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Abstract

Evidence-based personalized medicine formalizes treatment selection as an individualized 

treatment regime that maps up-to-date patient information into the space of possible treatments. 

Available patient information may include static features such race, gender, family history, genetic 

and genomic information, as well as longitudinal information including the emergence of 

comorbidities, waxing and waning of symptoms, side-effect burden, and adherence. Dynamic 

information measured at multiple time points before treatment assignment should be included as 

input to the treatment regime. However, subject longitudinal measurements are typically sparse, 

irregularly spaced, noisy, and vary in number across subjects. Existing estimators for treatment 

regimes require equal information be measured on each subject and thus standard practice is to 

summarize longitudinal subject information into a scalar, ad hoc summary during data pre-

processing. This reduction of the longitudinal information to a scalar feature precedes estimation 

of a treatment regime and is therefore not informed by subject outcomes, treatments, or covariates. 

Furthermore, we show that this reduction requires more stringent causal assumptions for 

consistent estimation than are necessary. We propose a data-driven method for constructing 

maximally prescriptive yet interpretable features that can be used with standard methods for 

estimating optimal treatment regimes. In our proposed framework, we treat the subject 

longitudinal information as a realization of a stochastic process observed with error at discrete 

time points. Functionals of this latent process are then combined with outcome models to estimate 

an optimal treatment regime. The proposed methodology requires weaker causal assumptions than 

Q-learning with an ad hoc scalar summary and is consistent for the optimal treatment regime.

1 Introduction

It is widely recognized by clinical and intervention scientists that the best possible care 

requires personalized treatment based on individual patient characteristics (Piquette-Miller 

et al., 2007; Insel, 2009; Hamburg and Collins, 2010; Lauer and Collins, 2010; Topol, 2012). 

Individualized treatment regimes (ITRs) formalize personalized treatment selection as a 

function from current patient information to a recommended treatment. An optimal ITR 

maximizes the expectation of a desirable outcome when applied to an entire population of 

interest. There has been a recent surge of research on developing estimators for optimal ITRs 

including regression-based estimators (Lu et al., 2011; Qian and Murphy, 2011a; McKeague 

and Qian, 2011), and direct-search estimators (Zhao et al., 2012; Zhang et al., 2012a,b; 

Orellana et al., 2010). ITRs are the atoms of dynamic treatment regimes (Murphy, 2003; 

Robins, 1986, 1989, 1997, 2004) which are currently a subject of intense research including 
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both estimation (Henderson et al., 2010a; Zhao et al., 2011; Goldberg and Kosorok, 2012; 

Zhang et al., 2013; Moodie et al., 2013; Laber et al., 2014) and inference (Chakraborty et al., 

2010; Moodie and Richardson, 2010; Chakraborty et al., 2013; Laber et al., 2013b); recent 

surveys include Schulte et al. (2014); Chakraborty and Moodie (2013); Chakraborty and 

Murphy (2014).

Despite this influx of research, most existing methods for estimating optimal ITRs from 

observational or randomized study data assume that each patient is measured at the same, 

fixed time points and that patient measurements are made without error. This is unrealistic in 

many clinical settings where noisy patient measurements are taken at clinic visits which are 

sparsely observed and irregularly spaced. Thus, to apply existing estimation methods, a 

standard approach is to reduce patient longitudinal information into an ad hoc scalar 

summary which is assumed to be measured perfectly. However, this potentially obfuscates 

important scientific information contained the patient longitudinal process, ignores 

measurement error, requires strong causal assumptions, and may lead to an ITR of poor 

quality.

We model the pre-treatment patient longitudinal information as a noisy proxy of a smooth 

latent process and employ methods from functional data analysis to form a regression-based 

estimator of the optimal ITR. We assume that the effect of the true latent process is 

represented either as: (i) an inner product of the latent process and an unknown, 

nonparametrically modeled, coefficient function; or (ii) a non-linear parametric functional of 

the latent process. Under mild regularity conditions, we prove that the proposed estimator is 

consistent if the true optimal decision rule is linear in the static patient information and 

depends on the true latent process as described above. The proposed estimator applies to 

both randomized and observational studies with sparsely observed, irregularly spaced, and 

noisy longitudinal measurements. While we focus on a single binary treatment decision, the 

proposed work provides a foundation for several extensions including multiple treatments 

and treatment decision points.

There are several recently proposed methods that use functional data to inform construction 

of optimal ITRs. McKeague and Qian (2014), Ciarleglio et al. (2015), and Ciarleglio et al. 

(2016) developed estimators for optimal ITRs that allow for pre-treatment functional 

predictors that are densely sampled without noise. In contrast, as mentioned previously, our 

focus is on sparse, noisy, and irregularly spaced data.

Our approach uses non-parametric estimators of the mean and covariance functions of the 

latent process. An alternative approach would be to posit parametric models for the mean 

and/or covariance functions using, e.g., mixed-effects models (Laird and Ware, 1982; Diggle 

et al., 2002; Fitzmaurice et al., 2012); this approach is especially appealing in contexts 

where scientific theory can be used to inform the choice of parametric model. Our proposed 

approach can also be used with such models, however, in our motivating biomedical 

applications there is not sufficient theory to inform the choice of these models so we will not 

discuss this approach further.
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In Section 2, we review regression-based estimators of the optimal ITR and conditions 

needed to identify the optimal ITR using randomized or observational data. In Section 3, we 

describe our proposed estimator and state conditions under which it consistently estimates 

the optimal ITR. The finite sample performance of the proposed estimator is illustrated using 

simulation experiments in Section 4 and application to a study of major depressive disorder 

in Section 5. Extensions and open problems are discussed in Section 6.

2 Regression-based methods for estimating optimal ITRs

Assume that data available to estimate an ITR are of the form 𝒟n = (Xi, W i(Ti), Ai, Y i) i = 1
n

which comprise n i.i.d. copies of a trajectory {X, W(T), A, Y} where: X ∈ ℝp denotes pre-

treatment subject covariate information; W(T) = {W(T1), …, W(TM)} denotes M 
pretreatment proxy measurements taken at times T = (T1, …, TM); A ∈ {−1, 1} denotes 

treatment assigned; and Y ∈ ℝ denotes an outcome coded so that higher values are better. 

Capital letters, like X, denote random variables and lowercase letters, like x, denote 

instances of these random variables. Both M and T are treated as random variables as the 

number and timing of observations varies across subjects. Observation times T are allowed 

to vary in number, be sparse, and irregularly spaced. For example, in the STAR*D study of 

major depressive disorder, W(T) might denote patient-reported Quick Inventory of 

Depressive Symptomatology (QIDS-SR, Rush et al., 2003), recorded at each clinic visit.

An ITR π maps available patient information to a recommended treatment so that π : dom X 
× dom W(T) → dom A. Under π, a patient presenting with X = x and W(T) = w(t) would 

be recommended treatment π{x, w(t)}. To define an optimal ITR, we use potential outcomes 

(Rubin, 1978; Splawa-Neyman et al., 1990). Let Y∗(a) denote the potential outcome under 

treatment a ∈ {−1, 1} and define Y∗(π) = Σa∈{−1, 1} Y*(a)1π{X,W(T)}=a to be the potential 

outcome under ITR π. The optimal ITR, say πopt, satisfies 𝔼Y∗(πopt) ≥ 𝔼Y∗(π) for all π. To 

define the optimal ITR in terms of the data-generating model we use assume: (C1) 

consistency, Y = Y*(A); (C2) positivity, there exists ε > 0 so that ε < P {A = a|X, W(T)} for 

each a ∈ {−1, 1} with probability one; and (C3) ignorability, {Y*(−1), Y*(1)} ⫫ A|X W(T). 

Assumption (C3) is true by construction in a randomized study, but unverifiable with data 

from an observational study (Robins et al., 2000). A common justification for (C3) in the 

analysis of an observational study is that patient covariates, i.e., {X, W(T)}, are sufficiently 

rich so as to capture all information used in the treatment decision process. However, current 

analysis methods implicitly require the stronger causal assumption (C3’) {Y*(−1), Y*(1)} ⫫ 
A|X, s {W(T)}, where s{w(t)} is a pre-specified, ad hoc, summary of w(t). The proposed 

method incorporates w(t) directly into the model and is thereby more consistent with (C3).

Define Q x, w(t), a = 𝔼 Y X = x, W(T) = w(t), A = a . Under (C1)–(C3), it can be shown that 

πopt{x, w(t)} = arg maxa∈{−1, 1} Q{x, w(t), a}. Regression-based estimators postulate a 

working model for Q{x, w(t), a} which is fit using the data, say Q x, w(t), a , and then used 

to infer the optimal ITR through πQ x, w(t) = arg maxaQ x, w(t), a . Postulating a working 

model for Q{x, w(t), a} that fully incorporates w(t) is difficult because this information is 

often sparsely observed and irregularly spaced. Thus, a common strategy is to assume Q{x, 
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w(t), a} = Q[x, s {w(t)}, a] for some scalar summary s{w(t)}. In this case, one can use 

standard regression methods, e.g., linear regression, to estimate Q{x, w(t), a}, by regressing 

Y on X, s{W(T)}, and A. For example, Chakraborty et al. (2013), Chakraborty and Moodie 

(2013), Laber et al. (2013a), and Schulte et al. (2014), use the slope of QIDS-SR, s{w(t)} = 

{w(tm) − w(t1)}/(tm − t1) in their analyses of STAR*D; while this quantity is informed by 

clinical expertise, it is not informed by the response Y, the treatment A, nor does it account 

for potential measurement error in QIDS-SR as a proxy for depression severity. Another 

common ad hoc summary is the most recent pre-treatment measured score s{w(t)} = tm 

(e.g., Shortreed et al., 2011; Nahum-Shani et al., 2012; Laber et al., 2014, 2013b); again, this 

summary may be informed by expert judgment but is not data-driven. In the context of an 

observational study, allowing w(t) to enter regression model only through s{w(T)} is 

implicitly assuming that the stronger causal assumption (C3’) holds.

For clarity, we describe a simple version of regression-based estimation of the optimal ITR 

using a linear working model for Q{x, w(t), a} of the form Q{x, w(t), a; θ} = x⊺α + 

βs{w(t)} + a[x⊺δ + γs{w(t)}], where θ = (α⊺, β, δ⊺, γ)⊺ and s{w(t)} is a fixed and known 

scalar summary of w(t). Let Pn denote the empirical measure and define 

θn = arg minθℙn[Y − Q X, W(T), A; θ ]2. A regression-based estimator of the optimal ITR is 

πQ x, w(t) = arg maxaQ x, w(t), a; θn . Regression-based estimators are convenient, intuitive, 

and benefit from standard regression o diagnostics and model-building techniques. For these 

reasons, we use the foregoing regression-based estimator as the basis for the estimators 

described in Section 3. However, in some settings, direct-search estimators (Zhao et al., 

2012; Zhang et al., 2012a,b, 2013) may be more appropriate; see Remark 3.4 in Section 3 

for a description of direct-search estimation.

3 Functional Q-learning for estimating optimal ITRs

Treating patient longitudinal information as sparse functional data we derive estimators of 

the optimal ITR, πopt {x, w(t)}, that do not require ad hoc summary of w(t). Without loss of 

generality suppose that 0 ≤ T1 < … < TM ≤ 1. We assume that W(t) = Z(t) + (t) for all t ∈ [0, 

1], where Z(·) is a square integrable latent process with smooth mean and covariance 

functions, and ε(·) is mean-zero white noise process. Thus, we assume that the subject 

longitudinal measurements W(T) are noisy realizations of the true latent process Z(·) at time 

points T. We introduce two general models for 𝔼 Y X, Z( ⋅ ), A : (i) a linear model in X, A, 

and Z(T); and (ii) a hybrid model that combines linear effects for X and A and a linear effect 

of f{Z(·); η} for a parametric functional f(·; η) indexed by unknown parameters η. These 

two classes of models serve as building blocks for more complex classes of models which 

could be obtained by adding polynomial terms or other nonlinear basis functions.

3.1 Linear working model for 𝔼 Y X, Z( ⋅ ), A

We assume a linear model of the form

(A1) 𝔼 Y |X = x, Z( ⋅ ) = z( ⋅ ), A = a = x⊺α∗ + ∫0

1
z(t)β∗(t)dt + a x⊺δ∗ + ∫0

1
z(t)γ∗(t)dt ,
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where α* and β*(·) are the main effects associated with X and Z(·) and δ* and γ*(·) are 

interaction effects. If the coefficient functions β*(·) and γ*(·) were known and the latent 

process Z(·) were observed, then (A1) would correspond to a linear model. However, the 

coefficient functions are unknown and Z(·) is not observed. Model (A1) was studied by 

McKeague and Qian (2014) and Ciarleglio et al. (2015) in the setting where Z(·) is observed 

on a fine grid of points for each subject.

The idea behind our estimation procedure is to use orthogonal basis function expansions for 

both the latent process and the unknown coefficient functions, and then reduce the infinite 

summation by an appropriate finite truncation. Let the spectral decomposition of the 

covariance function, G(t, t′) = Cov{Z(t), Z(t′)}, be G(t, t′) = Σk≥1 λkϕk(t)ϕk(t′), where {λk, 
ϕk(·)}k≥1 are the pairs of eigenvalues/eigenfunctions with λ1 > λ2 > … ≥ 0, and {ϕk(·)}k≥1 

form and orthonormal basis in L2[0, 1]. Then Z(·) can be represented using the Karhunen–

Loéve expansion as Z(t) = μ(t) + Σk≥1 ξkϕk(t), where ξk ≜ ∫0

1
Z(t) − μ(t) ϕk(t)dt are 

functional principal component scores, which have mean zero, variance λk, and are mutually 

uncorrelated. Using the eigenfunctions {ϕk(·)}k≥1, the coefficient functions β*(·) and γ*(·) 

can be represented as β∗(t) = ∑k ≥ 1 βk
∗ϕk(t) and γ∗(t) = ∑k ≥ 1γk

∗ϕk(t), where 

βk
∗ ≜ ∫0

1
β(t)ϕk(t)dt and γk

∗ ≜ ∫0

1
γ(t)ϕk(t)dt are unknown basis coefficients. We assume that 

X has an intercept term. Thus, the model (A1) can be equivalently written as 

𝔼 Y |X = x, Z( ⋅ ) = z( ⋅ ), A = a = x⊺α∗ + ∑k ≥ 1ξkβk
∗ + a x⊺δ∗ + ∑k ≥ 1ξkγk

∗ , where we have 

absorbed ∫ μ(t)β*(t)dt and ∫ μ(t)γ*(t)dt into the intercept and main effect of treatment.

To obtain an expression for Q{x, w(t), a} we assume:

(A2) Y is conditionally independent of W(·) given Z(·);

(A3) A is independent of Z(·) given X and W(T), and 0 < c1 ≤ P(A = 1|X, W(T)) ≤ c2 

< 1 with probability one for fixed constants c1 and c2;

(A4) Z(·) is independent of X given W(T);

(A5) Z(·), W(·), β(·), and γ(·), belong to L2[0, 1].

The foregoing assumptions are relatively mild: (A2) states that the noise–corrupted process 

W(·) provides no additional information about Y given the true signal Z(·); (A3) is satisfied 

if treatment is assigned according to observables X and W(T) and all subjects have a positive 

probability of receiving each treatment; (A4) allows us to estimate Z(·) using W(T) without 

reference to X, this simplifies notation and calculations but is not necessary (Jiang and 

Wang, 2010).

Under assumptions (A1)–(A5)
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Q{x, w(t), a} = x⊺α∗ + ∑
k ≥ 1

βk
∗𝔼{ξk |W(T) = w(t)} + a x⊺δ∗ + ∑

k ≥ 1
γk

∗𝔼{ξk |W(T) = w(t)} .

(1)

Let ℓk w(t) ≜ 𝔼 ξk |W(T) = w(t)  and let K be the number of terms in a finite truncation of 

the infinite summations in the foregoing display. Under the assumption of joint normality of 

the functional principle components and measurement error, ℓk{w(t)} = λkϕk(t) {Φ(t)ΛΦ(t)⊺ 

+ σ2Im}−1 Φ(t)w(t), where ϕk(t) = {ϕk(t1), …, ϕk(tm)}⊺, Φ(t) is the m × K matrix {ϕ1(t) ⋯ 
ϕK(t)}, Λ = diag{λ1, …, λK} is K × K diagonal matrix, Im is the m × m identity matrix, and 

Var {ε(t)} ≡ σ2 is the error variance.

From (1), if the functions ℓk{w(t)} k ≥ 1 were known, then the parameters α*, δ*, β*, γ* 

could be estimated by the regression of Y on X, ℓk{W(T)} k ≥ 1, A. However, these 

functions are not known because the process Z(·) is not directly observable, the basis 

functions {ϕk(·)}k≥1 are not known, or both. We use functional principal component analysis 

(Silverman and Ramsay, 2005; Yao et al., 2005; Di et al., 2009) to construct estimators 

ℓn, k w(t)  of ℓk{w(t)} for k = 1, …, K. Subsequently, we regress Y on X, A, and 

ℓn, k W(T) 1 ≤ k ≤ K. The complete algorithm, which we term linear functional Q-learning, 

is as follows.

(FQ1) Use functional principal components to construct estimators ϕn, k( ⋅ ) of and of 

ℓk{w(t)}.

(FQ2) Let θ ≜ (α⊺, δ⊺, β1, …, βK, γ1, …, γK)⊺, define

Qn
K{x, w(t), a; θ} ≜ x⊺α + ∑

k = 1

K
βkℓk(w(t)) + a x⊺δ + ∑

k = 1

K
γkℓk(w(t)) ,

and compute θn = arg minθℙn Y − Qn
K X, W(T), A; θ

2
.

(FQ3) The estimated optimal decision rule is πn
FQ(x, w(t)) = argmaxaQn

K x, w(t), a; θn .

The finite truncation K corresponds to the number of leading functional principal 

components and can be selected using the percentage variance explained, cross-validation, 

or information criteria (see Yao et al., 2005). In our simulation experiments and illustrative 

application we chose K using the percentage variance explained.

The following results provide convergence rates for the functional Q-learning estimator. 

Subsequently, we establish that πn
FQ is consistent for the optimal regime πopt and derive rates 

of convergence for the difference 𝔼Y∗(πopt) − 𝔼Y∗(πFQ), commonly known as the regret of 
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applying the estimated regime πFQ (Lai and Robbins, 1985; Henderson et al., 2010b). Recall 

that 𝒟n denotes the observed data. Proofs are given in the Supplemental Material. We use 

the following assumptions:

(A6) limn ∞ ∪i = 1
n Ti forms a dense set in [0, 1] with probability one;

(A7) ε(·) is a Gaussian white-noise process;

(A8) supt   ∈ τ | μ(t) − μ(t) | = Op(n−Δ) for some positive Δ, where μ(t) is an estimator 

of μ(t) ≜ 𝔼 Z(t) ;

(A9) supt, t′   ∈ τ |G(t, t′) − G t, t′ | = Op(n−Δ) for some positive Δ, where G(t, t′) is an 

estimator of G(t, t′) ≜ Cov{Z(t), Z(t′)};

(A10) |σ2 − σ2 | = Op(n−Δ) for some positive Δ, where σ2 is an estimator of 

σ2 ≜ Var ε(t) ;

(A11) 𝔼 X 4 < ∞ and E[XX⊺] is non-singular;

(A12) ∑k ≥ 1 λk
2 < ∞;

(A13) |βk
∗ | ≤ Ck−ς and |γk

∗ | ≤ Ck−ς for all k ≥ 1, some ς > 1, and some C > 0.

Assumptions (A5)–(A10) are standard in sparse functional data analysis (Yao et al., 2005; 

Hall and Hosseini-Nasab, 2006; Li and Hsing, 2010; Staicu et al., 2014); (A11) is a standard 

assumption in regression; and (A12)–(A13) are common in scalar-on-function regression 

models (Hall et al., 2007; Lian, 2011; Shin and Lee, 2012).

Theorem 3.1—Assume (A1)–(A13). Let Kn be an increasing sequence of integers such 

that Kn → ∞ and Kn/n2Δ → 0 as n → ∞, then

𝔼 |Qn
Kn X, W(T), A; θn − Q X, W(T), A | 𝒟n = Op(Knn−1/2 + Kn

1/2n−Δ)

The sequence Kn is dictated by the rate of decay of the tail sum ∑k ≥ m λk
2 as m → ∞; in 

the extreme case in which λk = 0 for all sufficiently large k then one can set Kn to be a 

constant (i.e., it need not diverge to infinity, see the Supplemental Materials for additional 

details). As indicated by (A8)–(A10), the constant Δ is dictated by the slowest rate of 

convergence among the estimators μ, G, and σ; this rate depends on the sampling design as 

well as the smoothness of the mean and covariance functions of the latent process (Yao et 

al., 2005; Hall and Hosseini-Nasab, 2006; Li and Hsing, 2010). For example, with kernel-

based estimators of the mean and covariance functions under a sparse sampling design it can 

be shown that Δ = 1/4 is sufficient under mild regularity conditions (see Yao et al., 2005). If 

the functional predictor is observed on a dense grid without error, then it is possible to obtain 

Δ = 1/2 (Zhang and Wang, 2016). It can be seen that if Δ = 1/2 and λk = 0 for all but finitely 

many values, so that Kn can be chosen to be a constant, then the rate in the preceding 
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theorem is parametric; however, in the sparse and noisy design we consider here we expect 

Δ < 1/2 (see Zhang and Wang, 2016) in which case the resulting rates are sub-parametric.

Corollary 3.2—Assume that the conditions for Theorem 3.1 hold and furthermore that 

P[Q X, W(T), 1 − Q X, W(t), − 1 = 0] = 0, then 𝔼 |πn
FQ X, W(T) − πopt X, W(T) | 𝒟n

converges to zero in probability.

Corollary 3.3 (Qian and Murphy, 2011)—Assume that the conditions for Theorem 3.1 

hold, then

𝔼Y∗ πopt − 𝔼 Y∗ πn
FQ = OP Knn−1/2 + Kn

1/2n−Δ

The estimated coefficients βn, k, γn, k, k = 1, …, K and the estimated basis functions ϕn, k( ⋅ )

can be used to form estimates of the coefficient functions β(t) and γ(t) indexing the Q-

function Q{x, w(t), a} via βn(t) = ∑k = 1
K βnkϕnk(t) and γn(t) = ∑k = 1

K γnkϕnk(t). Plotting the 

estimated coefficient functions shows how the latent process is being weighted over [0, 1] in 

the Q-function and thus may be scientifically informative. For example, a coefficient 

function that is large in magnitude and of opposite in sign at the endpoints of [0, 1] but small 

in magnitude in the middle of [0, 1] suggests that the change in Z(t) from the beginning to 

the end of the observation period is important. In this way, the linear functional Q-learning 

algorithm can uncover important relationships between the outcome and evolving patient 

characteristics including how these characteristics should be used to dictate treatment. 

However, in some cases, existing scientific theory may suggest a particular form for 

𝔼 Y |X, Z( ⋅ ), A  which may be nonlinear. We consider this case next.

3.2 Nonlinear working models for 𝔼 Y |X, Z( ⋅ ), A

In some settings, nonlinear features of a patient’s latent longitudinal process may be highly 

clinically informative. For example, in the context of depression and anxiety, an important 

feature of a patient’s evolving health status is the degree of waxing and waning of patient 

symptomatology (Wittchen et al., 2000). In this section, we develop functional Q-learning 

nonlinear summaries of the latent process that are known and suggested by domain experts 

or are unknown but assumed to belong to a parametric class of nonlinear models; the 

extension to non-parametric classes of functionals is discussed in Remark 3.5. In the context 

of major depressive disorder an important feature might be the variation in an individuals 

depression level as captured by f Z( ⋅ ); η = η∫0

1
|Z′(t) |dt, where η ∈ ℝ and Z′(t) denotes the 

derivative of Z(t). In this section, we construct estimators of πopt under the assumption

𝔼 Y |X = x, Z ⋅ = z ⋅ , A = a = x⊺α∗ + f z ⋅ ; η + a x⊺δ∗ + g z ⋅ ; ρ , (A1’)
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where f and g are functionals from L2[0, 1] in to ℝ indexed by unknown parameters η ∈ ℝk

and ρ ∈ ℝq. If Z(·) was observed, then (A1’) reduces to a parametric nonlinear regression 

model. Under (A1’) and (A2)–(A5)

Q x, w(t), a = x⊺α∗ + 𝔼[ f Z( ⋅ ); η |W(T) = w(t)] + a(x⊺δ∗ + 𝔼[g Z( ⋅ ); ρ |W(T) = w(t)]) .

Let G{·|w(t)} denote the conditional distribution of Z(·) given W(T) = w(t), then

Q(x, w(t), a) = x⊺α∗ + ∫ f u( ⋅ ); η dG u( ⋅ ) |w(t) + a

x⊺δ∗ + ∫ g u( ⋅ ); ρ dG u( ⋅ ) |w(t) .

(2)

We construct an estimator of Q{x, w(t), a} by first estimating G{·|w(T)} and then applying 

nonlinear least squares to estimate the remaining parameters in (2). To estimate G{·|w(t)} 

we assume that the loadings {ξk}k≥1 are a discrete-time, mean-zero Gaussian process with 

independent components and Var(ξk) = λk for all k ≥ 1. Under this assumption it can be seen 

that Z(·) given W(T) = w(t) follows a Gaussian process with mean function 

m w t t = 𝔼 Z t |W t = w t  and covariance kernel

𝒦 w(t) (t, v) = 𝔼 [Z(t) − m w(t) (t)]Z(v) − m w(t) (v)] W(t) = w(t) .

Expressions for the maximum likelihood estimators of m{w(t)}(t) and 𝒦 w(t) (t, v) are 

obtained using the joint normality of {Z(t), Z(v), W(T)}, however, these estimators depend 

on the unknown basis functions {ϕk(·)}k≥1 and loading variances {λk}k≥1. Let mn
K{w(t)}(t) 

and 𝒦n
K w(t) (t, v) denote the estimators obtained by replacing {ϕk(·)}k≥1 and {λk}k≥1 with 

the functional principal components estimators ϕk( ⋅ )
k = 1
K  and λk k = 1

K , where K is a 

finite truncation. Let Gn
K ⋅ |w(t)  denote the distribution of Gaussian process with mean 

mn
K w(t) (t) and covariance kernel 𝒦n

K w(t) (t, v). The nonlinear functional Q-learning 

algorithm is:

(NFQ1) Apply (FQ1) to construct estimators ϕnk( ⋅ ) of ϕk(·), and ℓnk w(t)  for k = 1, 

…, K where K is a finite truncation.

(NFQ2) Let ζ, ≜ (α⊺, δ⊺, η⊺, ρ⊺)⊺, define

Qn
K x, w(t), a; ζ ≜ x⊺α + ∫ f u( ⋅ ); η dGn

K u( ⋅ ) |w(t) + a x⊺δ + ∫ g u( ⋅ ); ρ dGn
K u( ⋅ ) |w(t) ,

and use nonlinear least squares to compute ζ n = arg minζPn Y − Qn
K X, W(T), A; ζ ′

2
.
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(NFQ3) The estimated optimal decision rule is 

πn
NFQ x, w(t) = arg maxaQn

K x, w(t), a; ζ n .

The above algorithm, can be implemented using existing statistical software with the 

requisite integrals being evaluated using Monte Carlo methods. Implementations of 

the algorithms using the R programming language (http://cran.r-project.org/) are 

available in the Supplemental Material. Under conditions on the smoothness of f and 

g, consistency of the non-linear functional Q-learning estimator follows from an 

argument similar to proof of Theorem 3.1.

Remark 3.4—One criticism of regression-based methods is that the form of the estimated 

optimal ITR is dictated by the form of the estimated Q-function. Thus, a parsimonious ITR 

requires a parsimonious Q-function, which may be prone to misspecification. On the other 

hand, a complex and expressive Q-function may lead to a complex ITR that is difficult to 

communicate to domain experts. This has led increased interest in direct–search, also known 

as policy–search, algorithms that model the marginal mean outcome as a function on the 

space of ITRs and then to use the maximizer of this fitted model to estimate the optimal 

ITR; the appeal of these methods is that the maximizer can be restricted to belong to a pre-

specified class of ITRs that are interpretable or satisfy cost or logistical constraints. It is 

possible to use functional Q-learning to construct direct–search estimators with sparse 

longitudinal data. Let Π denote a class of ITRs of interest. It can be shown (Qian and 

Murphy, 2011b) that 𝔼Y∗(π) = 𝔼 Q X, W(T), A 1A = π X, W(T) /P A |X, W(T) , where P{a|x, 

w(t)} denotes the propensity score P{A = a|X = x, W(T) = w(t)}. In a randomized clinical 

trial the propensity score is known, in observational studies this must be estimated from 

data. Let P a |x, w(t)  denote an estimator of the propensity score and Q x, w(t), a  an 

estimator of the Q-function constructed using functional Q-learning. An estimator of 𝔼Y∗(π)
is V(π) = ℙn Q X, W(T), A 1A = π X, W(T) /P A |X, W(T) . A policy–search estimator of the 

optimal ITR is πPS = arg maxπ   ∈ Π V(π). In this formulation, it is possible to increase the 

complexity of the Q-function without bincreasing the complexity of the estimated optimal 

ITR. For this reason, with policy–search estimators it is typical to use a non-parametric 

estimator of the Q-function. We discuss non-parametric estimators in the next remark.

Remark 3.5—The preceding estimation algorithm can be extended to handle more general 

classes of models for the conditional mean of the outcome given covariates and the latent 

functional process. For example, one might postulate an additive model of the form

𝔼 Y |X = x, Z( ⋅ ) = z( ⋅ ), A = a = b(x) + f z( ⋅ ) + a[c(x) + g z( ⋅ ) ],

where c, b ∈ 𝒞 are unknown functions, f, g ∈ ℱ, and 𝒞 ⊆ ℝℝp
 and ℱ ⊆ ℝL2[0, 1] are 

(possibly infinitely dimensional) unknown classes of functions. Assuming this model, let 

𝒰 = b, c, f , g  and define Gn
K as in the nonlinear functional Q-learning algorithm. The Q-

function is
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Q
∼

n
K{x, w(t), a; 𝔘} = b(x) + ∫ f {u( ⋅ )}dGn

K{u( ⋅ ) |w(t)} + a c(x) + ∫ g{u( ⋅ )}dGn
K{u( ⋅ ) |w(t)} .

Hence, 𝒰 can be estimated using penalized least squares

𝔘∼n
τ = arg min

𝔘
ℙn Y − Q

∼
n
K X, W(T), A; 𝔘

2
+ Pτ(𝔘),

where 𝒫r is a penalty function indexed by a vector of tuning parameters λ ∈ ℝq. The 

estimated optimal ITR π∼n
NFQ x, w(t) = arg maxaQ

∼
n
K x, w(t), a; 𝔘∼n

τ .

As discussed previously, nonparametric functional Q-learning can be used in the context of 

policy-search algorithms. In addition, one can compare the estimated policy using 

parametric functional Q-learning with the estimated policy using nonparametric functional 

Q-learning as a means of diagnosing model misspecification. However, developing a formal 

test of the parametric functional Q-learning model against a nonparametric alternative would 

require extending the asymptotic theory presented in the preceding section to handle 

nonparametric estimators; we leave this to future work.

4 Empirical study

In this section we examine the finite sample performance of functional Q-learning. 

Performance of an estimated ITR, π, is measured in terms of the average marginal mean 

outcome 𝔼 Y∗(π) . To form a baseline for comparison, we implemented standard Q-learning 

with linear models working models in X and a fixed summary function s{W(T)}. We 

consider two potential summary functions, the last observed value in the longitudinal 

trajectory sL{W(T)} = W(TM), and the mean sM W(T) = W̄(T) = M−1∑ j = 1
M W(T j). Let 

πn
Qlast and πn

Qmean denote the estimated optimal ITRs using Q-learning with sL{W(T)} and 

sμ{W(T)}. Reported simulation results are based on 1000 Monte Carlo replications.

4.1 Linear generative models

To evaluate functional Q-learning with a linear model for 𝔼 Y |X, Z( ⋅ ), A  we use the 

following class of generative models: X ∼ Normal {0, Ωp(r)}, {Ωp(r)}i,j = r|i−j|, ς ~ 

Normal(0, IK), Z(t) = ∑k = 1
K ζkbk(t), t ∈ [0, 1], τ ∼ Normal(0, 1), 

Y = X⊺α∗ + ∫0

1
Z(t)β∗(t)dt + A X⊺δ∗ + ∫0

1
Z(t)γ∗(t)dt + τ, M ∼ Uniform{c, c + 1, …, c + d}, 

and T|M = m ~ Uniform[0, 1]m, where bk(t)
k = 1
K  is a cubic B-spline basis with six equally 

spaced knots. Thus, this class of generative models is indexed by: the dimension p, 

coefficient vectors α* and δ*, number of basis functions K, autocorrelation r, sparsity 

parameters c and d, and the coefficient functions β*(t) and γ*(t). Throughout, we fix p = 5, 

α* ≡ −1, δ* = (−0.1, 0, …, 0), r = 1/2, and K = 10. We consider two sparsity settings: c = 5, 
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d = 15 which we term sparse, and c = 15, d = 10 which we term moderate. We consider three 

settings for the coefficient functions: (S1) γ*(t) = β*(t) ∝ 1; (S2) γ*(t) = β*(t) ∝ 1t>0.90; and 

(S3) γ*(t) = β*(t) ∝ t − 1/2. Setting (S1) corresponds to a simple average of Z(t) and thus Q-

learning using the summary sM{W(T)} may be expected to perform well, whereas Q-

learning with the summary sL{W(T)} may be expected to perform poorly; setting (S2) 

corresponds to the average of Z(t) only over the last 10% of the time domain and therefore 

Q-learning using the summary sL{W(T)} may be expected to perform well, whereas Q-

learning with the summary sM{W(T)} may be expected to perform poorly; and setting (S3) 

corresponds to a contrast between early and late values of Z(t) and thus neither summary 

sM{W(T)} nor sL{W(T)} captures salient features of the functional predictor and therefore 

Q-learning with either of these features may be expected to perform poorly.

In each setting, to control the effect size, we scale the coefficient functions so that 

𝔼 |∫0

1
Z(t)β∗(t)dt | = 2. We assume that W(t) = Z(t)+ε(t) where ε(t) is a standard Gaussian 

white-noise process. We use training sets of size n = 250, results with larger sample sizes 

were qualitatively similar and are omitted.

Table 1 shows the marginal mean outcomes for functional Q-learning, Q-learning, and a 

random regime that assigns treatment by random guessing with P(A = 1) = P (A = −1) = 1/2. 

Functional Q-learning performs favorably compared with Q-learning in all examples 

considered. The performance of Q-learning appears to depend critically on the choice of 

summary; e.g., as anticipated, Q-learning with the summary sM{W(T)} performs well in 

(S1) but poorly in (S2) and (S3), whereas Q-learning with the summary sL{W(T)} performs 

well in (S3) but poorly in (S1) and (S2).

4.2 Nonlinear generative models

To evaluate functional Q-learning with a nonlinear model for 𝔼 Y |X, Z( ⋅ ), A  we use the 

same class of generative models as in Section 4.1 except that Y = X⊺α* + f{Z(·); η} + 

A[X⊺δ* + g{Z(·); ρ}] + τ, where f{z(·); η} and g{z(·); ρ} are functionals of z(·) indexed by 

unknown parameters η and ρ, and all other parameters are as in Section 4.1. In the settings 

we consider here f ≡ g and f{z(·); η} = ηf0{z(·)} where η ∈ ℝ, and f0{z(·)} is a known 

functional of z(·) We consider three settings for f0: (S4) f 0 z( ⋅ ) = ∫0

1
tz(t)dt; (S5) 

f 0 z( ⋅ ) = ∫0

1
z′(t) 2dt, where z′(t) denotes the derivative of z(·) at t; and (S6) f0{z(·)} = 

supt∈[0,1] z(t) − inft∈[0,1] z(t). To control the treatment effect size, the constant η is chosen so 

that η𝔼 | f 0 z( ⋅ ) | = 1.

Table 2 shows the marginal mean outcomes under functional Q-learning, Q-learning, and 

random guessing. Functional Q-learning consistently obtains a higher marginal mean 

outcome than competing methods in all settings. This suggests that if there is strong 

scientific theory to guide the form of the Q-function, then functional Q-learning may 

perform well. However, the poor performance of Q-learning with the last observation 
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illustrates that misspecification of the form of f{z(·); η} could lead to poor performance of 

functional Q-learning, e.g., by incorrectly choosing f{z(·); η} to approximate z(tm).

5 Application to STAR*D

Sequenced Treatment Alternatives to Relieve Depression (STAR*D, www.star-d.org; Fava et 

al. 2003; Rush et al. 2004) is a multi-stage, randomized trial of patients with major 

depressive disorder. We use data from the first stage of the trial to illustrate functional Q-

learning (data can be obtained through www.nimh.nih.gov). For simplicity and to match the 

development of our methodology, we restrict attention to the first randomized stage of the 

trial and compare the two most prevalent treatments with complete outcome and covariate 

data: Citalopram augmented with Bupropion (A = 1) and Citalopram augmented with 

Buspirone (A = −1). Complete data is available on n = 192 subjects. Subjects were observed 

for up to 14 weeks before the initial treatment, visit times are recorded in days from 

baseline; almost all (92%) of subjects in the complete data visited the clinic six times during 

this period. We use the pre-randomization self-rated Quick Inventory of Depressive 

Symptomatology (QIDS) as our longitudinal predictor. The left panel of Figure 1 shows the 

raw QIDS score for 50 randomly sampled subjects, we have highlighted two subjects to 

emphasize heterogeneity in the observed patterns. Based on a survey of clinical papers and 

previous analyses on STAR*D (see Pineau et al., 2007; Fava et al., 2008; Young et al., 2009; 

Chakraborty et al., 2013; Schulte et al., 2014; Novick et al., 2015, and references therein) we 

include as covariates: mean Clinical Global Impression (CGI) score taken over pre-

randomization visits, sex, number of comorbidities at baseline, education level (indicator of 

some college or above), and the log number of major depressive episodes per year between 

diagnoses and enrollment. To be consistent with our paradigm of maximizing a desirable 

outcome we use 27 minus the average QIDS score over the course of post-randomization 

follow-up in the first stage as our outcome. Fitting a linear working model, e.g., equation (1), 

to the observed data and using fifty-fold cross-validation yields an estimated value of 19.35. 

The center panel of Figure 1 shows the smoothed longitudinal trajectories recovered from 

the functional principal components analysis and Table 3 shows the estimated coefficients 

for non-functional predictors. In contrast, using Q-learning and using the QIDS at the time 

of randomization in place of the QIDS longitudinal trajectory yields a cross-validated value 

of 16.69. Because the marginal mean outcome of an estimated optimal treatment regime is a 

non-smooth functional of the underlying generative distribution standard methods for 

inference do not apply (van der Vaart, 1991; Laber and Murphy, 2011; Hirano and Porter, 

2012). To provide a rough sense of the uncertainty in the difference in value between 

functional and standard Q-learning, we calculated a Z-statistic using fifty differences in 

value computed across each fold of the cross-validation; the resultant Z-value was 1.88, so 

that functional Q-learning is nearly two (crudely estimated) standard errors above the mean 

using standard Q-learning. Thus, incorporating longitudinal information shows promising 

results in this limited example. Furthermore, the analysis also produces an estimate of γ ( ⋅ )
which is shown in the right panel of Figure (1); the estimated coefficient function weights 

recent observations most heavily and contrasts them with data in the first half of the study.
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6 Discussion

We proposed functional Q-learning as means of incorporating sparse, irregularly spaced, 

noisy longitudinal data into the estimation of optimal ITRs. We proved that under regularity 

conditions, including correct specification of the outcome regression models, the estimated 

optimal ITR is consistent for the true optimal ITR. Furthermore, the proposed method 

requires less stringent causal assumptions than standard Q-learning used with an ad hoc 
summary of longitudinal information. The proposed methodology performed favorably 

compared with standard methods in simulation experiments.

The proposed methodology lays the groundwork for a number of important extensions. One 

such extension is to incorporate the proposed estimator into each step of multiple stage Q-

learning (Schulte et al., 2014) to analyze data from sequential multiple assignment 

randomized studies or observational longitudinal data with multiple treatments. The 

proposed estimators could also be extended to incorporate multivariate longitudinal 

processes, e.g., through additive regression models, and to discrete longitudinal processes, 

e.g., through latent threshold models. Finally, as noted in Remark 3.4, the proposed 

methodology can be used to build direct–search algorithms to estimated the optimal ITR 

within a pre-specified class of ITRs. We are currently pursuing a number of these 

extensions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left: Observed self-rated QIDS scores for 50 randomly selected subjects. Center: 
Estimated trajectories using functional principal components. Right: Estimated coefficient 

function γ ( ⋅ ).
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Table 3

Estimated coefficients and 95% nonparametric bootstrap confidence intervals for non-functional predictors.

Term Estimate 95% Bootstrap CI

Intercept 19.46 (17.24, 21.95)

CGI −0.50 (−1.25, 0.26)

Sex −0.52 (−1.17, 0.18)

Number Comorbidities 0.18 (−0.39, 0.80)

Depressive Episodes (Log) −0.21 (−0.47, 0.11)

Education 0.45 (−0.22, 1.11)

Treatment 0.48 (−2.22, 2.50)

Treatment × CGI −0.20 (−0.79, 0.64)

Treatment × Sex 0.23 (−0.47, 0.94)

Treatment × Number Comorbidities −0.073 (−0.65, 0.53)

Treatment × Depressive Episodes (Log) −0.031 (−0.31, 0.26)

Treatment × Education −0.050 (−0.62, 0.72)
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