continuously estimate process completeness, and 

the rectified hyperbolic tangent (rtanh) activation function to bound the regression output 

values in the context of process completeness. The system detects the current process phase 

based on the currently estimated process completeness using a Gaussian mixture model 

(GMM). Our model for completeness estimation is trained on the regression error as well as 

a novel conditional loss from the phase prediction. Finally, the remaining time is estimated 

during run-time using the calculated process execution speed.

We tested our model with two datasets: a medical dataset containing depth video and audio 

records of 35 actual trauma resuscitations at Children’s National Medical Center (CNMC) 

[19], and an Olympic swimming dataset containing 60 YouTube video records of Olympic 

swimming competitions in different styles. For the resuscitation dataset, our process 

progress estimation system achieved 86% average online phase detection accuracy and 0.67 

F1-score, outperforming existing systems. Specifically, our system incurred 12.65% 

completeness estimation error, with an average 7.5 minute remaining-time estimation error 

(14% of total duration). For the Olympic swimming dataset, the system achieved 88% 
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accuracy with 0.58 F1-score and incurred 6.32% completeness estimation error with average 

2.9 minute remaining-time estimation error (18% total duration). Using additional network 

layers to replace the GMM, our system slightly outperformed existing process-phase 

detection systems on the trauma resuscitation dataset [28, 30], while simultaneously 

providing progress and the remaining time estimation. Our phase-detection system for 

trauma resuscitation has been deployed in a trauma room and is currently generating data for 

future applications. Our contributions are:

1. A novel deep regression-based approach for process progress estimation and 

phase detection using commercially available sensors, as well as a new rectified 

hyperbolic tangent (rtanh) activation function that bounds the regression value to 

a meaningful range and accelerates the neural network training.

2. A GMM-based phase detection approach based on completeness regression 

results, as well as a conditional loss function for model tuning using regression 

and classification error.

3. A deep learning structure that models the progress of nonlinear processes, which 

is derived from our structure for linear process modeling.

4. The trauma resuscitation dataset and Olympic swimming dataset that can be used 

in future research, as well as the details of our system deployment in an actual 

medical setting (can be used as a reference for other applications).

The rest of the paper is organized as follows: Section 2 introduces the problem. Section 3 

presents our proposed method. Section 4 describes our experimental results and performance 

comparison to other systems. Section 5 discusses the results, and Section 6 concludes the 

paper.

2 RELATED WORK

Process progress modeling can be done from three aspects: the completeness, the process 

phase, and the remaining time. Most of the previous research only focused on the process 

phase detection. Based on different application scenarios, previous works approached 

process modeling in three ways.

Systems designed to focus only on process modeling or work in very specific applications 

(such as certain types of surgery) used manually generated event logs [6] or the medical 

equipment signals [21] as the input. These types of input data are relatively noise free, and 

can be directly used for process modeling without preprocessing and feature extraction. 

Previous approaches treated process phase detection as a classification problem and directly 

applied shallow classifiers commonly used for sequential data analysis (e.g., HMM or 

decision tree [21]). Such approaches have proven accurate and easy to implement, and some 

association rules could be mined by analyzing the generated HMM transition matrix or 

decision tree topology [10]. But the drawback of these approaches is the use of manually 

generated event log or the data from specific equipment, making these systems hard to 

deploy, and the trained classifier may have difficulty working with high-dimensional and 

noisy sensor data.
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To avoid such limitations, we designed our system to use commercially available sensors as 

the input source. There are previously proposed process phase detection systems using 

different sensor data [4, 19, 20]. For daily living and certain surgery scenarios, the RGB 

camera and wearable sensors were used to capture the gesture and posture for process phase 

estimation [4]. For more constrained scenarios, such as in medical settings, the less intrusive 

and privacy-preserving sensors such as passive RFID or depth camera were used [2, 19, 20]. 

Because the sensor data collected in a real-world environments is noisy (may contain 

hardware noise, outliers, and missing data), machine learning algorithms were commonly 

used to establish the connection between sensor data and the process phase. On the other 

hand, the feature and classifier selection were often chosen arbitrarily or empirically [18, 

20], which makes the shallow-modeled systems difficult to transfer. In addition, when 

processing multi-modal input data, the shallow-modeled systems usually make classification 

independently based on each input modality and combine them by voting [29]. In this way, 

potential correlations between different input modalities are ignored.

This limitation of shallow classifiers is not unique for process progress modeling; many 

fundamental computer science fields (such as image classification and speech recognition) 

face the same issue. In recent years, the CNN and LSTM [12, 25] have been successfully 

implemented in these fields and achieved significantly better performance compared with 

the state-of-the-art shallow-modeled solutions [17]. The CNN was widely used in image 

classification and image feature extraction, because the CNN with the learnable filters can 

automatically learn the representative spatial features from the raw training data and is 

proven generalizable (the pre-trained model can be used as the feature extractor) [7]. The 

current state-of-the-art process progress estimation systems use the pre-trained AlexNet [30] 

for process classification using video frames as input, but this pure CNN does not consider 

temporal associations between features in adjacent frames. To compensate for lost temporal 

associations that maintain the logical phase order, previous research attempted using a time 

window [27], HMM[30], or modified softmax layer [19]. However, the HMM does not scale 

well to complex process with a large number of phases, because the topology of HMM’s 

transition matrix becomes less representative and requires manual tuning. The time-window 

approach prevents the system from working online. Based on the LSTM’s ability to model 

temporal associations in speech recognition [8] and natural language understanding [32], we 

implemented the LSTM with CNN in our system to extract the spatio-temporal features. We 

then introduced a regression model with GMM to achieve both process completeness 

estimation and phase detection.

3 SYSTEM STRUCTURE

Our system consists of four main parts (Fig. 1):

Feature extraction:

Because we used different sensors for data collection in different applications, the first step 

is the data representation and feature extraction. Instead of using manually crafted features, 

we used a CNN and LSTM based model to learn the spatio-temporal features from the input 
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data [24]. We implemented a multimodal structure to fuse the features extracted from 

different sensor data.

Completeness estimation:

The system has a deep regression model that directly produces a single regression output 

value. We introduced the rtanh activation function for bounding the neuron output to a valid 

range.

Phase detection:

The system takes estimated completeness as input and uses a probabilistic GMM inference 

to detect the process phase. Phase detection provides a conditional loss function to help train 

the regression model.

Remaining-time estimation:

Our system dynamically updates the estimation of remaining time based on the observed 

speed of process execution, which we defined as the rate at which one percent of the process 

is being accomplished.

3.1 Feature Extraction

Similar to the activity recognition [14, 20], our estimation of the process progress relies on 

both spatial and temporal features. The spatial features in a video frame define the activity at 

a time instance, while the temporal features from consecutive frames define a phase in the 

process. The learnable filters in CNNs are commonly used to extract the spatial features 

[33], and LSTMs are often used to model temporal dependencies of the sequential data [13].

Our trauma resuscitation dataset contains low-resolution depth images and audio from a 

Kinect [19]. We chose the Kinect depth sensor for our medical application because it is 

privacy-preserving (does not capture any facial details). Other types of sensors can be easily 

combined by introducing additional multimodal branches into our system. During every 

second, the video input branch was directly fed depth frames, while the audio branch was 

fed MFSC feature maps [1] for feature extraction. A CNN-LSTM structure then performed 

spatio-temporal feature extraction, where we used a pre-trained CNN structure (AlexNet 

[16]), followed by multiple LSTM layers. The features extracted from different sensors are 

subsequently combined in a fusion layer, following our previous implementation [19] (Fig. 

2, top).

The Olympic swimming dataset was collected from YouTube videos recorded by different 

types of cameras (including cell phone cameras and professional cameras). This dataset has 

videos of different resolutions and audio recorded by cameras at different distances. Due to 

our hardware limitation (described in Section 3.5 in Section 3.5), we downsampled the video 

frames from 25 fps to 10 fps and resized them to 256 × 256px. Instead of AlexNet, we used 

a deeper VGG Net (Fig. 2, bottom) with pre-trained weights [25] for image feature 

extraction (Fig. 2), because RGB images contain more textural details than depth images.
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3.2 Process Regression and Completeness Estimation

Unlike image classification or single-image activity recognition where each sample 

corresponds to an individual image, process completeness is a continuous variable which 

cannot be estimated as a discrete classification problem. For this reason, we introduce a 

regression-fitting model that uses the extracted spatio-temporal features for process 

completeness estimation (Fig. 3, completeness estimation part).

Our deep neural network extracts features from input data and performs regression using an 

activation function which generates the regression value ŷ ∈ [0, 1]. The activation of 

regression neuron can be expressed as:

y = f (ωTϕ + b) (1)

where ω (N × 1) is the weight vector and ϕ (N × 1) is the output of the last fully connected 

layer (Fig. 3, fully connected layer 2, with N neurons in total), b is the bias term and f (·) is 

the activation function of the output neuron. To model the process progress, the activation 

function must have the following properties: (1) the activation output should be zero if the 

process has not yet started (e.g. pre-arrival phase of the trauma resuscitation); (2) the 

regression value changes continuously from zero to one as the process proceeds; and (3) the 

activation should be equal or close to one, with a proper strategy (e.g., thresholding) for 

when the process has been completed (e.g., after the patient left the trauma room).

We modified the hyperbolic tangent function for this purpose, and we named it the rectified 

hyperbolic tangent (rtanh) function:

rtanh(x) = max(0, tanh(x)) = max(0, e2x − 1
e2x + 1

) (2)

This activation function returns zero for negative inputs and positive values up to one for 

positive inputs. This value range makes it suitable for returning a progress completeness 

percentage ranging from 0% to 100%. The sigmoid function has the same value range, but 

its range of positive values is distributed across all real numbers, making it slower to train. In 

addition, during the backpropagation, the gradient of rtanh activation can better prevent 

gradient vanishing than the sigmoid because the derivative of tanh ≤ 1 and of sigmoid ≤ 0.25 

[11]. This property will lead to a faster training under the same setting of the learning rate. 

To compare the performance of the rtanh and sigmoid functions, we initialized the neural 

network parameters to the same value and trained the network using rtanh and sigmoid with 

the same training and testing split of the data. Our experiments showed that the two 

activations eventually led to similar accuracies, but the convergence time (the time it takes 

until accuracy stabilizes for 3 epochs) using rtanh was 30% shorter than that using sigmoid, 

because of rtanh’s steeper gradient. As we focused on modeling a linear process, the current 

completeness value should be increasing compared to the previous completeness value. We 

used an LSTM after the CNN to retain the estimated progress information and help the 

system with tracking the increasing completeness trend.
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Similar to a classifier, a regression model can be trained using backpropagation. When 

generating the ground truth label, the completeness is labeled differently depending on the 

application. For example, the completeness of a trauma resuscitation equals zero before the 

patient entered the room and remains at one after the patient left. Given the time at which the 

data were collected relative to the beginning and end of a process enactment, we can label 

the data from a certain time instance with the completeness range to which this time instance 

belonged. We divided the data into twenty 5%-segments, and labeled each segment with an 

associated completeness between 0% (process start) and 100% (process end), forming a 

stepwise function with 5% increments. The output of the rtanh neuron can be directly used 

as the regression result (Fig. 3, decision-making part).

To make the regression smooth as the completeness progresses for real world processes, we 

applied a Gaussian smooth filter after the rtanh neuron. The loss from completeness 

estimation error Lossc can be expressed as:

Lossc(θ = {w, b}, D) =
∑i = 0

∣ D ∣ abs(R(θ = {w, b}, Di) − pi)
∣ D ∣ (3)

where the θ = {w, b} denotes the model with parameter set θ, and D is the input dataset. R 
(θ = {w, b}, Di) denotes the regression output from the model with parameter set θ on 

dataset D at time instance i as input. pi denotes the ith percentage label for regression in 

terms of process completion. We used the mean absolute error for the loss, which is the abs 
(·) term in the loss function. Although other error measurements such as mean square error 

could be used, the square error would inhibit training by making the losses even smaller 

(considering that errors ∈ [0, 1]).

3.3 Phase Detection and Conditional Loss

With the completeness estimated by the regression model, we need to predict the discrete 

phase based on the continuous completeness estimation results. A separate classification 

model using the same extracted features can be used for phase detection [19], but 

performing classification without considering the completeness ignores the temporal 

associations between the extracted process progress features.

Given that the processes we considered are linear, we found that the duration of each phase 

is similar to the Gaussian distribution. Therefore, we assumed a Gaussian distribution for the 

duration of each phase, which allows us to use a Gaussian mixture model (GMM) with one 

centroid per phase for phase prediction (Fig. 4, left & middle). On the other hand, this GMM 

framework does not generalize to nonlinear processes with duplicate or rearrangeable phases 

(Fig. 4, right EndoVis dataset). Nonlinear processes require modifications in the GMM-

based model as discussed in Section 5.

Training the GMM [3] only requires the occurrence distribution for each phase on the 

normalized process duration scale, which can be obtained from the ground truth data. We 

can pre-train the GMM using completeness ground truth and establish the probabilistic 
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association between the overall completeness and process phase. The phase recognition 

results can be calculated from:

p = argmax1 ≤ k ≤ K{log(wk) − 1
2log(det(2πΣk)) − 1

2(x − μk)TΣk
−1(x − μk)} (4)

where p̂ is the predicted phase. x is the completeness estimated by the regression model. wk 

is the weight for the kth Gaussian kernel. μk and Σk denote the mean vector and the 

covariance matrix for the kth Gaussian kernel. K is the total number of phases. argmax1≤k≤K 

{·} denotes the function finding the index k with the largest likelihood among all K indices.

With equation 4 and the regression result, we can directly use the GMM for phase prediction 

(Fig. 4). We only applied the GMM for four out of the six phases in the trauma resuscitation 

dataset, removing the pre-arrival and patient-leave phases. This is because the duration of the 

pre-arrival phase depends on the transport time from the injury scene to the hospital, which 

was not recorded in the dataset; and the patient-leave phase is coded as an ending signal 

lasting only one second. Our GMM-based phase prediction approach relies only on the 

regression result, and the phase prediction error does not impact the backpropagation 

training process used to tune the regression. The regression model can be trained based on 

both the completeness estimation error and the phase prediction error. Based on the 

assumption that the regression value is correct, the system generates no additional loss if the 

GMM-based phase detection result is correct. Otherwise, an additional loss is incurred, 

calculated as the distance from the regression result to the mean of occurrence distribution 

for the actual current phase. The loss from phase estimation error Lossp is conditional based 

on the phase detection result and can be expressed as:

Lossp =
0 p = p
∣ R(Dp) − μp ∣ p ≠ p (5)

where the p̂ denotes the GMM-predicted phase and p is the actual current phase. Dp is the 

input data for phase p and R (Dp) denotes the regression model output. The μp is the mean of 

the Gaussian distribution for the actual current phase p. By combining the loss from 

regression error and the classification error, the regression model can be tuned to make 

completeness estimations and phase predictions that obey a logical order of phases. During 

the training, we added weights α for Lossc and β for Lossp in equation 6:

Loss = αLossc + βLossp (6)

When α = 1 and β = 0, the model becomes a regressor trained only on the regression error. 

Alternatively, when α = 0 and β = 1, the model becomes a classifier trained only on the 

classification error. Training the system with a larger α would cause the system to prioritize 

overall completeness regression instead of minimizing phase prediction error, and a larger β 
would do the opposite. We determined α, β empirically by minimizing the completeness 
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estimation and phase classification error based on a small subset of each dataset. We used 10 

training cases from both datasets to determine the ratio of α vs. β. Fig. 5 shows the averaged 

completeness estimation error and process phase detection accuracy with F1-score on the 

Olympic swimming dataset. We selected α = 0.6 and β = 0.4 which achieved the best 

balance between the completeness and phase detection.

3.4 The Remaining Time Estimation

The speed of process performance may change, which means that our remaining-time 

estimator requires a dynamically-updated estimation strategy. We estimated the remaining 

time by calculating the average speed of completing 1% of the process. If ρ represents the 

current completeness (in percentage) and τ is the time elapsed since the start, the remaining 

time t can be estimated as:

t = (τ ρ) × (1 − ρ) (7)

where (τ/ρ) denotes the time needed to make 1% overall progress and (1 – ρ) denotes the 

remaining percentage for the process to finish. During the runtime, we updated the 

remaining-time estimation for every second.

3.5 Implementation

We implemented our model with the Keras framework using TensorFlow backend. We 

implemented our rtanh activation and loss functions using the tensor interfaces of the Keras. 

As proposed in previous research [16], we used the rectified linear unit (ReLU) as our CNN 

activation function. For the trauma resuscitation dataset, we initialized and trained the model 

using a single GTX 1080 GPU. For the YouTube Olympic swimming dataset that has a 

larger input frame resolution and larger network structure, we used dual GTX 1080 GPUs 

for training. We used the weights trained in VGG Net [25] to initialize the VGG Net for 

RGB frame processing (Fig. 2, bottom). The Adam optimizer [15] was implemented with 

initial learning rate of 0.001 and a decay of 10−8. We configured the system to stop 

automatically if the performance did not change for three consecutive epochs using the 

Keras callback function.

Due to the large model size, we adopted the dropout strategy [26] in the network to avoid 

overfitting. We also partitioned the training and testing sets by whole case instead of 

segmenting each case for evaluation, to minimize similarities between training and testing 

sets, as suggested in [19].

Unlike image classification models with a target in each training image, process phase 

classification may be significantly different from case to case (e.g., treating patients with 

different injuries or performing different swimming styles). Entering data into the classifier 

simultaneously causes slow convergence. For this reason, we used a training strategy: we 

initially fed only two process enactment cases into the classifier. When the system achieved 

a specified loss value (manually defined), we fed one more case into the classifier and kept 

feeding in new cases after each step until all cases have been used. Using this approach, the 
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model learned the specific scenarios rapidly and later was able to discriminate between 

similar classes in other cases.

4 EXPERIMENTAL RESULTS

4.1 Data Collection

Trauma Resuscitation Dataset: Our trauma resuscitation dataset was collected in a 

trauma room at the Children’s National Medical Center in Washington D.C. Use of this data 

and its related research have been approved by the hospital’s IRB. 150 trauma resuscitation 

cases were manually coded as the ground truth. The data was collected through a Kinect 

depth sensor mounted on the side wall of the trauma room [19, 20] (Fig. 6, left). Of the 150 

trauma resuscitation cases, 50 cases had synchronized depth data and 35 from these 50 cases 

also had the synchronized audio data. We used the 150 coded cases to generate the GMM 

phase distributions (Fig. 4), and 35 cases with both depth video and audio data for model 

training and testing. Given the different patient conditions and times of the day, the durations 

of resuscitation phases varied (Fig. 6, right). The system recorded depth video at 1 fps to 

save storage space.

Olympic Swimming Dataset: The Olympic swimming dataset includes 60 videos from 

2004 to 2016 downloaded from YouTube. The videos were recorded by different devices and 

at different angles and distances. We coded the ground truth for the six phases of swimming 

competitions manually. We manually edited some of the downloaded videos to ensure that 

all the video clips contained only swimming-related content. Because some videos did not 

record the pre-competition phase or result phase, these cases did not have all six phases.

4.2 Evaluation of Process Progress Estimation

We evaluated the proposed system with the trauma resuscitation dataset and the Olympic 

swimming dataset for estimating overall completeness, phase, and the remaining time. 

Because the dataset is imbalanced, we used the weighted average for all evaluations.

4.2.1 Completeness Estimation.—We first calculated the overall completeness 

estimation error (Mean Absolute Error (MAE)) of the system by inputting 20% of cases into 

the trained network. Our system achieved an average 12.65% overall completeness error for 

trauma resuscitations and 6.32% error for Olympic swimming dataset. For the MAE of the 

completeness estimation with normalized process duration of testing cases (Fig. 7), a large 

MAE indicates that the system had difficulty distinguishing certain scenarios and a large 

variance indicates that the system did not generalize well for the testing cases. We further 

evaluated the completeness estimation error on each process phase (Fig. 8), and showed that 

the system performed well in the starting and ending phases, which is due to the ability of 

our proposed rtanh function to hold regression output at zero (starting) and one (ending). 

The high error rate in the post-secondary phase may be related to the high similarity in 

appearance between the activities in secondary and post-secondary phases. Different types 

of sensors could be introduced to improve process progress estimation. The competition and 

replay phases of the Olympic swimming dataset had a higher error rate because replay phase 

is a slow-motion version of the competition phase and at low frame rates (e.g. 1 fps), the two 
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phases are barely distinguishable. In addition, having higher-frame-rate videos containing 

more information can reduce overfitting [26]. To confirm this, we sampled the video at 1, 5 

and 10 fps to retrain the system using the same setting of the parameters. The results showed 

that a higher frame rate significantly decreases completeness estimation error during the 

replay phase (Fig. 8). In the rest of this paper, we used 10 fps for the Olympic swimming 

dataset and 1 fps for the trauma resuscitation dataset, unless specified otherwise.

These results suggest that the performance of progress completeness estimation can be 

further improved by (1) Adding other sensors to provide more input features and better 

distinguish the phases with similar sensor data. (2) Using a higher frame rate for data 

preprocessing to retain more temporal associations and prevent overfitting. As a 

consequence, the computational resources and storage space cost would increase. Based on 

our experiments, a 5-minute video sampled at 10 fps with 256 × 256px resolution takes 

more than 8GB of storage; (3) Using deeper models to extract more abstract features. As 

shown in computer vision research, using ResNet [9] instead of VGG may lead to better 

performance.

We performed additional experiments to confirm that our system structure is superior to the 

shallow models. We used the common shallow regressors of Support Vector Machine (SVM) 

and Random Forest and we trained them with the same raw video and audio data used for 

our deep model. Our deep model achieved significantly better accuracy than the shallow 

models, confirming that the CNN-LSTM extracts better multimodal features (Fig. 8). The 

shallow models faced difficulties extracting features from the raw input, and manually 

crafted features would be necessary to enhance their performance.

4.2.2 Phase Detection.—To evaluate the performance of process phase detection, we 

first generated the confusion matrices of the phase prediction results (Fig. 9). Our system 

achieved an average 86.06% phase prediction accuracy for trauma resuscitation data and 

87.99% for the Olympic swimming data. Our analysis of the confusion matrices showed that 

our system is able to make logical phase predictions (Fig. 9). The zero values in most of the 

upper and lower triangles of the confusion matrices indicate that the system predictions 

rarely jumped between non-adjacent phases. This observation confirmed that our activation 

function helps maintain the estimated completeness range, and the LSTM enforces an 

ascending overall completeness prediction. By further comparing the confusion matrices of 

both datasets, we found that: (1) The system accurately predicted the starting and ending 

phases, due to the rtanh’s ability to maintain the zeros and ones for the associated starting 

and ending phases. (2) The phase detection performance is associated with the regression 

performance. For example, the regression and phase detection systems both poorly predicted 

the post-secondary phase compared to other phases of trauma resuscitation (Fig. 8). This is 

because the GMM took the process completeness estimation results as the input for process 

phase detection, and the error made in the process completeness estimation was propagated 

to the process phase detection. (3) The system achieved a similar performance for both 

datasets, despite the differences in camera mobility. The trauma resuscitation dataset was 

recorded by a fixed camera, while the Olympic swimming dataset was recorded by moving 

cameras. The fixed camera captured the activity’s scene and provided continuous activity 

sequence information, while the moving camera might capture some discontinuous unrelated 
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data. Our approach achieved the similar performance under both scenarios, showing its 

potential for analyzing the temporal activity processes regardless of the video input’s 

changing viewpoints, due to the ability of CNN-LSTM structure to learn and extract the 

representative features.

We then analyzed how our model outperformed the shallow models in learning the features 

automatically. Because process phases generally have different durations and the amount of 

available data is imbalanced for different phases, we used three different metrics to perform 

a comprehensive evaluation. The F-measure (weighted average scores for precision, recall, 

and F-score) and 2SET metrics [31] were used to break down the wrongly classified 

instances into fragmentation, over-filling, and under-filling [31] (Table 2). Because the 

transition between process phases is instantaneous, the insertion, deletion, and merging 

metrics do not apply to our datasets [22]. To compensate for the F-measure’s disregard for 

false positive samples, we used informedness, markdness, Matthews correlation coefficient 

(MCC) for a more comprehensive evaluation (Table 2).

As previously mentioned, shallow-modeled regressor generated significantly higher progress 

completeness estimation errors (Fig. 8), which propagated to the phase detection. To focus 

on the classification comparison, we built shallow phase classifiers (SVM and Random 

Forest) using both raw input data and CNN-extracted features (Fig. 3, fully connected layer 

2). The comparison of the metrics (Table 2) revealed that (1) Our deep model was able to 

achieve significantly higher precision and recall; most predictions were correct and most 

true instances were detected. (2) Our deep model achieved higher MCC score, indicating a 

positive association between the prediction and the ground truth. (3) Our deep model 

generated predictions with almost no fragmentation, while the predictions by the shallow 

classifier sometimes had fragmentations. Considering that there were gaps between the 

phases, the zero-fragmentation indicated that our system was able to make logically-ordered 

phase detection due to the use of LSTM to model temporal associations of features. Again, 

since we were calculating the 2SET scores using one-versus-rest method, the over-filling of 

one phase would result in under-filling of an adjacent phase. The over-filling and under-

filling were similar to each other (not equal because we were calculating their weighted 

averages). Our deep model achieved lower under-filling and over-filling, demonstrating the 

ability to detect the phase transition points more accurately.

Since we used a multimodal structure, we further studied the impact of using single and both 

modalities. The results (Table 2) showed that our multimodal structure with all modalities 

included still outperformed same structure with single input modality; both video and audio 

positively contributed to the performance. We observed that the video-only system 

performed fairly well for both datasets, but the performance varied for the audio-only 

system. This discrepancy was caused by the difference in the audio quality. In the Olympic 

swimming dataset, the sound was clear and loud, while the trauma audio was often noisy 

and unclear. This was expected because the microphone array mounted on the side wall of 

the trauma room was far from the operation area (patient bed) and was close to an air vent. 

Noises from the hallway and air vent were sometimes louder than the medical equipment 

sounds and medical team’s voices. In conclusion, using multiple input sources provided 
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helpful information for process progress modeling, but only helped significantly if those 

inputs contained noticeable and representative features.

Finally, our system performance was compared to that of domain experts. To give the 

experts the same information, we started the video clips from the beginning of the video and 

stopped at a random time instance before the end. Using this approach, the domain experts 

could not use video’s progress bar to estimate the overall completeness. The comparison was 

made using depth data from 10 cases. Experts outperformed our system in the progress 

estimation when given high resolution (1080p) RGB videos (Table 3, Olympic swimming 

dataset). This outcome was expected, as the experts were the ones who generated the ground 

truth from RGB videos. Several other reasons contributed to the system’s lower 

performance. The key reason is that our system did not use the state-of-the-art deep learning 

framework for image feature extraction; a deep ResNet might lead to better performance (we 

chose VGG-Net due to our limited computational power). In addition, the experts mentioned 

using extensive domain knowledge while making predictions. For example, in the trauma 

resuscitation dataset, the primary-survey phase should last less than 5 minutes. Training the 

system with both sensor data and domain knowledge could improve the system performance 

on process modeling in some domains.

In addition, our system achieved performance comparable to experts for some tasks under 

constrained conditions (Table 3, Resuscitation Dataset). For example, due to the privacy 

concerns, only depth cameras were allowed in the trauma room. Our results (Table 3) 

showed that experts were more accurate even on depth videos, but also significantly slower 

(30 times slower than the machine) at predicting process phases. Domain experts used 

specific indicators for process phase detection, such as certain resuscitation activities or 

indicative tool usage. Recognizing specific activities requires both experience and domain 

knowledge. This knowledge may be hard for a person to learn only from depth video and 

audio. It was also difficult for the domain experts to estimate overall completeness, and 

almost impossible for them to estimate the remaining time while our system was able to 

estimate both.

4.2.3 The Remaining Time Estimation.—We also evaluated the average remaining-

time estimation error, which was 7.5 minutes (14% of total duration) for the trauma 

resuscitation dataset and 2.2 minutes (18% of total duration) for the Olympic swimming 

dataset. Similar to the calculation of completeness error, we evaluated the remaining-time 

error by process phase (Fig. 10). We found that the remaining-time estimation error was not 

associated with phase detection error, but with completeness estimation error. A small 

remaining-time estimation error in an earlier stage may lead to a large estimation error in the 

subsequent phases, as the estimated process speed will be multiplied by the percentage left 

in the process. Comparing the remaining-time estimation error of the trauma resuscitation 

dataset with the Olympic swimming dataset, we found that the error was also associated 

with process length (Fig. 6, right); the longer processes had larger remaining-time estimation 

errors.
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4.3 Comparison of Phase Prediction to Previous Work

Since we were the first to attempt the estimation of completeness and remaining-time, we 

only compared the performance of process phase detection with our previous research [19]. 

The same datasets and training-testing splits were used for this comparison (6-phase trauma 

resuscitation [19], 9-phase EndoTube dataset [30] and 8-phase TUM LapChole dataset [27]). 

Some evaluation scores were not reported in the original papers, e.g., the EndoNet handled 

first two phases as a single phase, and the averaging methods (average or weighted average) 

were not specified in the previous publications. Therefore, we reimplemented the models 

using the same training-testing splits [27, 30] to make the comparison fair.

Our current model achieved significantly better performance compared to our previous 

model [19] (Fig. 11). A major drawback of the previous work was its reliance on spatial 

information and the omission of temporal associations [19]. Our previous model [19] could 

make incorrect predictions that contradicted common sense, e.g., predicting the primary-

survey phase before patient arrival. To address this issue, we previously proposed a 

constraint softmax layer. Because the constraint softmax requires information across the 

window centered at the current time instance, the decision making must wait for the future 

data. With such a limitation, our previous system could only be used for post-event analysis. 

Our current system instead relies on a regression curve designed to generate ascending 

values between [0, 1], enforcing logically ordered predictions (i.e., patient arrival will 

happen before the primary-survey). Regression for completeness can be generated for every 

frame. Thus, our current system can work online. We further compared the phase prediction 

performance (Fig. 11). The results showed that our current system outperformed the existing 

systems (Table 4). Our current system maintained the similar F-score for pre-arrival and 

patient-leave phases, but significantly improved the scores for other phases.

We next compared our current system using the EndoTube dataset [30], and the TUM 

LapChole dataset [27]. Since both datasets contain repeating workflows (repeatedly 

performed surgical phases), our GMM based model did not work well on such datasets and 

could not compete with the previous research. This confirmed that the GMM cannot model 

nonlinear processes, because a single Gaussian distribution does not fit well to repeated 

phases. We slightly modified our current system by using another LSTM model instead of 

GMM for process phase detection and achieved slightly better performance compared to the 

existing systems (details in Section 5).

We finally compared our system with existing phase-detection systems (Table 4). We were 

unable to reproduce their results because they didn’t publish their implementation or 

datasets, so we used their reported results in this paper for comparison. Since these existing 

systems were not evaluated on the same dataset, the reported evaluation scores might not 

reflect the system performance in each setting but could provide a general understanding of 

phase detection performance using different methods. We noticed that the system with the 

best performance [6] could predict high-level phases only using manually generated low-

level activity logs. This is a significant limitation for real-world applications: automatically 

generated low-level activity logs using sensor data might contain errors, and may 

significantly influence the system performance. Moreover, our system is general enough to 

work with all types of medical resuscitations. Previous systems for process phase detection 
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were trained to handle datasets with specific injury types [21, 27, 30], but our current system 

is trained on cases with a variety of patient injury types, ages, and conditions. In terms of 

data collection, our system uses the economical, easily deployed, and commercially 

available depth camera with microphone array, while other early systems required human 

input, specific medical equipment, or obtrusive wearable sensors.

5 DISCUSSION

5.1 Application — Online Trauma Resuscitation Progress Detection

In addition to testing our system on recorded data, we deployed the system in a trauma room 

at CNMC. We mounted the entire system (a Kinect depth sensor and an Intel NUC mini PC) 

on a side wall of the trauma room (Fig. 6, left). Since the mini PC uses a low-power CPU 

with no dedicated GPU, we had to shrink the input data size to 64 × 64px to ensure that it is 

capable of running an online feedforward network. Considering that real-time MFSC feature 

extraction is computationally expensive, we used only depth video for resuscitation progress 

estimation. Using depth-only down-sampled video impacted the system performance (Fig. 

12). The performance, however, can be increased by replacing the mini PC by a more 

powerful computer or cloud computing solutions.

As mentioned earlier, we trained the model with Keras using the TensorFlow backend. Since 

a C# environment is required for online Kinect-based depth-video capturing, we established 

a local TCP-based communication to connect our C#-based data capturing system to the 

feedforward network running on a Python-based terminal. We trained the model with depth 

frames captured during 50 resuscitation cases and tested the system with 10 resuscitation 

cases. The system achieved 8% overall progress estimation error and 86% phase detection 

accuracy (Fig. 12). The accuracy is slightly lower than for the system that used greater-

resolution depth frames with MFSC data as input, but the system performance could be 

improved by using greater-resolution video and replacing the mini PC by a computers with 

GPU. In addition, the deployment of our system for online estimation of trauma 

resuscitation progress revealed the challenges for real-world application, and the experience 

in solving them will help us better design the next generation of hardware and software.

5.2 Limitations

Our current system works well with different datasets recorded in real-world scenarios. It 

still has some limitations. First, the completeness labels we used were only based on the 

time since the process started. As mentioned, the duration of a complex process can be 

affected by many factors. For example, during the post-secondary phase of trauma 

resuscitation, the availability of medical resources affects the waiting time, and a long 

waiting time does not necessarily indicate progress. Instead of labeling the data using time-

based completeness, it might be reasonable to incorporate activity-performance indicators. 

For example, if the patient’s left eye and right eye are both checked, then 5% of the trauma 

resuscitation has been completed. Labeling the activities with the associated completeness is 

labor intensive. For complex medical processes, given different patient conditions, it is hard 

to quantify the contribution of an activity combination to the overall completeness. Further 
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research in collaboration with the domain experts is necessary to design a time-activity-

based phase recognition model.

Our current system assumes that the workflow process is linear. This system may not work 

well for nonlinear workflows, like the EndoTube and TUM LapChole datasets [27, 30], 

because of our assumption that the GMM fits the distribution of a single occurrence for each 

phase. Nonlinear processes require representations with a mixture of normal distributions for 

each repeating phase. This problem can be addressed by modeling the process phase 

transition using transition topology or “memory". Researchers previously used HMM or 

similar models for process phase detection[21]. However, HMM assumes that the current 

state is only associated with the directly preceding states, which may be inaccurate for 

process modeling: the current phase may have long-range dependencies with several 

previous phases. In addition, HMM does not fit well with our model structure because of its 

limitation in high-dimensional input observations, and HMM topologies for processes with 

many phases can be very complex. Unlike the GMM, the phase detection loss cannot be 

directly calculated by HMM and used for regression tuning.

An alternative to HMM is the LSTM, which has been shown to outperform HMM in 

sequential modeling like speech recognition [8]. In addition, the loss from an LSTM phase 

predictor could be used to tune the regressor. We propose an additional LSTM structure 

which takes both the extracted features and the estimated process completeness as the input 

for phase prediction (Fig. 13). Our preliminary results on the EndoVis dataset (with nine 

surgical phases) and TUM LapChole dataset (with eight surgical phases) showed that using 

LSTM for process phase detection achieved 4% higher precision and 2% higher F1-score 

compared to the GMM in our model (Table 4). This performance improvement indicates that 

an LSTM structure could be used to model nonlinear processes. Our future work will 

include improving the CNN-LSTM-LSTM model for both linear and nonlinear process and 

testing it on additional datasets.

5.3 Extension — Smart Human Computer Interaction

Process progress estimation provides low-level information such as overall completeness 

and current process phase, which can be used to create smarter high-level human-computer 

interaction systems to improve work efficiency. Our system has many potential applications, 

for example, an online trauma resuscitation checklist. Currently, paper-based checklists are 

used in the trauma room to assist the trauma team with resuscitation management and to 

ensure that no required tasks are omitted. During fast-paced resuscitations the team members 

may forget to check off some items after the corresponding tasks are performed, they need to 

rely on their memory to determine whether these tasks were completed. Our system 

generates real-time progress estimation and phase predictions, which can be used 

contemporaneously to alert the trauma team to potentially omitted tasks. The resuscitation 

phase data (i.e. duration, start and end of each phase, and process execution time) can also 

be used to evaluate and score the resuscitation performance. As mentioned, our online 

resuscitation phase detection system is now working in a trauma room at the Children’s 

National Medical Center. Our next step will be developing and testing a tablet-based digital 

checklist to be used during the trauma resuscitations. We will also study the benefits and 
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drawbacks of the checklist by analyzing the statistics of resuscitation performance and 

receiving feedback from the trauma team.

6 CONCLUSION

We introduced a system for estimating the progress of complex processes. We provided two 

real-world datasets collected from different commercially available sensors and used several 

published datasets to evaluate our system. Our system outperformed existing systems on two 

datasets from linear processes and achieved the performance comparable to existing systems 

on datasets from nonlinear processes. Our system can be applied in many real-world 

applications, providing essential information for advanced human-computer interaction. We 

deployed this system in a hospital trauma room for online resuscitation progress estimation 

and discussed potential extensions of the system. The paper contributes to the community:

1. A regression-based neural network structure for process completeness 

estimation.

2. The GMM-based approach and conditional loss that can be used with the 

regression model for classification tasks.

3. The detailed system deployment instructions that can be used as a guideline to 

transfer the system to other fields.

4. The trauma resuscitation and Olympic swimming datasets will be published with 

ground truth labels, and can be used for future studies.

5. A hybrid model that uses deep regression with LSTM instead of GMM to model 

nonlinear process with repeating phases.
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Fig. 1. 
The overall system structure used for modeling process progress estimation.
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Fig. 2. 
Feature extraction framework for the trauma resuscitation dataset (top) and the Olympic 

swimming dataset (bottom).
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Fig. 3. 
The system diagram for completeness estimation and phase prediction. The Lossc represents 

the loss from completeness regression error and the Lossp represents the loss from phase 

prediction error.
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Fig. 4. 
The probability for each phase plotted against the normalized process duration for the 

trauma resuscitation dataset (left) and the Olympic swimming dataset (middle) and EndoVis 

dataset (right) that contains nonlinear process.
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Fig. 5. 
The process completeness estimation error and phase detection accuracy with F1-score using 

different α, β values.
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Fig. 6. 
The trauma room with our Kinect installed (left) and the boxplot of phase duration in 

completeness percentage for trauma resuscitation dataset and Olympic swimming dataset 

(right).
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Fig. 7. 
Mean (solid line) and Variance (shaded region) of completeness estimation error plotted 

against normalized duration of process enactment.
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Fig. 8. 
Aggregate error over different phases of resuscitation and swimming processes.
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Fig. 9. 
The confusion matrices for predicting phases of trauma resuscitation and swimming 

competition.
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Fig. 10. 
Estimated time error for different datasets.
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Fig. 11. 
Performance comparison of our previous (classification with constraint softmax [19]) and 

current models.
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Fig. 12. 
Comparison of the phase prediction performance using small depth images as input and 

depth.
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Fig. 13. 
Proposed CNN-LSTM-LSTM structure that could be used to estimate the progress of 

nonlinear processes.
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Table 1.

The phase definitions for the trauma for trauma resuscitation dataset (left) and Olympic swimming dataset 

(right)

Trauma Resusci-
tation Phases

Starts When Swimming Compe-
tition Phases

Definition

Pre-Arrival (PA) First trauma team member enters
room

Pre-Competition (PC) Statement of participants

Patient Arrival (A) Patient first appears in camera
view

Introduction (I) Athletes enter the field
with introduction

Primary (P) First “primary survey activity”
starts

Preparation (P) Athletes prepare for swim-
ming

Secondary (S) First “secondary survey activity”
starts

Competition (C) Athletes compete

Post-Secondary (PS) First “post-secondary survey ac-
tivity” starts

Replay (RP) Replay of the winner

Patient Leave (PL) Patient leaves the room Result (RE) Statement of results
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Table 2.

Phase prediction performance comparison using different modalities. The shallow classifier based results are 

shaded.

Input Data Source Prec. Rec. F1-s. Info. Mark. MCC Frag. Under. Over.

Trauma audio 0.33 0.37 0.17 0.09 0.06 0.07 0.01 0.13 0.13

Trauma video 0.63 0.57 0.51 0.35 0.43 0.39 0.01 0.10 0.15

Trauma audio & video 0.76 0.68 0.67 0.35 0.54 0.54 0.00 0.08 0.12

Swim audio 0.41 0.40 0.32 0.29 0.29 0.26 0.00 0.11 0.23

Swim video 0.58 0.55 0.48 0.37 0.43 0.39 0.00 0.09 0.24

Swim audio & video 0.67 0.70 0.58 0.52 0.53 0.48 0.00 0.06 0.12

Trauma audio & video (SVM) 0.09 0.37 0.09 0.07 0.03 0.07 0.03 0.01 0.13

Trauma audio & video (SVM)* 0.46 0.22 0.30 0.16 0.05 0.06 0.02 0.16 0.06

Trauma audio & video (RF) 0.17 0.25 0.16 0.01 0.06 0.01 0.08 0.17 0.01

Trauma audio & video (RF)* 0.44 0.29 0.34 0.12 0.08 0.03 0.02 0.16 0.02

Swim audio & video (SVM) 0.59 0.24 0.24 0.07 0.18 0.17 0.00 0.15 0.16

Swim audio & video (SVM)* 0.61 0.27 0.27 0.13 0.30 0.31 0.00 0.15 0.15

Swim audio & video (RF) 0.34 0.22 0.14 0.01 0.08 0.04 0.07 0.14 0.04

Swim audio & video (RF)* 0.46 0.30 0.21 0.03 0.14 0.07 0.00 0.16 0.19

*
classifier takes the output of last fully connected layer as input.
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Table 3.

The Comparison of Process Phase Prediction by Domain Experts and Our System.

System Avg. Accuracy Avg. Precision Avg. Recall Avg. F1-Score Avg. time/frame

Resuscitation Expert 0.95 0.85 0.91 0.87 ≈30s

Resuscitation Machine 0.86 0.72 0.69 0.67 <1s

Olympic Swim Expert 1 1 1 1 ≈20s

Olympic Swim Machine 0.88 0.69 0.66 0.68 <1s
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Table 4.

Phase prediction performance comparison using different input modalities.

System Gen* Input Data Model Acc. Prec. Rec. F1-s.

Trauma Resuscitation Dataset

Multimodal CNN [19] Yes Depth and audio Multimodal CNN 0.62 0.60 0.51 0.50

Multimodal CNN [19] Yes Depth and audio Multimodal CNN
+ constraint softmax

0.80 0.66 0.64 0.63

Our model for linear processes Yes Depth and audio CNN-LSTM
Regression

0.86 0.72 0.69 0.67

Endovis Dataset

Endonet [30] Yes Endoscope video CNN+HHMM 0.63 0.59 0.61 0.59

Our model for linear processes Yes Endoscope video CNN-LSTM
Regression

0.66 0.55 0.61 0.51

Our model for nonlinear process^ Yes Endoscope video CNN-LSTM-
LSTM

0.67 0.63 0.59 0.61

TUM LapChole Dataset

CNN based approach [27] Yes Laparoscopic video AlexNet + time
window

0.72 0.61 0.66 0.63

Our model for linear processes Yes Laparoscopic video CNN-LSTM
Regression

0.78 0.52 0.61 0.56

Our model for nonlinear processes^ Yes Laparoscopic video CNN-LSTM-
LSTM

0.77 0.64 0.66 0.65

Olympic Swimming Dataset

Our model for linear processes Yes Video and audio CNN-LSTM
Regression

0.88 0.69 0.66 0.58

Other Previous Research

Phase detection from low-level
activities [6]

No Activity log Decision Tree n/a 0.75 0.74 0.74

Surgical phases detection [5] No Instrument signal HMM 0.83 n/a n/a n/a

Phase recognition using mobile
sensors [2]

No Wearable sensor data Decision Tree 0.77 n/a n/a n/a

Surgical workflow modeling [21] No Instrument signal HMM 0.84 0.85 0.84 n/a

Food preparation activities
recognition [28]

No Video and accelerom-
eter

Random Forest n/a 0.65 0.67 n/a

*
Gen, If the system do not requires manually crafted feature as input.

^
Our model using LSTM structure instead of GMM for nonlinear process (Fig. 13).
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