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Abstract

Dividing the human cerebral cortex into structurally and functionally distinct regions is important 

in many neuroimaging studies. Although many parcellations have been created for adults, they are 

not applicable for fetal studies, due to dramatic differences in brain size, shape and folding 

between adults and fetuses, as well as dynamic growth of fetal brains. To address this issue, we 

propose a novel method to divide a population of fetal cortical surfaces into distinct regions based 

on the dynamic growth patterns of cortical properties, which indicate the underlying changes of 

microstructures. As microstructures determine the molecular organization and functional 

principles of the cortex, growth patterns enable an accurate definition of distinct regions in 

development, microstructure, and function. To comprehensively capture the similarities of cortical 

growth patterns among vertices, we construct two complementary similarity matrices. One is 

directly based on the growth trajectories of vertices and the other is based on the correlation 

profiles of vertices’ growth trajectories in relation to those of reference points. Then, we 

nonlinearly fuse these two similarity matrices into a single one, which can better captures both 

their common and complementary information than by simply averaging them. Finally, based on 

this fused matrix, we perform spectral clustering to divide fetal cortical surfaces into distinct 

regions. We have applied our method on 25 normal fetuses from 26 to 29 gestational weeks and 

generated biologically meaningful parcellations.

Index Terms

Fetal; cortical parcellation; growth patterns

1. INTRODUCTION

Cortical parcellation aims to divide the cerebral cortex into a set of regions, which are 

distinct in structure, function and connectivity. It plays an important role in region-based and 
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network-based neuroimaging analysis [1, 2]. Conventionally, the parcellations in adults are 

based on sulcal-gyral folding patterns [1], which, however, are not suitable for the fetal 

brain, due to the following two reasons. First, sulcal-gyral folding patterns are actually 

poorly corresponding with the boundaries defined by microstructure, function and 

development [3]. Second, primary and secondary cortical folds are not well established and 

are still developing rapidly in the fetal brain [4, 5], as shown in Fig. 1.

To precisely and meaningfully divide fetal cortical surfaces into distinct and meaningful 

regions, leveraging the dynamic growth patterns of cortical properties (e.g., surface area, 

cortical thickness, and myelin content) is more appropriate. This is because growth patterns 

of cortical properties in fetus reflect the underlying changes of cortical microstructures and 

their connectivity, which essentially determines the molecular organization and functional 

principles of the cerebral cortex [6, 7]. Hence, parcellations based on the dynamic cortical 

growth patterns can precisely define distinct regions in development, microstructure, and 

function, and thus are ideally suitable for fetal brain studies, compared to the use of the 

conventional sulcal-gyral patterns. Therefore, in this paper, we develop a novel method for 

fetal cortical parcellation based on the dynamic growth patterns of cortical properties, thus 

filling both technical and knowledge gaps.

2. METHOD

2.1 Dataset and Cortical Surface Mapping

We adopted a fetal MRI dataset with 25 different healthy fetuses, and each fetus had only 

one time point. MR imaging was performed between 26 and 29 gestational weeks (GW). 

T2-weighted MR images were acquired on a 1.5 T scanner (SIEMENS MAGNETOM Aera) 

with an 8-channel body coil. All subjects were scanned without sedation and following the 

American college of radiology guidelines for pregnancy and lactation. Half Fourier 

acquisition single shot turbo spin echo (HASTE) sequences were used with the following 

parameters: echo time = 82 ms, repetition time = 1500 ms, slice thickness = 2.5 mm, field of 

view = 280×280 mm2, and voxel size = 0.5 × 0.5 × 2.5 mm3. For each subject, multiple 

orthogonal 2D scans were collected, including 4 axial, 2 coronal, and 2 sagittal stacks.

All MR images were processed using the following procedures. First, for each subject, we 

reconstructed a high-quality 3D MRI scan from multiple 2D scans using the method in [8]. 

Second, we segmented each 3D image into white matter, gray matter, cerebrospinal fluid, 

ventricles, cerebellum, and brainstem, by using a learning-based method [9]. Third, we 

masked and filled non-cortical structures, and also separated the left and right hemispheres. 

Fourth, we corrected topological errors and reconstructed cortical surfaces by using a 

topology-preserving deformable surface method [10]. Fifth, we mapped each cortical surface 

onto a spherical surface and co-registered spherical surfaces across all subjects [11]. Sixth, 

we resampled each cortical surface to a standard mesh tessellation, thus establishing inter-

subject vertex-to-vertex cortical correspondences. Finally, for each cortical vertex, we 

computed its cortical properties, e.g., surface area, sulcal depth, and cortical thickness, and 

further spatially smoothed them [12]. Herein, the vertex-wise surface area was computed as 

one-third the sum of the areas of all triangles associated with this vertex [13].
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2.2 Parcellation Based on Cortical Growth Patterns

To define the cortical growth patterns, ideally, we should use longitudinal fetal MRI data, 

which, however, is very difficult to obtain and involves ethical issues. Therefore, we 

leveraged healthy fetuses in a cross-sectional study to perform growth patterns based cortical 

parcellation. Specifically, we sorted all fetal cortical surfaces by age and constructed the 

growth trajectories of cortical properties of each vertex. Herein, we adopted the surface area 

as an example, as it develops more dynamically than other cortical properties in the fetal 

brain. But our method can also work on other cortical properties. Thus, we aimed to create a 

population-level cortical parcellation based on the growth patterns of surface area in the fetal 

brain. To this end, we first computed the similarity of growth patterns between each pair of 

vertices on the cortical surface. To comprehensively capture the growth patterns, we 

constructed two complementary similarity matrices S1 and S2, based on growth trajectories 

of surface area and growth correlation profile of surface area, respectively.

Specifically, we defined the similarity matrix S1 by using the growth trajectory of the surface 

area of each vertex as a feature vector F1. Between each pair of vertices i and j, we 

computed the Pearson’s correlation coefficient p of their growth trajectories and obtained 

their similarity as:

S1(i, j) =
1 + p(F1(i), F1( j))

2 , i, j ∈ N, (1)

where N is the total number of vertices on the surface. Intuitively, high correlations of 

growth trajectories lead to high similarities of growth patterns. However, this similarity 

definition is inherently low-order, thus ignoring the complex and high-order similarity of 

growth patterns.

Hence, we defined the second similarity matrix S2 to more comprehensively compare the 

complex similarity of cortical growth patterns among vertices. First, we sampled 320 

vertices uniformly on two cortical hemispheres as reference points. Then, for each vertex, 

we calculated the Pearson’s correlation coefficient between its growth trajectory of surface 

area and that of each of the reference points. In this way, for each vertex, we constructed a 

growth correlation profile as a new feature vector F2, representing the correlation of growth 

trajectories between this vertex and each of the reference points. We then computed the 

matrix S2 based on the growth correlation profiles of vertices as:

S2(i, j) =
1 + p(F2(i), F2( j))

2 , i, j ∈ N . (2)

Intuitively, vertices with a high correlation of their growth correlation profiles have a high 

similarity of growth patterns. Thus S2, based on correlations of “correlations”, captured 

more complex and high-order similarity in growth patterns.
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To divide the fetal cortical surface based on these two complementary similarity matrices S1 

and S2, one intuitive method is to first simply average them and then perform clustering 

based on this averaged matrix. However, this method cannot fully capitalize on both 

common and complementary information across two matrices, thus leading to less 

meaningful parcellations. To address this issue, we non-linearly fused the two similarity 

matrices into a single matrix S that captured the full spectrum of underlying data, and then 

performed spectral clustering [14] based on the fused matrix. Our central idea was to 

iteratively update every matrix by diffusing reliable information across similarity matrices, 

thus making it more similar to each other until convergence [15]. Before non-linear fusion, 

we normalized these two similarity matrices by dividing the average value of each similarity 

matrix, respectively. To fuse these two similarity matrices, for each Sm, m ∈ {1,2}, we first 

computed a full kernel matrix Pm as:

Pm(i, j) =

Sm(i, j)
2∑k ≠ iSm(i, k) , j ≠ i

1
2, j = i

, m ∈ {1, 2} . (3)

Then, we also computed a sparse kernel matrix Qm as:

Qm(i, j) =
Sm(i, j)

∑k ∈ 𝒩i
Sm(i, k) , j ∈ 𝒩i

0, otherwise
, m ∈ {1, 2} . (4)

Note that, P1 and P2 encoded full similarity information among vertices, while Q1 and Q2 

only captured reliable, high-similarity neighbors for each vertex. i represented the K 

nearest neighbors of vertex i in terms of similarity. At iteration t, P1
t  and P2

t  were then 

updated as:

P1
t = Q1 × P2

t − 1 × (Q1)T; P2
t = Q2 × P1

t − 1 × (Q2)T . (5)

Herein T indicated matrix transpose. In this way, during the iterations, the isolated weak 

similarities gradually disappeared, while the strong similarities were added to each other. 

Meanwhile, the weak similarities supported by both matrices were retained, depending on 

their neighborhood connections across these two similarity matrices. After t* iterations, the 

fused matrix S, computed as the average of P1
t∗ and P2

t∗, was adopted for parcellation using 

spectral clustering. As spectral clustering required a pre-defined cluster number [13], we 

determined an adequate number using both existing neuroscience knowledge and the 

widely-used silhouette coefficient.
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3. RESULTS

3.1 Visual Inspection

We performed the cortical parcellation based on the growth patterns of surface area, by 

utilizing 25 normal fetuses. In all results, we set K as 200 experimentally. Fig. 2 (a) and (b) 

show the parcellation results with different numbers of clusters from 2 to 10, by using the 

proposed fusion-based method and the averaging method, respectively. The proposed 

method led to biologically much more meaningful parcellations, as shown in Fig. 2. For 

example, at 2-clusters parcellation, the proposed method identified a dorsal-ventral division. 

With increase of the number of clusters, the proposed method revealed a meaningful 

hierarchical organization of the growth patterning of surface area. For example, the 

boundaries between the ventrolateral and dorsolateral prefrontal regions (as indicated by 

black arrows) were well-preserved from 2-clusters to 10-clusters by our proposed method. 

Also, the boundaries between the precuneus cortex and paracentral lobule (as indicated by 

red arrows) appeared in 4-clusters, and well preserved to 10-clusters by our method. In 

contrast, the corresponding boundaries by the averaging method were quite variable across 

different numbers of clusters, indicating unstableness of these clusters.

Moreover, the parcellations by our method presented relatively symmetric patterns on the 

left and right hemispheres from 2-clusters to 10-clusters. In contrast, the parcellation results 

by the averaging method showed many meaningless left-right asymmetric patterns, 

especially from 8-clusters and 10-clusters, as indicated by blue, grey, light green and dark 

green arrows in Fig. 2 (b). For example, the dark red clusters of anterior insula and 

ventrolateral prefrontal regions, as indicated by grey arrows only appeared in the right 
hemisphere. The pink clusters at the left orbitofrontal region, as indicated by dark green 

arrows, have meaningless corresponding regions at the right temporal pole in 9- and 10-

clusters. Also, the boundaries indicated by light green arrows crosscut the central sulcus on 

the left hemisphere, but the corresponding boundaries on the right hemisphere align with the 

precentral sulcus.

To further verify our parcellation at 10 clusters, we performed seed-based analysis of the 

correlation patterns of growth patterns of surface area, by using 25 uniformly distributed 

seeds on the surface, as indicated by the locations of small surfaces. As shown in Fig. 3, 

seeds in the same cluster yielded largely the similar correlation patterns, while seeds across 

the boundaries of clusters led to quite different patterns, indicating that our parcellation was 

meaningful.

3.2 Quantitative Evaluation

To determine the optimal number of clusters, we used the commonly used silhouette 

coefficient to evaluate our parcellations. Silhouette coefficient describes the intra-class 

dissimilarity and the inter-class dissimilarity, computed by:

sc(i) = (b(i) − a(i))/ max (a(i), b(i)), (6)
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where sc(i) is the silhouette coefficient for the vertex i, and a(i) is the average dissimilarity 

between the vertex i and all other vertices in the same cluster; b(i) is the minimum average 

dissimilarity of vertex i to any other clusters that the vertex i does not belong to. Herein, the 

dissimilarity between two vertices i and j is computed as 1 – S(i, j). We determined the 

optimal number of clusters by searching for the numbers of clusters with high and stable 

silhouette coefficients. Fig. 4 shows the silhouette coefficients of parcellations by our 

method, when setting the cluster number from 2 to 20. The high silhouette coefficient 

corresponds to 5-clusters. After that, the coefficient reaches a stable plateau from 6- to 10-

clusters, and then decreases significantly after 10-clusters. To capture the detailed 

regionalization of growth patterns of surface area, we adopted 10-clusters parcellations as 

shown in Fig. 3, where all clusters largely correspond to structurally and functionally 

meaningful specializations, with their approximated names shown in right columns in Fig. 3.

4. CONCLUSION

This paper has two major contributions. First, we proposed a novel cortical parcellation 

method based on the growth patterns of cortical properties. We constructed two similarity 

matrices to comprehensively capture both the low-order and high-order similarities of 

growth patterns of vertices. To effectively leverage their information, we nonlinearly fused 

these two similarity matrices as a single one for clustering, thus better capturing both their 

common and complementary information. Second, by applying our method, we derived the 

first set of fetal cortical surface parcellation maps based solely on dynamic growth patterns 

of surface area. In future, we will combine other cortical properties for fetal cortical surface 

parcellation.
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Fig. 1. 
Dynamic development of fetal cortical surfaces from 26.3 to 28.9 weeks. The surfaces are 

color-coded by sulcal depth (mm).
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Fig. 2. 
Fetal cortical surface parcellations based on the growth patterns of surface area, by (a) our 

proposed fusion of the two similarity matrices and (b) averaging the two similarity matrices.
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Fig. 3. 
Seed-based analysis of the correlation map of growth patterns of surface area. For each of 25 

seeds, its correlation with all other vertices in terms of growth patterns is shown as a small 

respective color-coded surface map.
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Fig. 4. 
Silhouette coefficients of the parcellations by the proposed method with different number of 

clusters.

Xia et al. Page 11

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. INTRODUCTION
	2. METHOD
	2.1 Dataset and Cortical Surface Mapping
	2.2 Parcellation Based on Cortical Growth Patterns

	3. RESULTS
	3.1 Visual Inspection
	3.2 Quantitative Evaluation

	4. CONCLUSION
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4

