Table 1.
Estimated mean outcome under linear generative models for functional Q-learning, Q-learning with ad hoc features, and random guessing. Results are computed from 1000 datasets of size n = 250. Monte Carlo standard errors are in the second decimal place.
Example | Sparsity |
|
|
|
|
|
|||||
---|---|---|---|---|---|---|---|---|---|---|---|
(S1) | Sparse | 3.0 | 2.81 | 1.83 | 2.74 | 0.90 | |||||
(S1) | Moderate | 3.0 | 2.86 | 1.79 | 2.86 | 0.90 | |||||
(S2) | Sparse | 3.0 | 2.61 | 1.88 | 1.75 | 0.92 | |||||
(S2) | Moderate | 3.0 | 2.81 | 1.88 | 1.80 | 0.92 | |||||
(S3) | Sparse | 3.0 | 2.43 | 2.29 | 1.86 | 0.94 | |||||
(S3) | Moderate | 3.0 | 2.58 | 2.40 | 1.87 | 0.94 |