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Abstract

Finding the optimal treatment regime (or a series of sequential treatment regimes) based on 

individual characteristics has important applications in areas such as precision medicine, 

government policies and active labor market interventions. In the current literature, the optimal 

treatment regime is usually defined as the one that maximizes the average benefit in the potential 

population. This paper studies a general framework for estimating the quantile-optimal treatment 

regime, which is of importance in many real-world applications. Given a collection of treatment 

regimes, we consider robust estimation of the quantile-optimal treatment regime, which does not 

require the analyst to specify an outcome regression model. We propose an alternative formulation 

of the estimator as a solution of an optimization problem with an estimated nuisance parameter. 

This novel representation allows us to investigate the asymptotic theory of the estimated optimal 

treatment regime using empirical process techniques. We derive theory involving a nonstandard 

convergence rate and a non-normal limiting distribution. The same nonstandard convergence rate 

would also occur if the mean optimality criterion is applied, but this has not been studied. Thus, 

our results fill an important theoretical gap for a general class of policy search methods in the 

literature. The paper investigates both static and dynamic treatment regimes. In addition, doubly 

robust estimation and alternative optimality criterion such as that based on Gini’s mean difference 

or weighted quantiles are investigated. Numerical simulations demonstrate the performance of the 

proposed estimator. A data example from a trial in HIV+ patients is used to illustrate the 

application.
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dynamic treatment regime; nonstandard asymptotics; optimal treatment regime; precision 
medicine; quantile criterion

1 Introduction

A treatment regime can be described as a function from the space of covariates to the set of 

treatment options. Depending on the application, a treatment can represent a drug, a device, 
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a program, a policy, an intervention or a strategy. The problem of estimating an optimal 

treatment regime has recently received considerable attention. Medical doctors have long 

been interested in tailoring a patient’s medical treatment according to the individual’s unique 

genetic information, health history, environmental exposure, needs and preferences. 

Economists are interested in finding the most effective active labor market programs (job 

search training, computer training, etc.) for an unemployed job seeker (Frölich (2008), 

Behncke et al. (2009), Staghøj et al. (2010), Wunsch (2013)). In political science, 

researchers are interested in selecting the best strategies (personal visits, phone calls, 

mailings, etc.) to increase voter turnout (Gerber and Green (2000), Imai and Ratkovic 

(2013)).

Existing work on estimating an optimal treatment regime has mainly focused on the mean-

optimal treatment regime, which if followed by the whole population would yield the largest 

average outcome (assuming a larger outcome is preferable). Popular approaches for 

estimating mean-optimal treatment regimes include model-based methods such as Q-

learning (Watkins and Dayan, 1992; Murphy, 2005b; Chakraborty et al., 2010; Moodie and 

Richardson, 2010; Goldberg and Kosorok, 2012; Song et al., 2015), A-learning (Robins et 

al., 2000; Murphy, 2003, 2005a), and model-free or policy search methods (Robins and 

Rotnitzky, 2008; Orellana and Robins, 2010; Zhang et al., 2012a; Zhao et al., 2012, 2015a). 

Other relevant work includes Robins (2004); Moodie et al. (2007, 2009); Henderson et al. 

(2010); Cai et al. (2011); Qian and Murphy (2011); Thall et al. (2011); Imai and Ratkovic 

(2013); Huang et al. (2015); Tao and Wang (2017), among others. We refer to the recent 

books (Chakraborty and Moodie, 2013; Kosorok and Moodie, 2016) and review articles 

(Qian et al., 2012; Chakraborty and Murphy, 2014; Laber et al., 2014; Schulte et al., 2014; 

Wallace and Moodie, 2014) for a more comprehensive list of references. In econometrics, an 

independent line of interesting work explored a decision theory framework for estimating 

statistical treatment rules (Manski, 2004; Dehejia, 2005; Hirano and Porter, 2009; Stoye, 

2009; Bhattacharya, 2009; Bhattacharya and Dupas, 2012; Tetenov, 2012).

In a variety of applications, criteria other than the mean (or the average) may be more 

sensible. When the outcome has a skewed distribution (e.g., survival time of patients), it may 

be desirable to consider the treatment regime that maximizes the median of the distribution 

of the potential outcome. Sometimes, the tail of the potential outcome distribution is of 

direct importance. When evaluating government job training programs to improve earnings, 

policy makers may ask which program does best to improve earnings on the lower tail. An 

optimal treatment regime with respect to the tail criterion is even more attractive if the 

sacrifice is little at the central part of the potential outcome distribution as compared to the 

mean-optimal treatment regime. A simple numerical example illustrating phenomenon of 

this nature is given in Section 2. The same numerical example also reveals that the mean-

optimal treatment regime may work poorly (or even have detrimental effect) at the tails.

In this paper, we study a general framework for estimating the quantile-optimal treatment 

regime in both static and dynamic settings, the latter of which involves estimating a 

sequence of treatment regimes that may vary over time based on a longitudinal study. Given 

a class of treatment regimes, we consider a robust estimator of the quantile-optimal 

treatment regime that does not require specifying an outcome regression model. By now, it 
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has been widely recognized (Qian and Murphy, 2011; Zhang et al., 2012a; Zhao et al., 2012; 

Matsouaka et al., 2014; Zhao et al., 2015b) that a fundamental challenge in estimating the 

optimal treatment regime is specifying a reliable outcome model, which describes how the 

treatment and covariates influence the outcome and how they interact with each other. A 

misspecified outcome model can result in biased estimation of the optimal treatment regime. 

The difficulty of specifying outcome models is more pronounced when estimating the 

optimal dynamic treatment regime using longitudinal data, for which model-based 

approaches would require specifying a sequence of outcome models, one for each decision 

point. However, complete nonparametric estimation of optimal treatment regimes suffers 

from the curse of dimensionality and does not provide easy-to-interpret treatment regimes.

Although some recent work has made important contributions to estimating the optimal 

treatment regime without an outcome model (Robins and Rotnitzky, 2008; Robins et al., 

2000; van der Laan et al., 2005; Orellana and Robins, 2010; Zhang et al., 2012a, 2013; Zhao 

et al., 2012, 2015b), they have considered only the mean-optimal criterion and have not 

studied the asymptotic distribution of the estimated optimal treatment regime. In fact, as will 

be shown later in the paper, the classical asymptotic theory does not apply to this class of 

estimators even for the mean-optimal criterion.

We propose a novel formulation of the estimator as a solution of an optimization problem 

with an estimated nuisance parameter. This representation allows us to further investigate the 

asymptotic theory of the estimated optimal treatment regime using empirical processes 

techniques. Our study reveals that the theory involves nonstandard asymptotics. We have 

rigorously established that: (1) the estimated parameter indexing the quantile-optimal 

treatment regime converges at a cube-root rate to a nonnormal limiting distribution that is 

characterized by the maximizer of a centered Gaussian process with a parabolic drift; and 

(2) the value function corresponding to the quantile optimal treatment regime can be 

estimated at an Op(n−1/2) rate. This new framework is broad in the sense that it also provides 

an alternative formulation of the mean optimal criterion, for which the same type of 

nonstandard asymptotics would arise. Thus, we fill an important gap in the literature. 

Moreover, the framework can be adapted to alternative criteria such as those based on 

weighted quantile or Gini’s mean difference (Section 1.2 of online supplement). The main 

practical advantage of the proposed estimator is that it circumvents the difficulty of 

specifying a reliable outcome regression model, which has undue influence on estimating 

the optimal treatment regime. We also investigate doubly robust estimation (Section 1.1 of 

online supplement), which can incorporate an outcome regression model when it is 

available.

In the causal inference context, several authors have considered estimating the quantile 

treatment effects for comparing several pre-determined treatment regimes (Rubin, 1974; 

Rosenbaum and Rubin, 1983; Hogan and Lee, 2004; Chernozhukov and Hansen, 2005; 

Zhang et al., 2012b). These authors have not investigated the fundamental problem of 

estimating the optimal treatment regimes in the quantile framework, which is much more 

complex than estimating the quantile specific treatment effect when the treatment 

assignment is given. Potentially, the recent work on discrete Q-learning in Moodie et al. 

(2014) can be applied to first estimate the probabilities and then invert them to estimate 
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quantiles, but this application has not been systematically studied. Linn et al. (2015) 

independently considered estimating quantile-optimal treatment regime. However, their 

approach depends on applying threshold interactive model-based Q-learning at a sequence 

of thresholding values and then performing inversion. The method requires specifying the 

underlying outcome models and is computationally intensive even for homoscedastic error 

outcome models. Furthermore, Linn et al. (2015) has not studied the asymptotic theory we 

considered here.

The rest of the paper is organized as follows. The quantile-optimal treatment regime is 

proposed in Section 2. The estimation procedure and asymptotic distribution are introduced 

in Section 3. Section 4 investigates quantile-optimal dynamic treatment regimes. Simulation 

studies and a data example are reported in Section 5. Section 6 considers doubly robust 

estimation and alternative optimality criteria. The proofs are given in the Appendix. 

Additional technical details and numerical results can be found in the online supplement. 

The methods proposed in this paper can be implemented using the R package quantoptr 
(Zhou et al., 2017).

2 Quantile-optimal treatment regime

Let A be the binary variable denoting treatment (0 or 1 corresponding to two treatment 

options), and let Y denote the outcome. Without loss of generality, we assume that a larger 

value of the outcome is preferable. To evaluate the treatment effect, we consider the potential 

or counterfactual outcome framework (Neyman (1990), Rubin (1978)) for causal models. 

Let Y*(1) be the potential outcome had the subject been assigned to treatment 1; and Y*(0) 

be the potential outcome had the subject been assigned to treatment 0. For each individual in 

the sample, we observe either Y*(1) or Y*(0), but not both. It is assumed that the observed 

outcome is Y = Y*(1)A + Y*(0)(1 − A), that is, the observed outcome is the potential 

outcome corresponding to the treatment the subject actually receives. This is often referred 

to as the consistency assumption in causal inference. We also adopt the stable unit treatment 

value assumption (Rubin (1986)), that is, a subject’s outcome of receiving a treatment is not 

influenced by the treatments received by other subjects.

Let X denote an l-dimensional vector of covariates. A treatment regime is defined as a 

function d(X), that maps the covariates vector X to the set of treatment options, here {0,1}. 

For example, d(X) = I(X ≤ 3/5) would assign a subject with X = 0.2 to treatment 1. Given 

treatment regime d(X), the corresponding potential outcome is Y*(d) = Y*(1)d(X) + Y*(0)

(1 − d(X)), that is, Y* (d) is the outcome one would observe if a subject with covariate value 

X is assigned to treatment 1 or 0 following treatment regime d(X). We assume that (Y*(1), 

Y*(0)) is independent of A conditional on X (unconfoundedness assumption, Rosenbaum 

and Rubin (1983)), which is automatically satisfied in randomized trials.

Given a collection 𝔻 of treatment regimes, the optimal treatment regime is typically defined 

as the one that maximizes the average of the potential outcome: E(Y*(d)). Here, we consider 

a new quantile-optimal treatment regime, which is defined as
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arg  maxd ∈ 𝔻Qτ(Y
∗(d)), (1)

where τ ∈ (0, 1) is the quantile level of interest and Qτ (Y*(d)) is the τth quantile of Y*(d), 

specifically, Qτ(Y*(d)) = inf {t : F*(t) ≥ τ} with F* denoting the distribution function of 

Y*(d).

To illustrate how the quantile-optimal treatment regime differs from the mean-optimal 

treatment regime, we consider a simple but instructive example. The outcome, Yi, satisfies 

Yi = 1 + 3Ai + Xi − 5AiXi + (1 + Ai + 2AiXi)εi, where εi ~ N(0,1) Xi ~ Uniform[0, 1], and 

Ai = 1 (or 0) if subject i receives treatment (or control). We consider the following six 

treatment regimes: (1) Ai = 0, ∀ i; (2) Ai = I(Xi ≤ 3/5); (3) Ai = I(Xi < 1/2); (4) Ai = I(Xi < 

1/5) ; (5) Ai = I(Xi ≤ 1/10); (6) Ai = 1, ∀ i; and (7) random assignment P(Ai = 1) = 0.5. It is 

easy to derive that treatment regime 2 is the mean-optimal treatment regime. Table 1 

summarizes the mean, the 0.25 quantile (Q0.25) and 0.10 quantile (Q0.10) of the potential 

outcome distribution corresponding to each of the six treatment regimes, based on a Monte 

Carlo experiment with 106 observations. We observe that regime 3 is the best if one is 

interested in maximizing the first quartile of the potential outcome distribution; whereas 

regime 4 performs best with respect to the 0.10 quantile. If we consider the hypothetical 

setting where the outcome is the survival time of cancer patients, then regime 2 (mean-

optimal treatment regime) may have detrimental effect for patients at the lower tail, 

corresponding to weaker patients. Regime 3 significantly improves the survival time of the 

patients at the lower tail, while its mean value is comparable to that of regime 2. Thus, 

regime 3 is preferable if doctors wish to improve the life span of more severely ill patients 

without sacrificing the average treatment benefit of the population.

3 Estimation and large sample theory

3.1 Estimating quantile-optimal treatment regime

To explain the idea, we first consider a randomized trial with two treatment options (denoted 

by 1 and 0). Extensions to observational studies and dynamic treatment regimes will be 

discussed later. The observed data {Xi, Yi, Ai}, i = 1, …, n, are independent and identically 

distributed copies of {X, Y, A}. Our aim is to estimate the quantile-optimal treatment 

regime given a class of feasible treatment regimes 𝔻 = I(XTβ > 0): β ∈ 𝔹  where β indexes 

different treatment regimes and 𝔹 is a compact subset of ℝl. This class of single-index 
decision rules has been popular in practice (Zhang et al., 2012a, 2013; Zhao et al., 2012) due 

to its simplicity and interpretability. It is straightforward to show that this class contains the 

mean-optimal treatment regime corresponding to some popular choices of outcome models. 

For example, for the outcome model E(Y|A, X) = β0 + β1X1 + β2X2 + A(β3 + β4X1 + 

β5X2), the corresponding mean-optimal treatment regime is I(β3 + β4X1 + β5X2 > 0). An 

alternative class of treatment regimes that are practically appealing is the class of 

thresholding rules of the form I(X1 > β1, …, X1 > β1), for some constants β1, …, β1. Even 

for these relatively simple forms, asymptotic theory for the estimated optimal treatment 

regime, no matter what the criterion is, is nontrivial. It is worth pointing out that it is not 
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necessary that the class of candidate treatment regimes includes the theoretically global 

optimal treatment regimes, as the interpretability of the treatment regime is often of 

fundamental importance.

We will focus on the single-index treatment regimes, as the theory for the thresholding 

decision rules is similar and simpler. Given a β, ∈ 𝔹, let d(X, β) = I{XTβ > 0} be the 

treatment regime indexed by β, which is sometimes denoted by dβ for notational simplicity. 

For a quantile level of interest τ (0 < τ < 1), we would like to estimate β0 = arg 

maxβ∈BQτ(Y*(dβ)), the parameter indexing the quantile-optimal treatment regime. To do so, 

we make use of an induced missing data framework motivated by Zhang et al. (2012a). Let 

C(β) = Ad(X, β) + (1 − A)(1 − d(X, β)). In the induced missing data framework, the “full 

data” of interest, but not completely observed, are {Y*(dβ), X}; and the observed data are 

{C(β), C(β)Υ*(dβ), X} = {C(β), C(β)Y, X}. If C(β) = 1, then potential outcome Y*(dβ) is 

observed; if C(β) = 0 then Y* (dβ) is “missing”. Furthermore, Y*(dβ) and C(β) are 

independent conditional on X. Thus, the induced missing data structure satisfies the missing 

at random assumption. Let

Qτ(β) = argmin
a

n−1 ∑
i = 1

n
Ci(β)ρτ(Y i − a), (2)

where ρτ(u) = u (τ − I(u < 0)) is the quantile loss function. As stated in the following lemma 

(proof given in the online supplement), Qτ(β) is a consistent estimator of the τth quantile of 

Y*(dβ).

Lemma 1—If condition (C1) in Section 3.3 is satisfied, then we have Qτ(β) Qτ(Y∗(dβ)) in 

probability, ∀ β ∈ 𝔹.

The estimator for β0 that corresponds to the quantile-optimal treatment regime is

βn = argmax
β ∈ 𝔹

Qτ(β) . (3)

The estimated quantile-optimal treatment regime is d
β

= I(XTβ > 0). Section 2.1 of the 

online supplement provides the calculation details.

3.2 Alternative formulation of the proposed estimator

As the treatment regimes involve indicator functions, the nonsmoothness leads to 

nonstandard asymptotics even when the mean criterion is used. The asymptotic theory is 

challenging and involves a cube-root convergence rate and a non-normal limiting 

distribution, see Section 3.3 for details. Even for the mean criterion, the asymptotic 

distribution theory of the estimated optimal treatment regime has not yet been systematically 

developed in the literature.
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To facilitate the development of theory, we introduce a novel reformulation that represents 

the quantile-optimal treatment regime parameter estimator (3) as a solution of an 

optimization problem with an estimated nuisance parameter. To motivate the reformulation, 

let

g( ⋅ , β, m) = C(β)I Y − m > 0 , (4)

m0 = sup m: sup
β ∈ 𝔹

Pg( ⋅ , β, m) ≥ (1 − τ)/2 , (5)

β0 = argmax
β ∈ 𝔹

Pg( ⋅ , β, m0) . (6)

The function g(·, β, m) is motivated by the first-order condition of the maximization problem 

in (2). For a randomized trial, P(C β = 1| X) = P(C(β) = 0 | X) = 1
2 . Thus, 

P g · , β, m = 1
2P(Y∗(dβ) > m), which is equal to 1 − τ

2  if m = Qτ(Y*(dβ)). For any given β, 

because g(·, β, m) is monotonically decreasing in m, it follows that Qτ(Y*(dβ)) is the largest 

value of m such that Pg(·, β, m) is greater than or equal to 1 − τ
2 . Therefore, m0 defined in (5) 

is the largest achievable τth quantile of Y*(dβ) over β ∈ 𝔹 ; and β0 defined in (6) is the 

population value of the parameter that indexes the optimal treatment regime.

Now, let Pn denote the empirical expectation, that is, Pn f (Z) = n−1∑i = 1
n f (Zi), where Z1, …, 

Zn is a random sample and f (·) is an arbitrary function. Then, 

mn = sup m: supβ ∈ 𝔹Png( ⋅ , β, m) ≥ (1 − τ)/2  is the estimator of the largest achievable τth 

quantile of Y*(dβ) over the class of treatment regimes under consideration. We have the 

following alternative expression of the estimator in (3):

βn = argmax
β ∈ 𝔹

Png( ⋅ , β, mn) . (7)

In other words, βn is the value of β at which the supremum of Png( ⋅ , β, mn) is achieved, thus 

it is the estimator of the parameter that indexes the optimal treatment regime. This 

reformulation was partly motivated by the least median of squares estimator of Rousseeuw 

(1984). A benefit of this reformulation is that we also obtain the convergence rate of mn, 

which is the estimator for the maximally achievable value function (here, the maximally 

achievable τth quantile of the potential outcome) as a by product (see Lemma 2 in Section 

3.3).
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3.3 Asymptotic properties

We assume the following regularity conditions.

(C1) Potential outcomes Y*(1) and Y*(0) both have continuous distributions with 

bounded, continuously differentiable density functions.

(C2) The population parameter indexing the optimal treatment regime, β0 ∈ ℝl, which 

satisfies ║β0║ = 1, where ║ · ║ denotes the Euclidean norm, is unique and is an 

interior point of 𝔹, a compact subset of the parameter space.

(C3) X has a continuously differentiable density function f(·). The angular 

components of X, considered as a random element of the unit sphere 𝕊 in ℝl has a 

bounded, continuous density with respect to the surface measure on 𝕊.

(C4) Let q(X, δ) = S1,X(m0 + δ) − S0,X(m0 + δ), where S1,X(·) and S0,X(·) denote the 

conditional survival functions of Y*(1) and Y*(0) give X, respectively; and q̇ X,  0
and ḟ X  denote the gradients with respect to X. The l × l matrix 

V = 1
2∫ I XTβ0 = 0 ( f X q̇ X, 0 + q X, 0 ḟ (X))′β0XXTdσ is positive definite, where σ 

is the surface measure on the hyperplane {X : XTβ0 = 0}.

Condition (C1) is a standard assumption on the potential outcomes in causal inference. 

Condition (C2) is an identifiabilitv condition for β0. Conditions (C3) and (C4) are technical 

conditions to evaluate the quadratic drift and covariance function of the Gaussian process 

that are used to characterize the asymptotic distribution of βn. The matrix V in (C4) 

characterizes the quadratic drift of the Gaussian process. These two conditions are similar to 

those in Example 6.4 of Kim and Pollard (1990). In particular, condition (C3) is mainly 

imposed for the convenience of calculating the derivative of the surface integral in the proof 

of Lemma 2. It can be relaxed to allow some of the components of X to be discrete at the 

expense of a more complex expression for V. The new formulation in Section 3.2 connects 

the problem of estimating β0 to the class of estimation problems with cube root asymptotics 

(Kim and Pollard, 1990). However, the result of Kim and Pollard (1990) is not directly 

applicable because our estimator of β0 contains an estimated nuisance parameter mn. Lemma 

2 below shows that βn nearly maximizes the objective function in (7) in which mn is replaced 

by the limiting value m0.

Lemma 2—Under conditions (Cl)–(Cf),

(1) mn = m0 + Op(n−1/2).

(2) Png( ⋅ , βn, m0) ≥ supβ ∈ 𝔹Png( ⋅ , β, m0) − op(n−2/3).

The first part of Lemma 2 shows that mn has a root-n convergence rate. This result is of 

independent interest as it tells us how well we could estimate the theoretically largest 

achievable value of the criterion function. The details of the derivation of the lemma are 

given in the Appendix. Lemma 2 confirms that βn nearly maximizes Png(·, β, m0). This 
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allows us to further derive the asymptotic distribution of βn, which is expressible as a 

functional of two-sided Brownian motion with a quadratic drift. This result is stated in the 

following theorem.

Theorem 1—Assume conditions (C1)–(C4) are satisfied. Then, n1/3(βn − β0) converges in 

distribution to arg maxtZ(t), where the process Z t = − 1
2 tTVt + W(t), V is an l × l positive 

definite matrix and W(t) is a centered Gaussian process with continuous sample paths and 

covariance kernel function K(·, ·). The expressions for V and K(·, ·) are given in the proof of 

the theorem in the Appendix.

Remark 1: If the mean-optimal criterion is of interest, then we let g*(·, β, μ) = C(β)(Y − μ) 

and μn = sup μ: supβ ∈ 𝔹Png∗( · , β, μ) > 0 . The estimated parameter indexing the mean-

optimal treatment regime has the representation βn
mean = argmax

β ∈ 𝔹
Png ∗ ( ⋅ , β, μn). It is 

straightforward to adapt the techniques developed in this paper to show that the estimated 

parameter indexing the mean-optimal treatment regime has a non-standard convergence rate 

and a non-normal limiting distribution. This fills an important gap in the literature.

Remark 2: If the observed data arise from observational studies, the above formulation and 

theory can be extended using propensity score weighting. For observational studies, we have 

Y* (dβ) ⊥C(β)|X, which is guaranteed under the common causal inference assumption 

{Y*(1), Y*(0)} ⊥ A|X. Thus, the “missing at random” assumption is satisfied in the induced 

missing data framework of Section 3.1. Let π(X) = P(A = 1|X), then the propensity score 

P(Cβ = l|X) has the expression π(X)d(X, β) + (1 − π(X))(1 − d(X, β)). We denote the 

propensity score by πc(X, β) for notational simplicity. We then estimate the τth quantile of 

Y*(dβ) by Q
∼

τ(β) = argmin
a

n−1∑i = 1
n Ci(β)

πc(Xi, β) ρτ(Y i − a), where πc(Xi, β) is an estimator of the 

propensity score πc(X, β). A simple way to obtain πc(Xc, β) is to estimate π(X) based οn 

{Ai, Xi}, i = 1, …, n, using logistic regression, which models π(X) as π(X, γ) = 

exp(XTγ)/(1 + exp(XTγ)). One may also use semiparametric or nonparametric models, 

which renders greater flexibility but demands heavier computation. The estimated parameter 

indexing the quantile-optimal treatment regime is given by argmax
β ∈ 𝔹

Q
∼

τ(β).

4 Quantile-optimal dynamic treatment regimes

When treating chronic medical conditions, it is frequently necessary to vary the treatment 

(e.g., drug type, dose) over time according to how the patient responds to the previous 

treatment. This motivates us to consider estimating the quantile-optimal dynamic treatment 

regime (DTR) using data from longitudinal studies, which can also help catch possible 

delayed treatment effects. Comparing with the static treatment regime discussed earlier, a 

new challenge is the presence of time-dependent covariates that may be simultaneously 

confounders and intermediate variables.
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Consider a two-stage longitudinal study in which the subject receives treatment A1 ∈ {0,1} 

at stage 1 and treatment A2 ∈ {0, 1} at stage 2. We are interested in the outcome at the end 

of the study. We would like to estimate the optimal DTR d = (d1, d2), where dj can depend 

on the realized covariates and treatment history before the jth decision, j = 1, 2. The baseline 

vector of covariates is denoted by X1, the potential outcomes are denoted by X2
∗(d1), Y∗(d) , 

where X2
∗(d1) is the covariate information between decisions d1 and d2 had the subject 

received treatment d1; and Y*(d) is the potential outcome had the subject received treatment 

d = (d1, d2). As before, we define the quantile-optimal DTR as dopt = argmax
d ∈ 𝔻

Qτ(Y∗(d)). H1 = 

{X1} and H2 = {X1, A1, X2}. We adopt the no unmeasured confounder or sequential 

ignorability assumption (Robins (1997)), that is, given any regime (a1, a2), 

A1 ⊥ X2
∗ a1 , Y∗ a1, a2 |H1 and A2⊥Y*(a1, a2)|H2. In other words, treatment Aj received in 

the jth stage (j = 1, 2) is independent of any future (potential) covariate or outcome 

conditional on the history. We also adopt the positivity assumption, that is, there exist 

positive constants c1 < c2 such that c1 ≤ P(Aj = a|Hj) < c2, with probability one, for a ∈ {0, 

1} j = 1.2. Assume that the class of candidate treatment regimes is indexed by 

ξ = (βT, γT)T ∈ 𝔹 = 𝔹1 × 𝔹2, dξ = (dβ, dγ), where dβ(H1) = I(H1
Tβ > 0)and dγ(H2) = I(H2

Tγ > 0).

The observed data are denoted by {Xi1, Ai1, Xi2, Ai2, Yi}, i = 1, …, n, where Xi1 denotes the 

baseline vector of covariates for subject i, Ai1 is the treatment subject i receives at stage 1, 

Xi2 denotes the vector of intermediate information observed between the two stages, Ai2 is 

the treatment subject i receives at stage 2, and Yi is the observed outcome for subject i (as 

before, a larger value is preferred). To estimate the optimal treatment regime, we consider a 

similar induced missing data structure, as motivated by Zhang et al. (2013). For a given 

treatment regime dξ, the “full data” are (X1, X2
∗(dβ), Y∗(dξ)). Let Cξ = ∞ if A1 = dβ and A2 = 

dγ. In this case, (X1, X2, Y) = (X1, X2
∗(dβ), Y∗(dξ)), and we observe the potential outcome. Let 

Cβ = 2 if A1 = dβ but A2 ≠ dξ (dropout before decision 2); and let Cβ =1 if A1 ≠ dβ and A2 ≠ 

dξ (dropout before decision 1). Note that this induced missing data structure mimics the 

monotone dropout scenario for longitudinal data. We can verify that the setup satisfies the 

missing at random assumption, that is, missingness may be related to the observed 

information but is conditionally independent of what is missing.

Let π1(H1) = P(A1 = 1 | H1) and π2(H2) = π2(X̄2, a2) = P(A2 = 1| X̄2, a2), where X̄2 = (X1
T, X2

T)T

is an l-dimensional vector. It is important to note that H2 depends on the treatment received 

at the first stage. If the subject receives A1 = a1 ∈ {0, 1} at the first stage, we sometimes 

write H2 as H2(a1) = {X1, a1, X2} to emphasize the dependence, for which case X2 = X2
∗(a1)

by the consistency assumption. Similarly, for A1 = dβ(H1), we sometimes write H2 as H2(dβ) 

= {dβ(X1), X2}. The potential outcomes correspond to dξ are denoted by 

X1, X2
∗(dβ(X1)), Y∗(dξ)  or simply X2

∗(dβ), Y∗(dξ) .
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As before, we would minimize Pn
I(Cξ = ∞)

P(Cξ∞|H2) ρτ(Y − a)  to estimate the τth quantile of 

Y*(dξ). Note that Cξ = ∞ if and only if A1 = dβ(X1) and A2 = dγ(H2(dβ)), in other words, 

H2 = H2(dβ) or the observed history is the potential history corresponding to dβ. Thus, in the 

above inverse probability weighted quantile loss function

P(Cξ = ∞|H2) = P(Cξ = ∞| X1, X2
∗(dβ(X1))) = P(A1 = dβ | X1, X2

∗(dβ(X1)))P(A1 = dγ | A1 = dβ(X1), X1, X2
∗

(dβ(X1))) = P(A1 = dβ | X1), P(A2 = dγ |H2(dβ))

where P(A1 = dβ|X1) = [π1(H1)dβ + (1 − π1(H1))(1 − dβ)] and P(A2 = dγ|H2(dβ)) = 

[π2(H2(dβ))dγ + (1 − π2(H2(dβ)))(1 − dγ)]. For notational simplicity, we denote P(Cξ = ∞|

H2) by π(ξ). Formally, the estimate of the τth quantile of Y*(dξ) is given by 

Qτ(ξ) = argmin
a

n−1∑i = 1
n I(Cξ, i = ∞)

π(ξ) ρτ(Y i − a), where Cξ,I is the value of Cξ for subject i. 

The consistency of Qτ(ξ) is established in the online supplement. The estimator of the 

parameter indexing the optimal DTR from the class 𝔻 is defined as 

ξ = argmax
ξ = (βT , γT)T ∈ 𝔹

Qτ(ξ). The estimated quantile-optimal treatment regime is   d
ξ

= (d
β

, dγ).

In the following, we assume that the data arise from a SMART (sequential, multiple, 

assignment randomized trials), which has been recommended as a standard design for 

optimal DTR estimation (Lavori and Dawson, 2000; Murphy, 2008). For a SMART, π1(H1) 

and π1(H2) are both known by design, thus π(ξ) is known for any given ξ. Let 

g( ⋅ , ξ, m) =
I(Cξ = ∞)

π(ξ) I(Y > m) and mn = sup m: supξPng( ⋅ , ξ, m) ≥ (1 − τ) . We have the 

following alternative expression ξn = argmax
ξ

Png( ⋅ , ξ, mn). Let m0 = sup{m : supξ Pg(·, ξ, 

m) ≥ (1 − τ)} and ξ0 = argmax
ξ

Pg( ⋅ , ξ, m0). Under similar conditions as for Theorem 1, it can 

be derived that the limiting distribution of n1/3(ξn − ξ0) is that of the maximizer of a centered 

Gaussian process with a quadratic drift.

Theorem 2

Under conditions (C1*)–(C4*) given in the online supplement, n1/3(ξn − ξ0) converges in 

distribution to argmaxtZ*(t), where the process Z∗(t) = − 1
2 tTV∗t + W∗(t) V* is an l × l 

positive definite matrix and W*(t) is a centered Gaussian process with continuous sample 

paths and covariance kernel function K*(C1, C2). The expressions for V* and K* (·, ·) are 

given in the online supplement.
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5 Numerical results

5.1 Simulations

Example 1 (single-stage optimal treatment regime)—We compare estimating the 

conventional mean-optimal treatment regime and quantile-optimal treatment regime in this 

example. We generate random data from the model 

Y = 1 + X1 −  X2 + X3
3 + e

X4 + A 3 − 5X1 + 2X2 − 3X3 + X4 + (1 + A(1 + X1 + X2 + X3 + X4))ε, 

where Xk (k = 1,…, 4) are independent Uniform(0, 1) random variables and ε ~ N (0, 1) is 

independent of the covariates. The binary treatment indicator A satisfies log (P(A = 1|X)/P 
(Ai = 0|X)) = −0.5 − 0.5 (X1 + X2 + X3 + X4), where X = (X1,…, X4)′.

We consider the class of treatment regimes I(η0 + ηTX > 0), where (η0, η1,…, η4)T has L2-

norm 1. Let μ(a, X) = E(Y|A = a, X), where a ∈ {0, 1}. The mean optimal treatment regime 

is given by I(μ(1, X) > μ(0, X)). In our example, it is I(3 − 5X1 + 2X2 − 3X3 + X4 > 0), 

which belongs to our class of candidate treatment regimes. We compare the proposed 

method with two popular methods for estimating the mean-optimal treatment regime: a 

model-based approach and a model-free approach. For the model-based approach we impose 

models for μ(a, X) and then estimate the mean-optimal treatment regime by 

I(μ(1, X) > μ(0, X)), where μ is the estimated value of μ. We consider two posited models for 

μ(a, X): (1) correctly specified regression function 

μt(a, X) = γ0 + γ1X1 + γ2X2 + γ3X3
3 + γ4e

X4 + a(γ5 +  γ6X1 + γ7X2 + γ8X3 + γ9X4); and (2) 

misspecified regression function 

μm(a, X) = exp[γ0 + γ1X1 + γ2X2 + γ3X3
3 + a(γ4 + γ5X1 + γ6X2 + γ7X3 + γ8X4)]. For the model-

free approach, we consider the estimator in Zhang et al. (2012a). We denote these three 

estimators by mean_RGμt
, mean_RGμm

 and mean_ZTLD, respectively.

For the quantile criteria, we consider τ = 0.25 and 0.1, and denote the corresponding 

criterion as 0.25qt criterion and 0.10qt criterion, respectively. We do not have a closed form 

expression for the quantile-optimal treatment regime. In Table 2, based on a Monte Carlo 

experiment with sample size 105, we report the values of the ηi’s indexing the optimal 

treatment regimes corresponding to different criteria; the last three columns of the table 

contain the mean, the 0.25 quantile and the 0.1 quantile of the outcomes if the corresponding 

optimal treatment regime is applied. These values will serve as our gold standard.

Table 3 summarizes the estimated optimal treatment regimes corresponding to the mean 

criterion (using mean_RGμt
, mean_RGμm

 and mean_ZTLD, respectively), the 0.25qt criterion 

and the 0.10qt criterion for sample sizes n =500 and 1000. The last three columns of Table 3 

report the estimated mean, the 0.25 quantile and the 0.1 quantile of the outcomes if the 

estimated optimal treatment regime is applied. We observe the model-based approach for 

estimating the mean-optimal treatment regime is sensitive to the specified regression model 

and can be biased when the regression model is misspecified ( mean_RGμm
 gives very biased 

estimators for η0 and η4). Also, the estimated optimal treatment regimes (and their 
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achievable performance in terms of the value of the criterion functions) using the model-free 

approach get closer to the ideal ones reported in Table 2 as the sample size increases.

Example 2 (two-stage DTR)—We generate random data from the following model Y =1 

+ X1+A1 [1 − 3 (X1 − 0.2)2] +X2+A2 [1 − 5 (X2 − 0.4)2] +(1+0.5A1 − A1X1 +0.5A2 − 

A2X2)ε, where ε ~ N (0, 0.4) X1 ~ Uniform (0, 1) X2|{X1, A1} ~ Uniform(0.5X1, 0.5X1 

+ 0.5), A1|X1 ~ Bernoulli (expit (−0.5 + X1)), and A2|{X1, A1, X2} ~ Bernoulli (expit (−1 + 

X2)) with expit (t) = et/(1 + et). We consider sequential treatment regimes of the form (A1, 

A2), where A1 = I {X1 < η1} and A2 = I {X2 < η2}. We note that this class contains the 

mean-optimal sequential treatment regimes which are given by A1 = I (X1 < 0.777) and A2 = 

I (X2 < 0.847).

The popular Q-learning procedure relies on specification of models for the so-called Q-

functions. In this example, we compare with standard application of Q-learning based on 

linear models, that is, the Q-functions are specifies as 

Qt(Ht, At, βt) = Ht, 0
T βt, 0 + AtHt, 1

T βt, 1, t = 1, 2, where H2,0 = (1, X1, A1, X1A1, X2)T, H2,1 = (1, 

X2)T, H1,0 = (1, X1)T; and H1,1 = (1, X1)T. We note that in practice the Q-learning procedure 

usually misspecifies the Q-function. We also compare with the model-free approach for 

estimating the mean-optimal dynamic treatment regime (Zhang et al. (2013)).

Table 4 reports the parameters indexing the optimal treatment regimes and the corresponding 

mean, median and 0.75 quantile of the outcome if the optimal treatment regime is applied, 

based on a Monte Carlo experiment with sample size 105. Table 5 summarizes the estimated 

parameters indexing the optimal treatment regimes and their estimated performance 

corresponding to different criteria for sample sizes n = 500, 1000, based on 400 simulation 

runs. The estimated optimal treatment regimes and their achievable performance are quite 

close to the ideal ones reported in Table 4, particularly when the sample size is large.

5.2 ACTG175 data analysis

We illustrate the proposed quantile-optimal treatment regime estimation method on the 

ACTG175 data set from the R package speff2trial, which contains measurements on 

2139 HIV-infected patients. The patients were randomized to four treatment arms: 

zidovudine (AZT) monotherapy, AZT+didanosine (ddI), AZT+zalcitabine(ddC), and ddI 

monotherapy. The goal of the original clinical trial was to evaluate whether treatment of HIV 

infection with one drug (monotherapy) was the same as, better than, or worse than treatment 

with two drugs (combination therapy) in patients with CD4 T cells between 200 and 

500/mm3 (Hammer et al., 1996). Figures 1 and 2 of the online supplement display the 

histograms of the response variable (CD4 count at week 96) for each of the two treatment 

arms for different subgroups of patients for which the subgroups are formed by the observed 

values of the CD4 count at week 0 or baseline weight. The varying shapes of the histograms 

across different ranges of both covariates indicate heteroscedastic treatment effects. It is also 

observed that the distribution of the response variable tends to be asymmetric and skewed to 

the right.
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A basic conclusion from the study is for patients who had taken AZT before entering the 

trial, treatments with ddI or AZT – ddI are better than continuing to take AZT alone. There 

are n = 562 patients with full CD4 information that had taken AZT before the study and 

received AZT+ddI or ddI monotheraphy in this trial. Motivated by the aforementioned 

finding, we consider the problem of how to assign treatment to the patients who had taken 

AZT before, either to the AZT+ddI combination therapy or to the ddI monotheraphy. The 

quantitative outcome is the CD4 count at 96± 5 weeks from baseline (denoted as cd496) as 

CD4 count represents a vital signal for disease progression for HIV-infected patients. The 

treatment indicator Ai is set to 1 if patient i is assigned to the AZT + ddI therapy, and Ai is 

set to 0 if the patient is assigned to the ddI monotheraphy. Because this trial is randomized, 

the propensity score πi = n−1 ΣAi = 0.48 is taken as a constant for all subjects.

Two covariates are considered for estimating the optimal treatment regimes: X1 (baseline 

weight of patient, measured in kg) and X2 (baseline CD4 T cell count, denoted by cd40). It 

has been observed that body weight has a significant role on AZT pharmacokinetic profile. 

Burger et al. (1994) reported that AZT clearance is significantly lower in patients with a 

lower body weight, which indicates a qualitative interaction with AZT. In medicine, drug 

clearance is a pharmacokinetic measurement of the rate at which the active drug is removed 

from the body, and drug clearance is correlated with the time course of a drug’s action 

(Hammer et al., 1996).

Let X = (X1, X2), where both X1 and X2 are standardized to the interval [0, 1]. We consider 

the class of candidate regimes of the form I{η0 + η1X1 + η2X2 < 0}, where (η0, η1, η2) ∈ 
(−1, 1)3. When the decision rule takes the value 1, the patient is assigned to the AZT+ddI 

combination therapy; otherwise the patient is assigned to the ddI monotheraphy. For 

identifiabilitv, we impose the restriction ║η║ = 1. We estimate the optimal treatment 

regimes using the median criterion, quartile criterion and the mean criterion. The median 

criterion is motivated by the robustness consideration; the quartile criterion is motivated by 

the desire to improve the treatment effect for weaker patients. Table 6 summaries the 

estimated optimal treatment regimes for the three criteria.

The estimated median of the potential outcome when the median-optimal treatment regime 

is applied is 360; whereas the median of the observed outcome is 339.5. The estimated first 

quartile of the potential outcome when the 0.25qt criterion is applied is 263; whereas the 

0.25 quartile of the observed outcome is 237. The estimated mean of the potential outcome 

when the mean-optimal treatment regime is applied is 403.9; whereas the mean of the 

observed outcome is 355. Figure 3 of the online supplement depicts the three estimated 

regimes graphically, from which we observe that they are dramatically different from each 

other.

6 Conclusions and discussions

In a variety of applications, it is of interest to consider a treatment regime that maximizes the 

median or other quantile of the potential outcome distribution. This paper studies robust 

estimation of quantile-optimal static/dynamic treatment regimes. We propose a novel 

representation that expresses the parameter indexing the optimal treatment regime as a 
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solution to an optimization problem with a nuisance parameter. Employing this 

representation and empirical process techniques, we prove that the estimated parameter 

indexing the quantile-optimal treatment regime has a nonstandard convergence rate and a 

non-normal limiting distribution. Our approach does not rely on the specification of an 

outcome regression model. We also investigate the doubly robust estimator for the quantile-

optimal treatment regime, which can improve the estimation efficiency when a reliable 

outcome regression model is available (Section 1.1 of the online supplement).

Our proposed novel representation applies to a general class of policy search estimators for 

optimal treatment regimes defined by a general class of criteria. In particular, our approach 

can be applied to investigate the asymptotic distribution for the estimators of the mean-

optimal treatment regimes in Zhang et al. (2012a, 2013) and fill in an important gap in the 

theory. The aforementioned nonstandard asymptotics will also arise when the mean-optimal 

criterion is used. For alternative criteria, we discuss optimal treatment regimes defined by 

the Ginhs mean difference criterion and the weighted quantile criterion in the online 

supplement, where an outline of the theory and some numerical examples are provided.

It is worth noting that the nonstandard asymptotics discussed in this paper are different from 

the nonregular asymptotics for Q-learning estimators. The Q-learning method models the 

stage-specific conditional mean functions and is a popular indirect method for estimating 

mean-optimal treatment regimes. Consider the Q-learning method in a two-stage dynamic 

setting and denote the estimated parameters indexing the optimal treatment regimes for the 

two stages as (ψ1, ψ2). The asymptotic distribution for ψ2 is standard but the asymptotic 

distribution for ψ1 is nonregular in the sense that it does not converge uniformly over the 

parameter space (Robins, 2004; Chakraborty et al., 2010; Laber et al., 2014). The asymptotic 

distribution of ψ1 can change abruptly from being asymptotically normal to being non-

normal depending on whether a certain event occurs with probability zero or not. This 

happens because ψ1 is a nonsmooth function of ψ2. The results in this paper and those in the 

literature on Q-learning demonstrate the challenges of asymptotic theory for optimal 

treatment regimes estimation. In general, classical asymptotic theory is no longer applicable.

An interesting future research direction is to investigate estimating quantile-optimal 

treatment regimes for survival data, where the response variable is randomly censored. 

Censored data arise in diverse fields such as economics, medicine and sociology. For 

example, in a clinical trial censoring occurs when a study ends before all patients experience 

the event of interest. Several authors (Goldberg and Kosorok (2012); Zhao et al. (2015c); 

Geng et al. (2015); Jiang et al. (2016)) recently studied estimating optimal treatment regimes 

with survival outcomes but have not considered the quantile criterion. When censoring is 

heavy, it can be difficult to estimate the mean survival time accurately but it is often possible 

to reliably estimate the median and the lower quantiles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Technical Proofs

We provide below the proofs of Lemma 2 and Theorem 1. The proofs of Lemma 1, Theorem 

2, and derivation of the theory for Section 6.2 are given in the online supplement.

Proof of Lemma 2

(1) Note that g(·, β, m) = [AI(XTβ > 0) + (1 − A)I(XTβ ≤ 0)]I(Y − m > 0). The classes 

I(XTβ >  0) : β ∈ 𝔹  and I(Y − m > 0):m ∈ ℝ  are both VC subgraph classes and hence 

bounded Donsker classes. Therefore, the class g( ⋅ , β, m): β ∈ 𝔹, m ∈ ℝ  is Donsker (van der 

Vaart and Wellner (1996)). We thus have

sup
β ∈ 𝔹, m ∈ ℝ

|Png( ⋅ , β, m) − Pg( ⋅ , β, m) | = Op(n−1/2) . (8)

We denote the supremum at the left side of the above expression as Δn. For any given β, 

Pg(·, β, m) is a decreasing function of m. Hence the assumption about the density ensures 

that there exists a constant κ1 > 0 such that sup Pβ ∈ 𝔹 g( ⋅ , β, m0 + ε) < 1 − τ
2 − κ1ε, for 

each small enough ε > 0. Taking ε = Δn/κ1, to all n sufficiently large, it follows from (8) that 

supβ ∈ 𝔹Png( ⋅ , β, m0 + Δn/κ1) < Δn + 1 − τ
2 − κ1

Δn
κ1

= 1 − τ
2 . This implies m < m0 + Δn/κ1 for all 

n sufficiently large. Similarly, there exists a constant κ2 > 0 such that 

supβ ∈ 𝔹Pg( ⋅ , β, m0 − ε) ≥ 1 − τ
2 + κ2ε, for all small enough ε > 0. If follows that 

supβ ∈ 𝔹Png( ⋅ , β, m0 − Δn/κ2) ≥ − Δn + 1 − τ
2 − κ2

Δn
κ2

= (1 − τ)/2 for all n sufficiently large. 

This implies mn ≥ m0 − Δn/κ2 for all n sufficiently large. Since Δn = Op(n−1/2), we have 

mn = m0 + Op(n−1/2). (2) Observing (i) βn = argmax
β ∈ 𝔹

Png( ⋅ , β, mn), (ii) β = β0 uniquely 

maximizes Pg(·, β, m0) and (iii) supβ ∈ 𝔹 |Png( ⋅ , β, mn) − Pg( ⋅ , β, m0) | = op(1), we conclude 

that β is consistent for β0 by applying standard arguments of the M estimation theory 

(simple modification of Theorem 5.7 in van der Vaart (1998)). Next, we will show 

βn − β0 = Op(n−1/3).

Let θ = (βT, δ)T, where δ = m−m0, and h(·, β, δ) = C(β)I{Y−m0 − δ > 0} − C(β0)I{Y − m0 

− δ > 0}. By definition, βn = argmax
β ∈ 𝔹

Pnh( ⋅ , β, mn − m0). We will consider a Taylor expansion 

of Ph(·, β, δ) around θ0 = (β0
T, 0)T. Note that h(·, β0, 0) = 0 and that
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E[C(β)I Y − m0 − δ > 0 ] = 1
2E I(XTβ > 0)I(Y − m0 − δ > 0) | A = 1 + 1

2E I(XTβ ≤ 0)I(Y − m0 − δ > 0) | A

= 0 = 1
2E I(XTβ > 0)S1, X(m0 + δ) + 1

2E I(XTβ ≤ 0)S0, X(m0 + δ) = 1
2E I(XTβ > 0)(S1, X(m0 + δ)

− S0, X(m0 + δ)) + 1
2E S0, X(m0 + δ) ,

where S1,X (·) and S0,X (·) are the conditional survival functions of Y*(1) and Y* (0) given 

X, respectively. Let q(X, δ) = S1,X(m0 + δ) − S0,X (m0 + δ), then

E(h( ⋅ , β, δ)) = 1
2E I(XTβ > 0) − I(XTβ0 > 0) q(X, δ) .

It is easy to see ∂
∂δ E h ⋅ , β, δ |β = β0, δ = 0 = 0 and ∂2

∂δ2 E h ⋅ , β, δ |β = β0, δ = 0 = 0. Note that 

the transformation Tβ = (I − | | β | |−2 ββT)(I − β0β0
T) + | | β | |−1 ββ0

T, where I denotes the 

identity matrix, maps the region A = {XT β0 > 0} ontο A(β) = {XTβ > 0}, taking ∂A to 

∂A(β). The surface measure σβ on ∂A(β) has the constant density ρβ (X) = βT β0/||β|| with 

respect to the image of the surface measure σ = σβ0 under Tβ. The outward pointing unit 

vector normal to A(β) is the standardized vector − β/||β|| and along ∂A the derivative (∂/

∂β)Tβ(X) reduces to −||β||−2[βXT + (βTX)I]. Using the result from Section 10.7 of Loomis 

and Sternberg (1968) on derivatives as surface integrals, we have

∂
∂βT E(h( ⋅ , β, δ)) = 1

2 | | β | |−2 βTβ0(I + | | β | |−2 ββT)∫ I XTβ0 = 0 q(Tβ(X), δ) f (Tβ(X))Xdσ .

Note that we have ∂
∂β E h ⋅ , β, δ |β = β0, δ = 0 = 0because E(h(·, β, 0)) is maximized at β = 

β0. Combining with the observation that Tβ0(X) = X along {XTβ0 = 0}, we have ∫ I{XTβ0 = 

0}l(X, 0)f (X)X dσ = 0 Using this and the fact ||β0|| = 1, we have

∂2

∂β∂βT E(h( ⋅ , β, δ)) |β = β0, δ = 0 = − 1
2∫ I XTβ0 = 0 ( f (X)q̇(X, 0) + q(X, 0) ḟ (X))Tβ0XXTdσ,

where q̇(X, 0) and ḟ (X) denote the gradients with respect to X. Also,

∂2

∂βT ∂δ
E(h( ⋅ , β, δ)) |β = β0, δ = 0 = 1

2∫ I XTβ0 = 0 (s1, X(m0) − s0, X(m0)) f (X)Xdσ,

where s1,X and s0,X are the derivatives of S1,X and S0,X with respect to δ, respectively. We 

write

V = − ∂2

∂β∂βT E h ⋅ , β, δ |β = β0, δ = 0 (9)
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and a1 = ∂2

∂βT ∂δ
E(h( ⋅ , β, δ))|β = β0, δ = 0, then the Taylor expansion of Ph(·, β, δ) around (β0, 

0) has the form

Ph( ⋅ , β, δ) = − 1
2(β − β0)TV(β − β0) + a1

T(β − β0)δ + o( | | β − β0 | |2 ) + o(δ2) . (10)

For a given positive constant R, let HR = sup| |θ − θ0 | | ≤ R |h( ⋅ , β, δ)|. We observe that h(·, β, δ) 

is nonzero if and only if C(β) and C(β0) take different values. Hence, 

HR ≤ sup| |θ − θ0 | | ≤ R I(XTβ > 0 ≥ XTβ0) + I(XTβ0 > 0 ≥ XTβ) . The envelope function HR is 

bounded by an indicator function of a pair of multidimensional wedge shaped regions, each 

subtending an angle of order O(R), from which we deduce that E(HR
2 ) = O(R). The conditions 

of Lemma 4.1 of Kim and Pollard (1990) are satisfied. Hence, for each fixed ε > 0, 

uniformly for ||θ − θ0|| ≤ R, Pnh(·, β, δ) ≤ Ph(·, β, δ) + ε(||β − β0||2 + δ2) + Op(n−2/3). 

Combining with the upper bound in (10), we have 

Pnh ⋅ , β, δ ≤ − 1
2 λmin V − ε | | β − β0 | |2 + | |a1 | | | | β − β0 | | |δ | + ε + o(1) δ2 + Op n−2/3 , 

where λmin(V) denotes the smallest eigenvalue of V. Choosing ε = λmin(V)/4, we derive 

that

0 = Pnh ⋅ , β0, mn − m0 ≤ Pnh ⋅ , βn, mn − m0 ≤ − 1
4λmin(V) | | βn − β0 | |2 + Op(n−1/2) | | βn − β0 | | + Op

(n−2/3) .

Completing the square in | | βn − β0 | |, we derive that | | βn − β0 | | = Op(n−1/3).

Next, we show that βn nearly maximizes Pnh(·, β, 0). A similar argument as above shows 

that P|h(·, θ1) − h(·, θ2)| = O(||θ1 − θ2||) for θ1, θ2 near θ0. It follows from Lemma 4.6 of 

Kim and Pollard (1990) that the process Jn(·, α, γ) = n2/3(Pn − P)h(·, β0 + αn−1/3, γn−1/3) 

satisfies the stochastic equicontinuity condition of Theorem 2.3 of Kim and Pollard (1990). 

Since n1/3(mn − m0) = op(1), this implies that for β uniformly in a O(n−1/3) neighborhood of 

β0, Jn( ⋅ , n1/3(β − β0), n1/3(mn − m0)) − Jn( ⋅ , n1/3(β − β0), 0) = op(1). That is, 

Pnh( ⋅ , β, mn − m0) = Pnh( ⋅ , β, 0) + Ph( ⋅ , β, mn − m0) − Ph( ⋅ , β, 0) + op(n−2/3), uniformly over 

an Op(n−1/3) neighborhood of β0. Within such a neighborhood, Taylor expansion similarly as 

before shows that Ph( ⋅ , β, mn − m0) − Ph( ⋅ , β, 0) = op(n−2/3). Suppose 

β
∼

n = argmax
β ∈ 𝔹

Pnh( ⋅ , β, 0). An analysis similar to that for βn shows that β
∼

n = Op(n−1/3). 

Hence,
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Pnh( ⋅ , βn, 0) = Pnh( ⋅ , βn, mn − m0) − op(n−2/3) ≥ Pnh( ⋅ , β
∼

n, mn − m0) − op(n−2/3) = Pnh( ⋅ , β
∼

n, 0) − op
(n−2/3),

where the inequality follows because βn = argmax
β ∈ 𝔹

Pnh( ⋅ , β, mn − m0). Therefore, 

Pnh( ⋅ , βn0) ≥ supβ ∈ 𝔹Pnh( ⋅ , β, 0) − op(n−2/3). □

Proof of Theorem 1

Following Lemma 2(2), to find the asymptotic distribution of n1/3(βn − β), it suffices to 

apply the main theorem of Kim and Pollard (1990) to the one parameter process 

h( ⋅ , β, 0): β ∈ 𝔹 . Recall that h(·, β, 0) = C(β)I{Y > m0} − C(β0)I{Y > m0}. In the 

following, we will verify conditions (iv) and (v) of the main theorem of Kim and Pollard 

(1990). Other conditions of the theorem are relatively easier and can be checked using 

similar techniques as those in the proof of Lemma 2.

For condition (iv), it can be shown that ∂2

∂β∂βT E(h( ⋅ , β, 0)) |β = β0
= − V, where V is defined 

in (9) in the proof of Lemma 2. Next, we calculate the kernel function in condition (v). 

Similarly as in the calculation in the proof of Lemma 2, for each C1, C2 in Rl, and t > 0,

tP|h ⋅ , β0 +
C1
t , 0 − h ⋅ , β0 +

C2
t , 0 |

2

= tP |C(β0 + C1/t) − C(β0 + C2/t)|I(Y > m0)

= 1
2 tP |I(XT(β0 + C1/t) > 0) − I(XT(β0 + C2/t) > 0) | I(Y∗(1) > m0) + 1

2 tP |I(XT(β0 + C1/t) ≤ 0) − I(XT(β0 + C2/t) ≤ 0) | I(Y∗(0) > m0)

= tP (S1, X(m0) + S0, X(m0)) | I(XT(β0 + C1/t) > 0 − I(XT(β0 + C2/t) > 0)| .

To evaluate the above expression, we make use of the local coordinates (Example 6.4 of Kim 

and Pollard (1990)), for which we define β(τ) = 1 − | |τ | |2β0 + τ, where τ is orthogonal to β0 

and ranges over a neighborhood of the origin. It is noted that as the parameter space is on the 

sphere (||β0|| = 1, ||β|| = 1), such a decomposition can be obtained by taking τ = τ(β) = T0β, 

where T0 = I − β0β0
T Then we can write β = (β0

Tβ)β0 + T0β such that β0
Tβ = 1 − | |τ | |2 and 

β0
TT0β = 0. Also, τ(β0 + C1/t) = T0C1/t, τ(β0 + C2/t) = T0C2/t. Similarly, we can decompose 

X as X = rβ0 + Z for some random variable r and random vector Z, with Z being orthogonal 

to β0. Let Ck
∗ = T0Ck ∈ T0, k = 1,2, then 

XT(β0 + C1/t) = (rβ0 + Z)T( 1 − | |C1
∗ | |2β0 + C1

∗/t) = r 1 − | |C1
∗ | |2 /t2 + ZTC1

∗/t. Let p(·,·) be 

the joint density function of (r, Z), which can be deduced from the density of X, With a 

change of variable w = tr, tP{(S1,X(m0) + S0,X(m0))|I(XT(β0 + C1/t) > 0) − I(XT(β0 + C2/t) > 

0)|} is equal to
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∬ I −ZTC2
∗(1 − | |C2

∗ | |2 /t2)−1/2 > w ≥ − ZTC1
∗(1 − | |C1

∗ | |2 /t2)−1/2 (S
1, w

t β0 + Z
(m0) + S

0, w
t β0 + Z

(m0

))p(w/t, Z)dwdZ + ∬ I −ZTC1
∗(1 − | |C1

∗ | |2 /t2)−1/2 > w ≥ − ZTC2
∗(1 − | |C2

∗ | |2 /t2)−1/2

S
1, w

t β0 + Z
(m0) + S

0, w
t β0 + Z

(m0) p w/t, Z dwdZ .

Integrating over w and letting t→∞to get 

limt ∞tP |h( · , β0 + C1/t, 0) − h( · , β0 + C2/t, 0) |2

= ∫ |ZT(C1
∗ − C2

∗ | ) | (S1, Z(m0) + S0, Z(m0))p(0, Z)dZ

= ∫ |ZT(C1 − C2) | (S1, Z(m0)) + S0, Z p(m0))p(0, Z)dZ

. We denote this limit as L(C1–C2). Using 

the identity 2xy = x2+y2−(x−y)2, we deduce that the limiting covariance kernel function can 

be written as 

K(C1, C2) = limt ∞tP h( ⋅ , β0 + C1/t, 0) − h( ⋅ , β0 + C2/t /t, 0) = limt ∞
1
2 tP |h( ⋅ , β0 + C1/t, 0)

− h( ⋅ , β0, 0) |2 + limt ∞
1
2 tP |h( ⋅ , β0 + C2/t, 0) − h( ⋅ , β0, 0) |2 − limt ∞

1
2 limt ∞tP |h( ⋅ , β0

+ C1/t, 0) − h( ⋅ , β0 + C2/t, 0) |2 = 1
2 (L(C1) + L(C2) − L(C1 − C2))

. 

The asymptotic distribution of n1/3(βn − β0) then follows by applying the main theorem of 

Kim and Pollard (1990) □

References

Behncke S, Froelich M, Lechner M. Targeting labour market programmes: Results from a randomized 
experiment. Swiss Journal of Economics and Statistics. 2009; 145(3):221–268.

Bhattacharya D. Inferring optimal peer assignment from experimental data. Journal of the American 
Statistical Association. 2009; 104(486):486–500.

Bhattacharya D, Dupas P. Inferring welfare maximizing treatment assignment under budget 
constraints. Journal of Econometrics. 2012; 167(1):168–196.

Burger DM, Meenhorst PL, ten Napel CH, Mulder JW, Neef C, Koks CH, Bult A, Beijnen JH. 
Pharmacokinetic variability of zidovudine in hiv-infected individuals: subgroup analysis and drug 
interactions. AIDS. 1994; 8(12):1683–1690. [PubMed: 7888117] 

Cai T, Tian L, Wong PH, Wei L. Analysis of randomized comparative clinical trial data for 
personalized treatment selections. Biostatistics. 2011; 12(2):270–282. [PubMed: 20876663] 

Chakraborty B, Moodie EE. Statistical Methods for Dynamic Treatment Regimes: Reinforcement 
Learning, Causal Inference, and Personalized Medicine. Springer Science & Business Media; 2013. 

Chakraborty B, Murphy S, Strecher V. Inference for non-regular parameters in optimal dynamic 
treatment regimes. Statistical Methods in Medical Research. 2010; 19(3):317–343. [PubMed: 
19608604] 

Chakraborty B, Murphy SA. Dynamic treatment regimes. Annual Review of Statistics and its 
Application. 2014; 1:447.

Chernozhukov V, Hansen C. An iv model of quantile treatment effects. Econometrica. 2005; 73(1):
245–261.

Dehejia RH. Program evaluation as a decision problem. Journal of Econometrics. 2005; 125(1):141–
173.

Wang et al. Page 20

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Frölich M. Statistical treatment choice: an application to active labor market programs. Journal of the 
American Statistical Association. 2008; 103:547–558.

Geng Y, Zhang HH, Lu W. On optimal treatment regimes selection for mean survival time. Statistics in 
medicine. 2015; 34(7):1169–1184. [PubMed: 25515005] 

Gerber AS, Green DP. The effects of canvassing, telephone calls, and direct mail on voter turnout: A 
field experiment. American Political Science. 2000; 94:653–663. Review. 

Goldberg Y, Kosorok MR. Q-learning with censored data. Annals of Statistics. 2012; 40(1):529. 
[PubMed: 22754029] 

Hammer SM, Katzenstein DA, Hughes MD, Gundacker H, Schooley RT, Haubrich RH, Henry WK, 
Lederman MM, Phair JP, Niu M, et al. A trial comparing nucleoside monotherapy with 
combination therapy in hiv-infected adults with cd4 cell counts from 200 to 500 per cubic 
millimeter. New England Journal of Medicine. 1996; 335(15):1081–1090. [PubMed: 8813038] 

Henderson R, Ansell P, Alshibani D. Regret-regression for optimal dynamic treatment regimes. 
Biometrics. 2010; 66(4):1192–1201. [PubMed: 20002404] 

Hirano K, Porter JR. Asymptotics for statistical treatment rules. Econometrica. 2009; 77(5):1683–
1701.

Hogan JW, Lee JY. Marginal structural quantile models for longitudinal observational studies with 
time-varying treatment. Statistica Sinica. 2004:927–944.

Huang X, Choi S, Wang L, Thall PF. Optimization of multi-stage dynamic treatment regimes utilizing 
accumulated data. Statistics in medicine. 2015; 34(26):3424–3443. [PubMed: 26095711] 

Imai K, Ratkovic M. Estimating treatment effect heterogeneity in randomized program evaluation. The 
Annals of Applied Statistics. 2013; 7:443–470.

Jiang R, Lu W, Song R, Davidian M. On estimation of optimal treatment regimes for maximizing t-
year survival probability. Journal of the Royal Statistical Society: Series B. 2016 In Press. 

Kim JK, Pollard D. Cube root asymptotics. The Annals of Statistics. 1990; 1:191–219.

Kosorok MR, Moodie EE. ASA-SIAM Series on Statistics and Applied Probability. SIAM, 
Philadelphia, ASA; Alexandria, VA: 2016. Adaptive Treatment Strategies in Practice: Planning 
Trials and Analyzing Data for Personalized Medicine. 

Laber EB, Lizotte DJ, Qian M, Pelham WE, Murphy SA. Dynamic treatment regimes: Technical 
challenges and applications. Electronic Journal of Statistics. 2014; 8(1):1225. [PubMed: 
25356091] 

Lavori PW, Dawson R. A design for testing clinical strategies: biased adaptive within-subject 
randomization. Journal of the Royal Statistical Society: Series A. 2000; 163:29–38.

Linn KA, Laber EB, Stefanski LA. Interactive q-learning for probabilities and quantiles. 2015 arXiv 
1407.3414. 

Loomis LH, Sternberg S. Advanced Calculus. Addison-Wesley Reading; Mass: 1968. 

Manski CF. Statistical treatment rules for heterogeneous populations. Econometrica. 2004; 72(4):
1221–1246.

Matsouaka RA, Li J, Cai T. Evaluating marker-guided treatment selection strategies. Biometrics. 2014; 
70(3):489–499. [PubMed: 24779731] 

Moodie E, Dean N, Sun Y. Q-learning: Flexible learning about useful utilities. Statistics in 
Biosciences. 2014; 6:223–243.

Moodie EE, Platt RW, Kramer MS. Estimating response-maximized decision rules with applications to 
breastfeeding. Journal of the American Statistical Association. 2009; 104:155–165.

Moodie EE, Richardson TS. Estimating optimal dynamic regimes: Correcting bias under the null. 
Scandinavian Journal of Statistics. 2010; 37(1):126–146.

Moodie EE, Richardson TS, Stephens DA. Demystifying optimal dynamic treatment regimes. 
Biometrics. 2007; 63(2):447–455. [PubMed: 17688497] 

Murphy SA. Optimal dynamic treatment regimes. Journal of the Royal Statistical Society: Series B. 
2003; 65(2):331–366.

Murphy SA. An experimental design for the development of adaptive treatment strategies. Statistics in 
Medicine. 2005a; 24(10):1455–1481. [PubMed: 15586395] 

Wang et al. Page 21

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Murphy SA. A generalization error for q-learning. Journal of Machine Learning Research. 2005b; 
6:1073–1097. [PubMed: 16763665] 

Murphy SA. An experimental design for the development of adaptive treatment strategies. Statistics in 
Medicine. 2008; 24:1455–1481.

Neyman J. On the application of probability theory to agricultural experiments. Essay on principles. 
Section 9. Statistical Science. 1990; 5(4):465–472.

Orellana LRA, Robins J. Dynamic regime marginal structural mean models for estimation of optimal 
dynamic treatment regimes, part i: Main content. The International Journal of Biostatistics. 2010; 6

Qian M, Murphy SA. Performance guarantees for individualized treatment rules. Ann Statist. 2011; 
39(2):1180–1210.

Qian M, Nahum-Shani I, Murphy SA. Modern Clinical Trial Analysis. Springer; 2012. Dynamic 
treatment regimes; 127–148. 

Robins J, Hernan M, Brumback B. Marginal structural models and causal inference in epidemiology. 
Epidemiology. 2000; 11:550–560. [PubMed: 10955408] 

Robins JM. Latent variable modeling and applications to causality (Los Angeles, CA, 1994), volume 
120 of Lecture Notes in Statist. Springer; New York: 1997. Causal inference from complex 
longitudinal data; 69–117. 

Robins JM. Proceedings of the Second Seattle Symposium in Biostatistics. Springer; 2004. Optimal 
structural nested models for optimal sequential decisions; 189–326. 

Robins JM, O L, Rotnitzky A. Estimation and extrapolation of optimal treatment and testing strategies. 
Statistics in Medicine. 2008; 27:4678–4721. [PubMed: 18646286] 

Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal 
effects. Biometrika. 1983; 70:41–55.

Rousseeuw PJ. Least median of squares regression. Journal of the American Statistical Association. 
1984; 79:871–880.

Rubin D. Estimating causal effects of treatments in randomized and non-randomized studies. Journal 
of educational Psychology. 1974; 66:688–701.

Rubin DB. Bayesian inference for causal effects: the role of randomization. The Annals of Statistics. 
1978; 6:34–58.

Rubin DB. Which ifs have causal answers. Journal of the American Statistical Association. 1986; 
81:961–962.

Schulte PJ, Tsiatis AA, Laber EB, Davidian M. Q-and a-learning methods for estimating optimal 
dynamic treatment regimes. Statistical Science. 2014; 29(4):640. [PubMed: 25620840] 

Song R, Wang W, Zeng D, Kosorok M. Penalized q-learning for dynamic treatment regimens. 
Statistica Sinica. 2015; 25:901–920. [PubMed: 26257504] 

Staghøj J, Svarer M, Rosholm M. Choosing the best training programme: Is there a case for statistical 
treatment rules? Oxford Bulletin of Economics and Statistics. 2010; 72:172–201.

Stoye J. Minimax regret treatment choice with finite samples. Journal of Econometrics. 2009; 151(1):
70–81.

Tao Y, Wang L. Adaptive contrast weighted learning for multi-stage multi-treatment decision-making. 
Biometrics. 2017; 73(1):145–155. [PubMed: 27213913] 

Tetenov A. Statistical treatment choice based on asymmetric minimax regret criteria. Journal of 
Econometrics. 2012; 166(1):157–165.

Thall PF, Sung HG, Estey EH. Selecting therapeutic strategies based on efficacy and death in 
multicourse clinical trials. Journal of the American Statistical Association. 2011; 97:29–39.

van der Laan MJ, Petersen ML, Joffe MM. History-adjusted marginal structural models and statically-
optimal dynamic treatment regimens. Journal of Biostatistics. 2005; 1

van der Vaart A. Asymptotic Statistics. Cambridge University Press; 1998. 

van der Vaart AW, Wellner JA. Weak Convergence and Empirical Processes with Applications to 
Statistics. Springer-Verlag; New York: 1996. 

Wallace MP, Moodie EE. Personalizing medicine: a review of adaptive treatment strategies. 
Pharmacoepidemiology and Drug Safety. 2014; 23(6):580–585. [PubMed: 24700536] 

Watkins C, Dayan P. Q-learning. Maching Learning. 1992; 8:279–292.

Wang et al. Page 22

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wunsch C. Optimal use of labor market policies: the role of job search assistance. Review of 
Economics and Statistics. 2013; 95(3):1030–1045.

Zhang B, Tsiatis A, Laber EB, Davidian M. Robust estimation of optimal dynamic treatment regimes 
for sequential treatment decisions. Biometrika. 2013; 100:681–694.

Zhang B, Tsiatis AA, Laber EB, Davidian M. A robust method for estimating optimal treatment 
regimes. Biometrics. 2012a; 68(4):1010–1018. [PubMed: 22550953] 

Zhang Z, Chen Z, Troendle JF, Zhang J. Causal inference on quantiles with an obstetric application. 
Biometrics. 2012b; 68:697–706. [PubMed: 22150612] 

Zhao Y, Zeng D, Laber E, Song R, Yuan M, Kosorok M. Doubly robust learning for estimating 
individualized treatment with censored data. Biometrika. 2015a; 102:151–168. [PubMed: 
25937641] 

Zhao YQ, Zeng D, Laber EB, Kosorok MR. New statistical learning methods for estimating optimal 
dynamic treatment regimes. Journal of the American Statistical Association. 2015b; 110:583–598. 
[PubMed: 26236062] 

Zhao YQ, Zeng D, Laber EB, Song R, Yuan M, Kosorok MR. Doubly robust learning for estimating 
individualized treatment with censored data. Biometrika. 2015c; 102(1):151–168. [PubMed: 
25937641] 

Zhao YQ, Zeng D, Rush AJ, Kosorok MR. Estimating individualized treatment rules using outcome 
weighted learning. Journal of the American Statistical Association. 2012; 107(499):1106–1118. 
[PubMed: 23630406] 

Zhou Y, Wang L, Sherwood B, Song R. Quantoptr: Algorithms for quantile- and mean-optimal 
treatment regimes. 2017. https://CRAN.R-project.org/package=quantoptr

Wang et al. Page 23

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/package=quantoptr


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 24

Ta
b

le
 1

M
ea

n,
 0

.2
5 

qu
an

til
e 

an
d 

0.
10

 q
ua

nt
ile

 o
f 

th
e 

po
te

nt
ia

l o
ut

co
m

es
 c

or
re

sp
on

di
ng

 to
 s

ix
 d

if
fe

re
nt

 tr
ea

tm
en

t r
eg

im
es

 (
ba

se
d 

on
 a

 M
on

te
 C

ar
lo

 e
xp

er
im

en
t 

w
ith

 1
06  

ob
se

rv
at

io
ns

).

R
eg

im
e

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

m
ea

n
1.

50
2.

40
2.

37
2.

00
1.

78
2.

00
1.

74

Q
0.

25
0.

80
1.

10
1.

14
1.

01
0.

91
−

0.
02

0.
59

Q
0.

10
0.

16
−

0.
03

0.
20

0.
33

0.
26

−
2.

29
−

0.
81

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 25

Ta
b

le
 2

Po
pu

la
tio

n 
pa

ra
m

et
er

s 
an

d 
su

m
m

ar
y 

va
lu

es
 f

or
 o

pt
im

al
 tr

ea
tm

en
t r

eg
im

es
 u

nd
er

 d
if

fe
re

nt
 c

ri
te

ri
a 

fo
r 

E
xa

m
pl

e 
1 

ba
se

d 
on

 a
 M

on
te

 C
ar

lo
 e

xp
er

im
en

t w
ith

 

n 
=

 1
05 .

η 0
η 1

η 2
η 3

η 4
Q

m
ea

n
Q

0.
25

Q
0.

1

m
ea

n 
cr

ite
ri

on
0.

43
−

0.
72

0.
29

−
0.

43
0.

14
3.

99
2.

28
0.

55

0.
25

qt
 c

ri
te

ri
on

0.
42

−
0.

60
0.

41
−

0.
43

−
0.

34
3.

79
2.

46
1.

18

0.
1q

t c
ri

te
ri

on
0.

27
−

0.
68

0.
38

−
0.

43
−

0.
37

3.
44

2.
36

1.
55

C
ol

um
ns

 2
–6

 a
re

 v
al

ue
s 

of
 th

e 
n i

’s
 o

f 
th

e 
op

tim
al

 tr
ea

tm
en

t r
eg

im
es

 c
or

re
sp

on
di

ng
 to

 d
if

fe
re

nt
 c

ri
te

ri
a.

 T
he

 la
st

 th
re

e 
co

lu
m

ns
 a

re
 th

e 
m

ea
n.

 0
.2

5 
qu

an
til

e 
an

d 
0.

1 
qu

an
til

e 
of

 th
e 

po
te

nt
ia

l o
ut

co
m

es
 if

 th
e 

op
tim

al
 tr

ea
tm

en
t r

eg
im

e 
is

 a
pp

lie
d.

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 26

Ta
b

le
 3

E
st

im
at

ed
 o

pt
im

al
 tr

ea
tm

en
t r

eg
im

es
 (

m
ea

n 
cr

ite
ri

on
, 0

.2
5 

qu
an

til
e 

cr
ite

ri
on

 a
nd

 0
.1

 q
ua

nt
ile

 c
ri

te
ri

on
) 

an
d 

th
ei

r 
co

rr
es

po
nd

in
g 

va
lu

e 
fu

nc
tio

ns
 f

or
 

E
xa

m
pl

e 
1.

M
et

ho
d

n
η 0

η 1
η 2

η 3
η 4

Q
m

ea
n

Q
0.2

5
Q

0.1

m
ea

n_
RG

μ t

50
0

0.
42

(0
.1

0)
−

0.
71

(0
.0

7)
0.

28
(0

.1
3)

−
0.

41
(0

.1
1)

0.
14

(0
.1

2)
3.

99
(0

.2
1)

2.
29

(0
.1

9)
0.

56
(0

.4
0)

10
00

0.
43

(0
.0

6)
−

0.
71

(0
.0

5)
0.

29
(0

.0
9)

−
0.

43
(0

.0
8)

0.
14

(0
.0

9)
3.

99
(0

.1
4)

2.
28

(0
.1

3)
0.

52
(0

.2
7)

m
ea

n_
RG

μ m

50
0

0.
26

(0
.1

1)
−

0.
71

(0
.0

8)
0.

30
(0

.1
2)

−
0.

38
(0

.1
2)

0.
37

(0
.1

2)
3.

96
(0

.2
1)

2.
23

(0
.1

9)
0.

65
(0

.3
8)

10
00

0.
27

(0
.0

8)
−

0.
71

(0
.0

6)
0.

31
(0

.0
9)

−
0.

39
(0

.0
8)

0.
37

(0
.0

9)
3.

97
(0

.1
5)

2.
22

(0
.1

3)
0.

62
(0

.2
7)

M
ea

n_
Z

T
L

D
50

0
0.

36
(0

.2
)

−
0.

63
(0

.1
4)

0.
31

(0
.2

4)
−

0.
38

(0
.2

)
0.

12
(0

.2
7)

4.
31

(0
.2

1)
2.

31
(0

.2
1)

0.
63

(0
.5

3)

10
00

0.
38

(0
.1

5)
−

0.
67

(0
.1

1)
0.

29
(0

.1
9)

−
0.

4
(0

.1
5)

0.
17

(0
.1

9)
4.

18
(0

.1
3)

2.
29

(0
.1

6)
0.

6
(0

.4
7)

0.
25

qt
 c

ri
te

ri
on

50
0

0.
38

(0
.1

5)
−

0.
57

(0
.1

4)
0.

37
(0

.1
9)

−
0.

37
(0

.1
8)

−
0.

31
(0

.2
)

3.
85

(0
.2

6)
2.

65
(0

.1
6)

1.
3

(0
.3

9)

10
00

0.
4

(0
.1

2)
−

0.
59

(0
.1

2)
0.

35
(0

.1
7)

−
0.

43
(0

.1
2)

−
0.

28
(0

.1
5)

3.
81

(0
.1

8)
2.

57
(0

.1
1)

1.
31

(0
.2

8)

0.
10

qt
 c

ri
te

ri
on

50
0

0.
24

(0
.2

3)
−

0.
56

(0
.2

)
0.

3
(0

.2
5)

−
0.

4
(0

.2
2)

−
0.

33
(0

.2
5)

3.
5

(0
.2

6)
2.

45
(0

.1
6)

1.
75

(0
.1

5)

10
00

0.
27

(0
.1

8)
−

0.
61

(0
.1

4)
0.

32
(0

.2
2)

−
0.

44
(0

.1
5)

−
0.

33
(0

.1
9)

3.
47

(0
.1

8)
2.

42
(0

.1
1)

1.
68

(0
.1

1)

T
he

 n
um

be
rs

 in
 th

e 
pa

re
nt

he
si

s 
ar

e 
st

an
da

rd
 d

ev
ia

tio
ns

. T
he

 la
st

 th
re

e 
co

lu
m

ns
 a

re
 th

e 
es

tim
at

ed
 m

ea
n,

 0
.2

5 
qu

an
til

e 
an

d 
0.

1 
qu

an
til

e 
of

 th
e 

po
te

nt
ia

l o
ut

co
m

e 
if

 th
e 

es
tim

at
ed

 o
pt

im
al

 tr
ea

tm
en

t r
eg

im
e 

is
 

ap
pl

ie
d.

 T
he

 th
re

e 
m

et
ho

ds
 m

ea
n_

RG
μ t, m

ea
n_

RG
μ m

 a
nd

 m
ea

n_
Z

T
L

D
 d

en
ot

e 
th

e 
m

ea
n-

op
tim

al
 tr

ea
tm

en
t r

eg
im

e 
es

tim
at

or
s 

us
in

g 
th

e 
m

od
el

-b
as

ed
 a

pp
ro

ac
h 

w
ith

 c
or

re
ct

ly
 s

pe
ci

fi
ed

 r
eg

re
ss

io
n 

m
od

el
, t

he
 m

od
el

-b
as

ed
 a

pp
ro

ac
h 

w
ith

 in
co

rr
ec

tly
 s

pe
ci

fi
ed

 r
eg

re
ss

io
n 

m
od

el
 a

nd
 th

e 
ap

pr
oa

ch
 o

f 
Z

ha
ng

 e
t a

l. 
(2

01
2a

),
 r

es
pe

ct
iv

el
y.

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 27

Ta
b

le
 4

Po
pu

la
tio

n 
pa

ra
m

et
er

s 
an

d 
su

m
m

ar
y 

va
lu

es
 f

or
 o

pt
im

al
 tr

ea
tm

en
t r

eg
im

es
 u

nd
er

 d
if

fe
re

nt
 c

ri
te

ri
a 

fo
r 

E
xa

m
pl

e 
2 

ba
se

d 
on

 a
 M

on
te

 C
ar

lo
 e

xp
er

im
en

t w
ith

 

n 
=

 1
05 .

M
et

ho
d

η 1
η 2

Q
m

ea
n

Q
0.

50
Q

0.
75

M
ea

n 
cr

ite
ri

on
0.

77
7

0.
84

7
3.

33
1

3.
32

3
3.

82
1

0.
50

qt
 c

ri
te

ri
on

0.
75

3
0.

80
8

3.
32

7
3.

32
7

3.
82

7

0.
75

qt
 c

ri
te

ri
on

0.
72

9
0.

79
5

3.
32

2
3.

32
5

3.
82

8

C
ol

um
ns

 2
–3

 a
re

 v
al

ue
s 

of
 th

e 
η i

’s
 o

f 
th

e 
op

tim
al

 tr
ea

tm
en

t r
eg

im
es

 c
or

re
sp

on
di

ng
 to

 d
if

fe
re

nt
 c

ri
te

ri
a.

 T
he

 la
st

 th
re

e 
co

lu
m

ns
 a

re
 th

e 
m

ea
n,

 m
ed

ia
n 

an
d 

0.
75

 q
ua

nt
ile

 o
f 

th
e 

po
te

nt
ia

l o
ut

co
m

es
 if

 th
e 

op
tim

al
 tr

ea
tm

en
t r

eg
im

e 
is

 a
pp

lie
d.

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 28

Ta
b

le
 5

E
st

im
at

ed
 o

pt
im

al
 tr

ea
tm

en
t r

eg
im

es
 a

nd
 th

ei
r 

co
rr

es
po

nd
in

g 
es

tim
at

ed
 v

al
ue

 f
un

ct
io

ns
 u

nd
er

 d
if

fe
re

nt
 c

ri
te

ri
a 

fo
r 

E
xa

m
pl

e 
2.

M
et

ho
d

n
η 1

η 1
Q

m
ea

n
Q

0.5
0

Q
0.7

5

m
ea

n_
Q

le
ar

ni
ng

50
0

0.
75

5(
0.

04
1)

1.
17

6(
0.

29
4)

3.
31

9(
0.

09
0)

3.
30

9(
0.

10
2)

3.
81

5(
0.

12
2)

10
00

0.
75

2(
0.

02
7)

1.
13

1(
0.

14
4)

3.
32

1(
0.

06
5)

3.
30

5(
0.

07
)

3.
81

9(
0.

07
9)

m
ea

n_
Z

T
L

D
50

0
0.

77
3(

0.
07

3)
0.

84
6(

0.
06

7)
3.

37
0(

0.
09

5)
3.

37
6(

0.
09

7)
3.

86
2(

0.
11

8)

10
00

0.
76

8(
0.

05
5)

0.
85

2(
0.

05
9)

3.
35

6(
0.

06
5)

3.
35

4(
0.

06
8)

3.
84

8(
0.

08
1)

0.
50

qt
 c

ri
te

ri
on

50
0

0.
75

1(
0.

08
)

0.
81

5(
0.

07
9)

3.
35

7(
0.

09
0)

3.
39

1(
0.

10
2)

3.
85

8(
0.

11
9)

10
00

0.
75

0(
0.

06
2)

0.
81

3(
0.

06
9)

3.
34

3(
0.

06
3)

3.
36

6(
0.

06
8)

3.
84

9(
0.

08
1)

0.
75

qt
 c

ri
te

ri
on

50
0

0.
73

4(
0.

10
8)

0.
78

5(
0.

10
3)

3.
32

8(
0.

09
5)

3.
33

1(
0.

10
9)

3.
89

2(
0.

12
3)

10
00

0.
72

3(
0.

08
4)

0.
79

5(
0.

09
5)

3.
32

2(
0.

06
7)

3.
32

6(
0.

07
5)

3.
86

5(
0.

07
7)

T
he

 n
um

be
rs

 in
 th

e 
pa

re
nt

he
si

s 
ar

e 
st

an
da

rd
 d

ev
ia

tio
ns

. T
he

 la
st

 th
re

e 
co

lu
m

ns
 a

re
 th

e 
es

tim
at

ed
 m

ea
n,

 m
ed

ia
n 

an
d 

0.
75

 q
ua

nt
ile

 o
f 

th
e 

po
te

nt
ia

l o
ut

co
m

e 
if

 th
e 

es
tim

at
ed

 o
pt

im
al

 tr
ea

tm
en

t r
eg

im
e 

is
 

ap
pl

ie
d.

 T
he

 m
ea

n_
Q

le
ar

ni
ng

 m
et

ho
d 

st
an

ds
 f

or
 th

e 
m

ea
n-

op
tim

al
 tr

ea
tm

en
t r

eg
im

e 
es

tim
at

or
 u

si
ng

 th
e 

Q
-l

ea
rn

in
g 

ap
pr

oa
ch

. T
he

 m
ea

n_
Z

T
L

D
 m

et
ho

d 
is

 th
e 

m
ea

n-
op

tim
al

 tr
ea

tm
en

t r
eg

im
e 

es
tim

at
or

 
us

in
g 

Z
ha

ng
 e

t a
l. 

(2
01

3)
.

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 29

Ta
b

le
 6

E
st

im
at

ed
 o

pt
im

al
 tr

ea
tm

en
t r

eg
im

es
 a

nd
 s

um
m

ar
y 

va
lu

es
 f

or
 A

C
T

G
17

5 
da

ta
 a

na
ly

si
s.

M
et

ho
d

η 0
η 1

η 2
Q

0.5
0

Q
0.2

5
Q

m
ea

n

0.
50

qt
 c

ri
te

ri
on

−
0.

57
1

0.
69

1
0.

44
4

36
0

22
0

37
5.

4

0.
25

qt
 c

ri
te

ri
on

−
0.

21
0

0.
95

8
−

0.
19

4
33

3
26

3
34

6.
5

M
ea

n 
cr

ite
ri

on
−

0.
52

6
0.

79
9

0.
29

2
33

1
21

9
40

3.
9

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 08.


	Abstract
	1 Introduction
	2 Quantile-optimal treatment regime
	3 Estimation and large sample theory
	3.1 Estimating quantile-optimal treatment regime
	Lemma 1

	3.2 Alternative formulation of the proposed estimator
	3.3 Asymptotic properties
	Lemma 2
	Theorem 1
	Remark 1
	Remark 2



	4 Quantile-optimal dynamic treatment regimes
	Theorem 2

	5 Numerical results
	5.1 Simulations
	Example 1 (single-stage optimal treatment regime)
	Example 2 (two-stage DTR)

	5.2 ACTG175 data analysis

	6 Conclusions and discussions
	Appendix: Technical Proofs
	References
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

