
Phylogenetics

MASCOT: parameter and state inference

under the marginal structured

coalescent approximation

Nicola F. Müller1,2,*, David Rasmussen1,2,3,4 and Tanja Stadler1,2,*

1Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland, 2Swiss Institute of

Bioinformatics (SIB), 1015 Lausanne, Switzerland, 3Department of Entomology and Plant Pathology and
4Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA

*To whom correspondence should be addressed.

Associate Editor: Janet Kelso

Received on September 15, 2017; revised on May 9, 2018; editorial decision on May 14, 2018; accepted on May 16, 2018

Abstract

Motivation: The structured coalescent is widely applied to study demography within and migration

between sub-populations from genetic sequence data. Current methods are either exact but too

computationally inefficient to analyse large datasets with many sub-populations, or make strong

approximations leading to severe biases in inference. We recently introduced an approximation

based on weaker assumptions to the structured coalescent enabling the analysis of larger datasets

with many different states. We showed that our approximation provides unbiased migration rate

and population size estimates across a wide parameter range.

Results: We extend this approach by providing a new algorithm to calculate the probability of the

state of internal nodes that includes the information from the full phylogenetic tree. We show that

this algorithm is able to increase the probability attributed to the true sub-population of a node.

Furthermore we use improved integration techniques, such that our method is now able to analyse

larger datasets, including a H3N2 dataset with 433 sequences sampled from five different locations.

Availability and implementation: The presented methods are part of the BEAST2 package MASCOT,

the Marginal Approximation of the Structured COalescenT. This package can be downloaded via the

BEAUti package manager. The source code is available at https://github.com/nicfel/Mascot.git.

Contact: nicola.mueller@bsse.ethz.ch or tanja.stadler@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Phylogenies contain information regarding the history of a popula-

tion and can be used to quantify demographic parameters. This has

been widely done to study the spread of pathogens (Pybus et al.,

2001; Russell et al., 2008), the speciation dynamics of extant species

or the migration pattern of humans to name but a few. Forwards in

time birth-death and backwards in time-coalescent models allow us

to elucidate population dynamics from trees by calculating the prob-

ability of a phylogeny T given a set of demographic parameters H.

To do so they classically rely on the assumption of well mixed popu-

lations, meaning that the rate at which any two pairs of lineages

coalesce is the same. In most empirical applications this assumption

of well mixed populations is however violated.

To address this model violation, so-called structured methods

have been developed that consider birth-death processes in heteroge-

neous populations (Stadler and Bonhoeffer, 2013). In the backward

in-time coalescent framework, the structured coalescent (Hudson,

1990; Notohara, 1990; Takahata, 1988) describes a coalescent pro-

cess in sub-populations between which individuals can migrate.

Such coalescent methods however typically require the state (or lo-

cation) of any ancestral lineage in the phylogeny at any time to be

inferred (Beerli and Felsenstein, 2001; Ewing et al., 2004; Vaughan
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et al., 2014). Inferring lineage states is computationally expensive,

as it normally requires MCMC-based sampling, and limits the com-

plexity of scenarios that can be analysed. As the number of different

states is increased, convergence of the MCMC chains becomes a se-

vere issue for inference under the structured coalescent when the

sampling of migration histories is needed (De Maio et al., 2015;

Vaughan et al., 2014). This essentially limits the number of different

states that can be accounted for to three or four.

We addressed this limitation recently by introducing a new ap-

proximation of the structured coalescent that avoids this MCMC

sampling of lineage states by integrating over all possible migration

histories using a set of ordinary differential equations (Müller et al.,

2017). In contrast to previous approximations that treat the move-

ment of one lineage completely independently of all other lineages

(De Maio et al., 2015; Volz, 2012), we explicitly include informa-

tion about the location of other lineages and their probability of coa-

lescing when modelling the movement of a lineage. This avoids the

strong biases resulting from this independence assumption (Müller

et al., 2017). We showed that this approximation is able to infer co-

alescent and migration rates well in various scenarios. However, this

approach currently lacks the possibility to estimate the ancestral

state of any internal nodes except the root.

Here, we introduce a new algorithm (Fig. 1) to calculate the

probability of internal nodes being in any state that incorporates

information from the entire tree using a forwards/backwards ap-

proach (Pearl, 1982). We additionally make improvements of the

current BEAST2 (Bouckaert et al., 2014) implementation of

Müller et al. (2017) in terms of calculation speed, allowing us to

analyse datasets with more states and lineages. We show first on

simulated datasets how this new implementation performs in infer-

ring migration rates and effective population sizes in high dimen-

sional parameter space. Next, we show how our new algorithm

can dramatically improve ancestral state inference. We then apply

our new approach to a geographically distributed samples of

human Influenza A/H3N2 virus to demonstrate its applicability to

large datasets.

2 Materials and methods

2.1 The approximate structured coalescent
In Müller et al. (2017), we introduced a new approximation to the

structured coalescent that integrates over every possible migration

history and avoids the sampling of lineage states. This is done by cal-

culating the marginal probability of a lineage i being in any of m

possible states, jointly with the probability of having observed the

coalescent history T from the present backwards in time until time

point t in the tree, with time 0 being the time of the most recent sam-

ple with time increasing into the past. To do so, we need to make

the following approximation:

Pt Li ¼ li;Lj ¼ lj;Lk ¼ lkjT
� �

¼MASCO

Pt Li ¼ lijTð ÞPt Lj ¼ ljjT
� �

Pt Lk ¼ lkjTð Þ

In other words, we assume that lineages i, j and k and their states li,

lj and lk are pairwise independent.

2.2 The probability of a lineage being in a state
As described in Müller et al. (2017), we seek to calculate the prob-

ability of every lineage being in any state jointly with the probability

of having observed the coalescent history T up to time t.

We previously denoted this probability as Pt Li ¼ li;Tð Þ. Calculating

these terms over time for increasing t leads to ever smaller values,

eventually causing numerical issues. To avoid this, we can calculate

Pt Li ¼ lijTð Þ ¼ Pt Li ¼ li;Tð Þ=Pt Tð Þ instead. The expression for

d=dtð ÞPt Li ¼ lijTð Þ can be directly derived from d=dtð ÞPt Li ¼ li;Tð Þ
(see Supplementary Material) and can be written as:

d

dt
Pt Li ¼ lijTð Þ ¼

Xm
a¼1

lali Pt Li ¼ ajTð Þ � lliaPt Li ¼ lijTð Þ
� �

þPt Li ¼ lijTð Þ
Xm
a¼1

kaPt Li ¼ ajTð Þ
Xn

k¼1
k6¼i

Pt Lk ¼ ajTð Þ

�Pt Li ¼ lijTð Þkli

Xn

k¼1
k 6¼i

Pt Lk ¼ lijTð Þ

(1)

with lali denoting the backwards in time rate at which lineages mi-

grate from state a to state li and ka denoting the rate of coalescence

in state a. To calculate Pt Tð Þ, i.e. the probability of having observed

the coalescent history T up to time t, the following differential equa-

tion has to be solved (see Supplementary Material for derivation):

d

dt
Pt Tð Þ ¼ �Pt Tð Þ

Xm
a¼1

Xn

i¼1

Xn

j¼1
j 6¼i

ka

2
Pt Li ¼ ajTð ÞPt Lj ¼ ajT

� �
(2)

At coalescent events between lineages i and j, we update Pt Tð Þ by

multiplication with the probability of the coalescent event:

Pafter
t Tð Þ ¼ Pbefore

t Tð Þ
Xm
a¼1

kaPt Li ¼ ajTð ÞPt Lj ¼ ajT
� � !

(3)

Integrating these equations from the present to the root of a

phylogeny, allows us to calculate Proot Tð Þ, that is the probability

density of a phylogeny T under the MASCO approximations of the

structured coalescent.

Fig. 1. Flow of information using the backwards/forwards algorithm. Going

backwards in the tree, we calculate the probability of each node being in any

state that includes information up to time t. The vector ~p
bw
i ðt ¼ lcÞ has the

entries Pt¼lc ðLi ¼ ajT Þ in position a. At the root, the backwards probabilities

~p
bw
rootðt ¼ rootÞ are equal to the forwards probabilities~p

fw
rootðt ¼ rootÞ. To calcu-

late the downwards probabilities ~p fw
i ðt ¼ lcÞ, we use the information from all

the other parts of the tree and the transition matrix Mi and the backwards

probabilities ~p
bw
i ðt ¼ lcÞ
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2.3 The probability of a node being in a state given the

whole phylogeny
2.3.1 Backwards calculation of node states conditional on the Sub-trees

Integrating Equation (1) allows us to calculate the probability of

each lineage being in any state given the coalescent history between

the lineage and the present. However, for applications, it is much

more interesting to calculate the probability of each lineage at time t

being in any state given the whole phylogenetic tree between the

time of root and the present. At coalescent events between lineage i

and j at time t, the probability of the parent lineage P at time t being

in state a can be calculated as follows:

Pbw
t Lp ¼ ajT
� �

¼
kaPbw

t Li ¼ ajTð ÞPbw
t Lj ¼ ajT
� �

Pm
b¼1 kbPbw

t Li ¼ bjTð ÞPbw
t Lj ¼ bjT
� � ; (4)

with Pbw
t Li ¼ ajTð Þ denoting the probability of the daughter lineage

i being in state a just before the coalescent event at time t calculated

in the backwards step using Equation (1). Since Pbw
t Lp ¼ ajT
� �

denotes the probability of the parent node of lineages i and j calcu-

lated in the backwards step at time t, it includes only information up

to the time of coalescence and does not include information from

the full phylogeny. We introduce the label ‘bw’ to differentiate from

the forward probabilities introduced below. To additionally incorp-

orate information from the phylogeny between the time of the root

and time t of the coalescent event, one has to deploy a ‘backwards/

forwards’ approach that is related to Pearl (1982).

For convenience, we now change to vector notation. We define

~p
bw
p tð Þ as the vector for the parent lineage p with entries Pbw

t

Lp ¼ ajT
� �

in position a that only includes information from time 0

up to time t. ~p
bw
i tð Þ is the vector with entries Pbw

t Li ¼ ajTð Þ.

2.3.2 Calculation of transition probabilities

Going through the tree backwards in time, we also seek to calculate

the probability that, given lineage i was in state a at the last coales-

cent event lc where lineage i was the parent and given the tree T be-

tween 0 and time t, the lineage i is in state b at the time of the next

coalescent event nc where lineage i is one of the two daughter line-

ages. We denote this probability as Pt¼nc Li ¼ bjLi t¼lcð Þ ¼ a
� �

. The

matrix Mi with entries Pt¼nc Li ¼ bjLi t¼lcð Þ ¼ a
� �

in positions (a, b)

now denotes the matrix for which the following equation holds:

~p
bw
i t ¼ ncð Þ ¼ ~p bw

i t ¼ lcð ÞMi; (5)

with ~p
b
t¼nc being the vector with the state probabilities of lineage i

just before its next coalescent event nc. To calculate the entries of

the matrix Mi, we solve the following differential equation between

the two coalescent events lc and nc involving lineage i:

d

dt
PtðLi ¼ bjLiðt¼lcÞ ¼ aÞ

¼
Xm
c¼1

�
lcbPtðLi ¼ cjLiðt¼lcÞ ¼ aÞ � lbcPtðLi ¼ bjLiðt¼lcÞ ¼ aÞ

�

þPt Li ¼ bjLi t¼lcð Þ ¼ a
� �

�
Xm
c¼1

kcPt Li ¼ cjLi t¼lcð Þ ¼ a
� �Xn

k¼1
k6¼i

Pt Lk ¼ cjTð Þ

�Pt Li ¼ bjLi t¼lcð Þ ¼ a
� �

kli

Xn

k¼1
k 6¼i

Pt Lk ¼ bjTð Þ;

(6)

The entries in positions (a, b) of the matrix Mi are then the

solution of the above differential equation at time nc with initial

values 1 if b¼ a and 0 otherwise. In other words, Equation (6)

describes the same equation as (1) with lineage i starting in a [rather

than in any state as in Equation (1)], assuming that all other line-

ages, other than i, evolve according to Equation (1).

2.3.3 Forwards calculation of node states including all information

in the phylogeny

Based on Section 2.2, we know the probabilities of every internal

node being in any state. Based on Section 2.3.2, we know how these

probabilities change between coalescent events. Going backwards,

we calculate Pbw
t Li ¼ ajTð Þ, which only includes information up to

time t. At the root however Pbw
t Lroot ¼ ajTð Þ includes information

from the full phylogenetic tree from time 0 up to the time of the

root. We hence write Pbw
t Lroot ¼ ajTð Þ ¼ Pfw

t Lroot ¼ ajTð Þ, that is

the forwards probability of the root being in any state. The forwards

probabilities denote the probability of a lineage being in a state that

includes information from the full phylogenetic tree. We use the for-

wards probability Pfw
t Lroot ¼ ajTð Þ at the root as a starting point to

calculate Pfw
t Li ¼ ajTð Þ for every lineage i. From the root, we pro-

ceed forwards in the tree to calculate Pfw
t Li ¼ ajTð Þ for every intern-

al node at the time t of the coalescent event for which lineage i was

the parent lineage. Pfw
t Li ¼ ajTð Þ could be calculated at other times

as well, we here however focus on the state of nodes. This we do as

follows:

~p
fw
i t ¼ lcð Þ ¼

~p
fw
p t¼ncð Þ

~p
bw
i t¼ncð Þ

M>i

� �
�~p bw

i t ¼ lcð Þ

k ~p
fw
p t¼ncð Þ

~p
bw
i t¼ncð Þ

M>
i

� �
� ~p bw

i t ¼ lcð Þk1

(7)

with ~p
fw
p t ¼ ncð Þ=~p bw

i t ¼ ncð Þ denoting the element-wise division of

~p
fw
p t ¼ ncð Þ, the parent lineage of i at the time nc of the coalescent

event with ~p
bw
i t ¼ ncð Þ, which is the daughter lineage at that time.

~p
fw
p t ¼ ncð Þ=~p bw

i t ¼ ncð Þ denotes the information of the state of the

parent lineage p that does not come from lineage i. The multiplica-

tion with transposed matrix M>
i then denotes how much these

probabilities have changed until the time of the last coalescent event

lc, where lineage i was the parent lineage. The element-wise multi-

plication with ~p
bw
i t ¼ lcð Þ then combines this information with

the one from the backwards step. Or in other words, it denotes

the updated probability from the forwards and the backwards

node state probabilities. After normalization to ensure that

jj~p fw
i t ¼ lcð Þjj1 ¼ 1, we get the forwards probability of lineage i

being in any state at time lc.

2.4 Integration of the differential equations
To integrate Equation (1), we used a second-order Taylor method

with third-order step size estimation. This integration technique is

similar to the very basic Euler integration, but makes use of the se-

cond derivative as well:

ytþ1 ¼ yt þ y0tDt þ 1

2
y0 0tDt2 þO hð Þ (8)

O(h) stands for derivatives higher than second order. The error that

is made by only considering the first and second derivative can be

calculated as follows:

ytþ1 est � ytþ1 true ¼ O hð Þ ¼ � (9)

With ytþ1 est being the updated term using Equation (8) and ytþ1 true

being the hypothetical true value if all derivatives would be consid-

ered. We now assume that the Taylor term of every derivative higher
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than the third are zero. The error � we introduce at every step can

therefore be approximated as:

� � 1

6
y000t Dt3 (10)

For every integration step, we now choose Dt such that the absolute

value of � is smaller than a specified value. While we calculate the se-

cond derivative exactly (see Supplementary Material), we approxi-

mate the third derivative, assuming that the sum of probability mass

in each state and that the sum of the derivatives of lineage i coalesc-

ing in any state is constant (see Supplementary Material). We then

use this to update Equation (1) between sampling and coalescent

events. At the root of the tree, the probability of the tree under the

approximate structured coalescent is then calculated by solving

Equation (3) at the root. This is covered in more depth in Müller

et al. (2017).

2.5 Software
The method above is implemented into our BEAST 2 package

MASCOT (Marginal Approximation of the Structured

COalsescenT) and the analyses were done using version 1.0.0 and

BEAST v2.5.0 (Bouckaert et al., 2014). Simulations were performed

using a backwards in time stochastic simulation algorithm of the

structured coalescent process using MASTER 5.0.2 (Vaughan and

Drummond, 2013) and BEAST 2.4.7. MultiTypeTree analyses were

performed using version 6.3.1 (Vaughan et al., 2014) and BEAST

2.4.7. Script generation and post-processing were performed in

Matlab R2015b. Plotting was done in R 3.2.3 using ggplot2

(Wickham, 2009) and igraph 1.1.2 (Csardi and Nepusz, 2006). Tree

plotting and tree height analyses were done using ape 3.4 (Paradis

et al., 2004) and phytools 0.5-10 (Revell, 2012). Effective sample

sizes (ESS) for MCMC runs were calculated for the posterior prob-

ability after a burn-in of 10% using coda 0.18-1 (Plummer et al.,

2006). Parameter and state inference of the simulated data were

only used if the posterior had an ESS of at least 100 and discarded

elsewise.

2.6 Data availability
The source code for MASCOT is available at https://github.com/nic

fel/Mascot.git. All scripts for performing the simulations and analyses

presented in this article are available at https://github.com/nicfel/

Mascot-Material.git, including the MASCOT xml file of the H3N2

analysis. Output files from these analyses, which are not on the github

folder, are available upon request from the authors. A tutorial is

available through the Taming the BEAST project (Barido-Sottani

et al., 2017) on how to use MASCOT and its BEAUti interface is

available at https://github.com/nicfel/Mascot-Tutorial.git.

3 Results

3.1 Inference of migration rates, effective population

sizes and internal node states
First, we tested how well effective population sizes and migration

rates are inferred using MASCOT. We simulated 1000 trees with

MASTER (Vaughan and Drummond, 2013) using randomly sampled

effective population sizes from LogNormal Distribution(l ¼ �0.125,

r¼0.5) and migration rates from an exponential distribution with

mean¼0.5. We used 1000 tips and 6 different states. In order to have

scenarios of under- and over-sampling of states, we randomly

sampled the number of tips in each state. The number of samples per

state was randomly drawn to be a value between 20 and 1000 in

increments of 20, conditional on the overall number of samples in

each state being exactly 1000. We then inferred the effective popula-

tion size of every state and the migration rates between each state

using MASCOT from fixed phylogenies. The results of these simula-

tions are summarized in Figure 2.

Both effective population sizes and migration rates are inferred

well. Population size estimates are however much more precise than

estimates of migration rates, see Figure 2. This is expected since

there are typically many fewer migration events in a phylogeny than

coalescent events. Additionally, the number of migration rate

parameters estimated (30) is much larger than the number of effect-

ive population size parameters (6). The estimates are well correlated

with the truth, only at lower migration rates do estimates become

worse. This is also to be expected since a low migration rate auto-

matically means less events which will put the estimates closer to the

prior (exponential with mean 1). The coverage is 95% for both mi-

gration rate estimates and effective population size estimates. We

further inferred the state of each internal node with and without the

backwards/forwards algorithm. Using the backwards/forwards algo-

rithm reduces the probability mass that is attributed to the wrong

node states in this scenario (Fig. 2C).

To estimate how the CPU time varies with the number of line-

ages and states, we used the same framework but with varying num-

bers of states and lineages. The CPU time per million samples

depends approximately linearly on the number of sampled sequen-

ces. With an increasing number of states, the calculation time per

million sample increases approximately quadratically.

Fig. 2. Inference of effective population sizes, migration rates and node states. (A) Inferred effective population sizes on the y-axis versus true effective population

sizes on the x-axis. The effective population sizes for the tree simulations were sampled from a lognormal (-0.125, 0.5) distribution. The coverage of migration

rate estimates was 95.5% and for effective population size estimates 94.9%. (B) Inferred migration rates on the y-axis versus true migration rates on the x-axis.

The migration rates between states were sampled from an exponential distribution with mean¼0.5. (C) Inferred node states using MASCOT with and without the

backwards/forwards algorithm. (D) Median CPU time per mega sample depending on the number of lineages and the number of different states. The CPU time

was taken from 100 replicates of the simulation scenario used. (E) Median posterior ESS per hour from 100 replicates from MASCOT and MultiTypeTree (dashed

lines). The different colours indicate the different number of states. Dashed lines show median ESS per hour values for MultiTypeTree
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We next compared the convergence properties of MASCOT with

MultiTypeTree version 6.3.1 (Vaughan et al., 2014), which is based

on the exact structured coalescent model without approximation,

but requires MCMC sampling of lineage states. To do so, we com-

pared the ESS per hour to MultiTypeTree (Vaughan et al., 2014)

using fixed trees. MASCOT shows much higher ESS values per hour

in each scenario, demonstrating the drastically improved conver-

gence properties originating from not having to sample migration

histories. While these estimates can vary based on the parameters

under which simulations were performed and based on the MCMC

operator setup used, they show the benefits of integrating over mi-

gration histories.

3.2 Application to H3N2
We then applied MASCOT to 433 Influenza A/H3N2 sequences

sampled between 2000 and 2003 from Australia, Hong Kong, New

York, New Zealand and Japan. We ran five independent chains

each for 120 Million iterations using an HKYþ C4 site model with

a fixed clock rate of 5 � 10�3 substitutions per site and year. We

fixed the clock rate due to a lack of temporal information from the

sequences collected for this short amount of time. We then inferred

the phylogenetic tree as well as the effective population sizes of every

location, the migration rates between them, as well as the additional

parameters from the HKYþ C4 model.

Figure 3 shows the maximum clade credibility tree with the dif-

ferent colours indicating the maximum posterior location estimate

of each node. The pie charts indicate the probability of the marked

nodes being in any possible location inferred with and without the

backwards/forwards algorithm. These probabilities are the average

over all the node state probabilities for each tree in the posterior

containing that clade. We inferred New York to be a source location

mainly for strains in Australia and New Zealand. Strains from

Japan were inferred to originate mainly from Hong Kong and

New York. The root of the phylogeny was inferred to be most likely

in New York. The lack of samples near the root however makes the

inference of its location unreliable.

4 Discussion

We provide a new algorithm to calculate the state of any node in a

phylogeny under the marginal approximation of the structured co-

alescent (Müller et al., 2017). This algorithm entirely avoids the

sampling of migration histories. Additionally, we improve the calcu-

lation time of our previously introduced approximation to allow for

the analysis of phylogenies with more samples and more states.

We have shown on simulated data that our approach is able to

infer migration rates and effective population sizes reliably even

when many different states (6) are present. This is a case where exact

A B

Fig. 3. MASCOT analysis of globally sampled Influenza A/H3N2 viruses. (A) Here we show the maximum clade credibility tree inferred from H3N2 sequences

from Australia, Hong Kong, New York, New Zealand and Japan. The colour of each branch indicates the most likely state of its daughter node. The pie charts indi-

cate the probability of chosen nodes being in any of the possible states. The left pie chart is the probability inferred using the backwards/forwards algorithm and

the right pie chart without using the backwards/forwards algorithm. Since at the root, these probabilities are the same, only one chart is shown. The node heights

are the median node heights. (B) The median inferred immigration rates as indicated by the width of the arrow. The wider an arrow into a location, the more likely

it is that a lineage in the destination originated from the source location of that arrow. The different source locations are denoted by the colours of the arrows. A

wider arrow from light blue to green than from red to green shows that lineages in New Zealand are more likely to have originated from New York than from

Hong Kong. The dot sizes are proportional to the median inferred effective population sizes of that state
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methods that sample migration histories are currently not able to

reach convergence. Even though MASCOT is an approximation, we

reach a coverage of 95% for migration rates and effective popula-

tion size estimates.

We also showed on simulated data that adding a backwards/

forwards approach for the calculation of node states improves the

inference of internal nodes. We use the backwards/forwards to cal-

culate the state of every internal nodes in a way that is consistent

with the complete phylogeny, which is not given by the backwards

step alone. To estimate the probability of a node being in any pos-

sible state given a set of parameters we therefore do not need to

average over many MCMC samples of migration histories. Whereas

for some nodes the difference between with and without backwards/

forwards is small, it is especially large for nodes where the difference

in where the node is inferred to be compared with the parent node is

large. This is due to conflicting information of the state of a node

from the backwards and forwards step. This can for example be the

result of a sampling event that adds information of where a lineage

was further in the past. Future extensions could include an explicit

sampling of migration histories or of the number of state changes.

To do so, an algorithm similar to that of Minin and Suchard (2007,

2008) could be deployed, but lineage states would need to be

sampled in a way that is probabilistically consistent with our equa-

tions for the forward line state probabilities. Finally, we applied

MASCOT to a globally sampled H3N2 dataset where we inferred

the phylogenetic tree and associated parameters. Our approach is

able to reach convergence, even when a large number of sequences

and different locations is present. The calculation time still causes

challenges in the analysis of very large datasets. These could be cir-

cumvented by a further approximation of
Pn

k¼1
k6¼i

�
Pn

k¼1 in

Equation (1) when many lineages are present. This would allow

every lineage to have the same transition probabilities and would

therefore reduce the number of ODEs that have to be solved.

MASCOT still requires all migration rates and effective popula-

tion sizes to be inferred. Especially the number of migration rates

(states � states� 1ð Þ) can become problematic relatively fast. Future

additions could however reduce the parameter space by for example

deploying Bayesian Search Variable Selection (Lemey et al., 2009)

or by making use of generalized linear models (Lemey et al., 2014)

to describe migration rates as a combination of different covariates

and hence only require the parameters of the GLM model to be

inferred.
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