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Abstract

Motivation: Integrative analysis of multi-omics data from different high-throughput experimental

platforms provides valuable insight into regulatory mechanisms associated with complex diseases,

and gains statistical power to detect markers that are otherwise overlooked by single-platform

omics analysis. In practice, a significant portion of samples may not be measured completely due

to insufficient tissues or restricted budget (e.g. gene expression profile are measured but not

methylation). Current multi-omics integrative methods require complete data. A common practice

is to ignore samples with any missing platform and perform complete case analysis, which leads

to substantial loss of statistical power.

Methods: In this article, inspired by the popular Integrative Bayesian Analysis of Genomics data (iBAG),

we propose a full Bayesian model that allows incorporation of samples with missing omics data.

Results: Simulation results show improvement of the new full Bayesian approach in terms of out-

come prediction accuracy and feature selection performance when sample size is limited and pro-

portion of missingness is large. When sample size is large or the proportion of missingness is low,

incorporating samples with missingness may introduce extra inference uncertainty and generate

worse prediction and feature selection performance. To determine whether and how to incorporate

samples with missingness, we propose a self-learning cross-validation (CV) decision scheme.

Simulations and a real application on child asthma dataset demonstrate superior performance of

the CV decision scheme when various types of missing mechanisms are evaluated.

Availability and implementation: Freely available on the GitHub at https://github.com/

CHPGenetics/FBM

Contact: zhf9@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multi-level omics data refer to the combined molecular data in

various types, for example, genome, transcriptome, methylome

and proteome data, measured on a common cohort of patients.

The availability of multi-level omics data in both magnitude and

varieties poses challenges as well as opportunities to understand

fundamental mechanisms of diseases and pathologies. Compared

with separately discovering the association patterns between each

omics data and phenotypes, an integrative framework that simultan-

eously integrates multiple omics data types will uncover more in-

sightful regulatory machineries between different omics data and

will hence deepen our understanding to hereditary and environmen-

tal causes in pathology (Richardson et al., 2016; Tseng et al., 2012,

2015).

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3801

Bioinformatics, 34(22), 2018, 3801–3808

doi: 10.1093/bioinformatics/bty775

Advance Access Publication Date: 1 September 2018

Original Paper

http://orcid.org/0000-0002-5447-1014
https://github.com/CHPGenetics/FBM
https://github.com/CHPGenetics/FBM
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty775#supplementary-data
https://academic.oup.com/


In the literature, many strategies have emerged for integration of

multi-omics data. To cluster samples for identifying unknown dis-

ease subtypes, integrative clustering (iCluster; Shen et al., 2009),

Bayesian consensus clustering (Lock and Dunson, 2013), group

structured integrative clustering (GS-iCluster; Kim et al., 2017) and

integrative sparse K-means (IS-Kmeans; Huo et al., 2017) have been

developed for integrative clustering of multi-omics data. For associ-

ation and prediction modelling, Integrative Bayesian Analysis of

Genomics (iBAG) (Wang et al., 2013) investigates association pat-

terns of mRNA expressions and methylation with clinical outcome

via a mechanistic model for associating methylation with gene ex-

pression and then a clinical model for direct association between ex-

pression and clinical outcome or via methylation. A Bayesian

hierarchical model is then established for the inference. Such

Bayesian hierarchical modelling has gained popularity in multi-

omics integrative analysis due to its flexibility in model construction

for complex regulatory structure, convenience to incorporate prior

biological knowledge and advances in modern computing. In the as-

sociation and prediction modelling, we usually focus on two key

goals in the inference: firstly, to select predictive biomarkers for the

phenotype and secondly, to predict clinical outcome from the

selected biomarkers. As tens of thousands of features are available

in omics data, the first goal of feature selection is essential in inter-

rogating the biological and pathological mechanism of a targeted

disease. The second goal could be of immediate clinical use, for ex-

ample, assisting diagnosis of a disease, directing the best treatment

decision and predicting drug response.

One obstacle for applying multi-omics integrative methods in

real applications is missing data. Due to various reasons (e.g. limited

budget, bad tissue quality or insufficient tissue amount), it is com-

mon that only partial samples have all omics data types (Voillet

et al., 2016). For example, TCGA breast cancer study had 922 sam-

ples measured in methylation array, yet only 781 were measured in

miRNA expression and 587 were measured for gene expression.

Almost 40% of the samples are missing at least one type of omics

data. To circumvent this pitfall, a naı̈ve and convenient solution is

by complete case (CC) analysis, where samples with any missing

measurement are ignored. This approach results in dramatic de-

crease of sample size and thus decreases of statistical power, espe-

cially when more omics data types are combined. The shortcoming

of CC in omics studies is recently noticed by statisticians, for ex-

ample, Voillet et al. (2016) who developed a multiple imputation

approach focusing on multiple factor analysis for multiple omics

data. However, a unified framework serving the aforementioned

purpose of feature selection, prediction as well as missingness han-

dling is still lacking. In Bayesian methods for analysis of data with

some predictors that are missing at random, marginal distribution of

those predictors are usually modelled (Ibrahim et al., 2002; Little

and Rubin, 2002). The data augmentation method is used to obtain

the posterior distribution of parameters of interest (Tanner and

Wong, 1987). In each iteration of the data augmentation procedure,

missing values are imputed from the conditional distribution of

those covariates given observed data under current parameters and

model parameters are subsequently drawn from their posterior dis-

tribution calculated from the imputed dataset. In this article, we are

motivated by the iBAG model combining mRNA expression methy-

lation, clinical variables to predict a targeted continuous outcome.

We propose a full Bayesian model with missingness (FBM) that

allows iBAG to handle situations when partial samples are missing

with mRNA expression or methylation. Extensive simulations and

real applications demonstrated superior performance in feature se-

lection and prediction accuracy of the new approach compared with

naı̈ve CC approach. The model can be extended to other omics data

types or other targeted outcomes (e.g. binary or survival).

The article is structured as the following. In Section 2.1, we

introduce the motivation, the original iBAG model and the proposed

FBM. Section 2.2 discusses the inference of prediction and feature

selection of FBM (Section 2.2.1) and evaluation benchmarks

(Section 2.2.2). Section 3 contains extensive simulations to evaluate

performance of FBM and Section 4 proposes a cross-validation (CV)

decision scheme to determine whether and how to incorporate sam-

ples with missingness in FBM. Section 5 includes an application to a

childhood asthma dataset with 460 individuals. Final conclusion

and discussion are presented in Section 6.

2 Materials and methods

2.1 Motivation and the full Bayesian model with

missingness
2.1.1 Motivation

IBAG is a two-layer Bayesian hierarchical model for vertical integra-

tive analysis of multi-level omics data, assuming data are complete.

However, in reality, a large proportion of missing data is commonly

seen due to budget or limitation in tissue collection. Figure 1a gives

an example of data structure with missingness. Suppose there are a

total of N samples, Y indicates the clinical outcome of interest; C

indicates clinical factors; GN�K ¼ ðG0obs;NG
obs
�K;G

0
mis;NG

mis
�KÞ

0 indicates

the gene expression with missingness, where UG ¼ ðUG
1 ; . . . UG

NÞ is

the missing indicator; likewise, MN�J ¼ ðM0
obs;NM

obs
�J
;M0

mis;NM
mis
�J
Þ0

indicates methylation data with missingness, where UM ¼
ðUM

1 ; . . . UM
N Þ is the missing indicator. U¼1 indicates missing and

U¼0 indicates observed. For example, number of samples with

methylation level missing is NG
obs ¼ N �

PK
k¼1 UG

k . We assume

UM
i �UG

i 6¼ 1 for 81 � i � N. The original iBag model takes only

the complete data and is subject to loss of statistical power. To han-

dle missingness, we propose a full Bayesian model with missingness

inspired by iBAG model, to achieve three goals simultaneously: fea-

ture selection, prediction and missing data imputation. In Section

2.1.2, we briefly introduce the iBAG model. In Section 2.1.3, we

propose our full Bayesian model for multi-omics integration with

missingness imputation.

(a) (b)

Fig. 1. (a) Illustration of missing pattern adopted in this article. Slash-shaded

area represents missing data, cross-shaded area represents value 1 for miss-

ing indicator vectors UG and UM. (b) DAG of the model and parameters. The

square in the DAG denotes observed data, solid circle denotes variable to be

updated, circle in grey colour is the variable of interests, dashed circle

denotes prior. Solid arrows indicate stochastic dependencies, and dashed

arrows indicate deterministic dependencies
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2.1.2 iBAG

In iBAG, the mechanistic model in the first layer assesses gene-

methylation effect and divides gene expressions into two parts, the

part regulated by methylation (GM) and the part regulated by other

mechanisms (G
�M ).

G ¼ GM þG
�M ;GM ¼MX;

where GM ¼ ðgM
nkÞN�K ¼ ðgM

1 ; . . . ; gM
K Þ; G

�M ¼ ðg �M
nkÞN�K ¼ ðg

�M
1 ; . . . ;

g
�M

K Þ; X ¼ ðxjkÞJ�K : xjk denotes the ‘gene-methylation’ effect that

estimates the (conditional) effect of jth methylation feature on the

kth gene.

The second layer called clinical model assesses the association

between gene expression (GM and G
�M ) and the phenotype:

Y ¼ CcC þGMcM þG
�Mc

�M þ �;

where cC ¼ ðcC
1 ; . . . cC

LÞ : cC
l denotes the effect of the lth clinical fac-

tor on the clinical outcome Y. cM ¼ ðcM
1 ; . . . cM

K Þ : cM
k denotes the

gene expression effect of gM
k on clinical outcome Y, called a type M

effect. c �M ¼ ðc �M
1 ; . . . c �M

K Þ : c �M
k denotes the gene expression effect of

g
�M

k on clinical outcome Y, called a type �M effect.

2.1.3 Full Bayesian model with missingness

Figure 1b gives a full representation of our model. Our model con-

tains three parts: mechanistic model, clinical model and an imput-

ation model derived from the previous two models. The mechanistic

model and clinical model stem from the iBAG model introduced in

Section 2.1.2. Here, we will focus on two novel parts added to the

original iBAG model: the sparsity-induced spike-and-slab priors

(Ishwaran and Rao, 2005) for feature selection in both mechanistic

and clinical models, and an imputation model to deal with missing

omics data.

There are a total of eight groups of parameters that need to be

estimated: cM, c
�M , cC, X, r2

k’s, Gmis; Mmis; r2, cM and c
�M are our

parameters of interests. Investigators may also find Xs important if

they are interested in further inference on methylation-gene regula-

tion. The corresponding Monte Carlo Markov Chain (MCMC)

Gibbs sampler will be further discussed in Supplementary Appendix

Section 2.

The original iBAG model placed a Laplace prior on cM and c �M

for shrinkage purpose, however, it does not set the effects to exact

zeros. To conduct natural variable selection, we instead use a spike-

and-slab prior to induce sparsity. In addition, we also perform fea-

ture selection in x using the same spike-and-slab prior, considering

that not all the methylation sites are regulating the gene expression.

So we will have:

cM
k jIM

k ; sMð Þ2
h i

� ð1� IM
k ÞN 0;10�6

� �
þ IM

k N 0; sMð Þ2
� �

;

IM
k jpM

h i
� Bern pMð Þ; pM½ � � Unif 0;1ð Þ;

c
�M

k jI
�M

k ; s
�M

� �2
h i

� ð1� I
�M

k ÞN 0;10�6
� �

þ I
�M

k N 0; s
�M

� �2
� �

;

I
�M

k jp
�M

h i
� Bern p

�M
� �

; p
�M

� �
� Unif 0; 1ð Þ;

xjjIx
j ; sxð Þ2

h i
� ð1� Ix

j ÞN 0;10�6
� �

þ Ix
j N 0; sxð Þ2
� �

;

Ix
j jpx� �

� Bern pxð Þ; px½ � � Unif 0;1ð Þ;

where IM
k ; I

�M
k and Ix

j are binary indicators and Nð0;10�6Þ represents

a narrow spike and s2 represents the wide slab. A Jeffery’s prior is

put on ðsMÞ2; ðs �M Þ2; ðsxÞ2, i.e.:

pðsMÞ2 / ðsMÞ�2; pðs �M Þ2 / ðs �M Þ�2; pðsxÞ2 / ðsxÞ�2:

For Gmis and Mmis (Fig. 1b), we impose the following imputation

model:

gmis;k �MVNNG
mis
�NG

mis
ðMJ k

xk; r
2
kING

mis
�NG

mis
Þ;

mmis;j �MVNNM
mis
�NM

mis

�
0; ðrmÞ2INM

mis
�NM

mis

�
;

where MVN denotes the multivariate normal distribution and

ðrmÞ2 ¼ 1 if the methylation value is already standardized with

mean 0 and standard deviation 1. Note that here we assume the

methylation data are in M value according to Du et al. (2010). If

b value is to be used, we may need to replace the above prior with a

truncated normal distribution bounded between 0 and 1. All other

variables are given non-informative priors. Details can be found in

the Supplementary Appendix Section 2.

Remarks:

• Following Wang et al. (2013), we assume gene-gene independ-

ence and methylation-methylation independence. However, we

are aware that this assumption deviates from real data, so we

also propose a model with gene-gene and methylation-

methylation correlations considered (see Supplementary

Appendix Section 3). Albeit having the options, we will mainly

discuss our model with independence assumptions in this article,

for two reasons: first, the computational burden for estimating

covariance matrices are high. Second, with moderate correlations

in simulated data, considering dependency has limited gain in

performance compared with model with independence

assumption.
• We assume that the methylations are many-to-one mapped to

genes, i.e. only the methylation within the promoter region of the

gene is mapped to the gene, and each methylation will only be

mapped to one gene. The mapping is also assumed to be known

from biology background knowledge in our model. The methyla-

tion level is centred around 0 if we are using m-value.
• It is reasonable and necessary to assume that if for all the xj

where j are within the promoter region of gene k, we let Ix
j ¼ 0,

then we automatically have IM
k ¼ 0. That is, IM

k 6¼ 0 only when at

least one methylation is selected.
• Two strategy could be adopted to deal with collinearity issue be-

tween methylation sites. First, we proposed a random selection

strategy based on pairwise Pearson correlation (see

Supplementary Appendix Section 4). Second, one may conduct

principal component analysis (PCA) on methylation sites, and

use the first few PCs explaining large proportion of variation.

2.2 Inference and evaluation
The full Bayesian hierarchical model in the last section allows fast

Gibbs sampler. Full conditional formula for iterative sampling are

shown in Supplementary Appendix Section 2. The final parameter

estimates are calculated by averaging stabilized MCMC iterations

(i.e. removing the first Br burn-in period in MCMC iterations). The

burn-in period Br is determined using Geweke’s convergence diag-

nostics (Geweke, 1992). Geweke diagnostics aims to test whether

the first a% and last b% of the MCMC iterations have equal mean,

and thus decide whether the samples are drawn from a stationary
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distribution. As suggested by Geweke, the first 10% of MCMC total

iterations are taken as burn-ins once the MCMC chain pass the

diagnosis.

2.2.1 Prediction and feature selection

The Bayesian integrative model generates two major inference out-

comes: prediction and feature selection. For prediction, denote

ĉC
ðbÞ; ĉM

ðbÞ; ĉ
�M
ðbÞ, and X̂ðbÞ as the simulated parameter estimates from

the b-th iteration. For a new sample with omics data

(Cnew; Gnew; Mnew), we average prediction of y from the (B� Br)

stable MCMCs by ŷnew ¼ ð
PB

b¼Brþ1 ŷðbÞnewÞ=ðB� BrÞ, where ŷðbÞnew ¼
Cnew � ĉC

ðbÞ þMnew � X̂ðbÞ � ĉM
ðbÞ þ ðGnew �Mnew � X̂ðbÞÞ � ĉ

�M
ðbÞ. And

RMSE will be calculated from those estimates:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ðyi � ŷnew;iÞ
2=N

vuut (1)

where the choice of N is discussed in Section 2.2.2.

Next, we summarize feature selection indicators IM
k;ðbÞ and I

�M
k;ðbÞ for

gene k and the b-th MCMC to determine the set of genes predictive to

outcome y. Given the b-th iteration, we define the selection indicator for

gene k as Ik;ðbÞ so that gene k is selected if either the impact on outcome

is through methylation (IM
k;ðbÞ) or not (I

�M
k;ðbÞ). In other words, Ik;ðbÞ ¼

ðIM
k;ðbÞÞOR ðI �M

k;ðbÞÞ ¼ 1� ð1� IM
k;ðbÞÞð1� I

�M
k;ðbÞÞ for Br þ 1 � b � B

and 1 � k � K. To control FDR at gene level, we apply Bayesian false

discovery rate (BFDR) proposed by Newton (2004):

BFDRðtÞ ¼

PK
k¼1

P̂kðH0jDÞdkðtÞ

PK
k¼1

dkðtÞ

where P̂kðH0jDÞ ¼ 1� ð
PB

b¼Brþ1 Ik;ðbÞÞ=ðB� BrÞ is the posterior

probability of gene k belonging to null hypothesis H0 (i.e. gene k is

not selected given observed data D), dkðtÞ ¼ IðP̂kðH0jDÞ < tÞ, and

t is a tuning threshold. Given the definition of BFDR, the q-value of

gene k can be defined as qk ¼ mint�P̂kðH0 jDÞBFDRðtÞ. This q-value

will later be used for feature selection decision, which is comparable

to frequentist approaches. Among selected genes, one may

perform post hoc analysis to further investigate cM
k ¼

ð
PB

b¼Brþ1 IM
k;ðbÞÞ=ðB� BrÞ and c

�M
k ¼ ð

PB
b¼Brþ1 I

�M
k;ðbÞÞ=ðB� BrÞ and

determine whether the impact of gene k to outcome is through

methylation, non-methylation or both.

2.2.2 Benchmarks for evaluation

To evaluate the performance, the basic approach we compare with

is the CC analysis. For full Bayesian model with missingness, we will

also choose to impute gene expression only (FBMG), methylation

only (FBMM) or both (FBMGM) when applicable. In simulation stud-

ies, we also perform analysis of the complete data (full) to examine

the reduction of accuracy caused by missingness.

To benchmark performance of outcome prediction, we consider

RMSE (Equation 1). In simulation studies, after parameter estimates

are obtained we generate a new testing dataset with large sample

size (N¼2000) and compute RMSE. In real data analysis, we per-

form 50-fold cross-validation (CV) on complete cases for RMSE

evaluation. In each iteration, NCC ¼ 2% of complete-case samples

are set aside as test dataset, all remaining data are used to perform

CC and FBMs analyses. The parameter estimates are then applied to

the test data for outcome prediction. After ten iterations, cross-

validated RMSE can be evaluated on all complete-case samples with

N ¼ NCC in Equation 1.

To evaluate feature selection performance, we order genes by

q-value, plot receiver operating characteristic (ROC) curves and cal-

culate area under curve (AUC) in simulations since the underlying

true predictive genes are known. For real data, since we do not know

the true features, we treat the gene selection result from full data ana-

lysis (full) as a surrogate of gold standard and compare gene selection

from CC (or FBMs) to the full data analysis by tracing the top number

of selected genes on the x-axis (e.g x¼100 top selected genes by CC

and full) and the overlapped number from CC and full on the y-axis

(Fig. 4b). Comparing the curves of CC and FBMs, a higher curve

closer to the diagonal line shows more similar gene selection to ‘full’

and thus an indication of better performance.

3 Simulation studies

3.1 Simulation schemes
To evaluate performance of our full Bayesian model with missing-

ness, we perform simulation based on data structure described

in Section 2. Specifically, the clinical and methylation data

matrices are simulated from N(0, 10) and N(0, 1) with

N ¼ ð50; 100; 200; 500Þ, L¼2 and J¼2000. Each methylation

site is randomly assigned to a gene, with the constraint that each

gene contains at least one methylation site. In the mechanistic

model, Ix
j ¼ 1; xjk ¼ 5 and r2

k ¼ 4 for 1 � j � J and 1 � k � K,

where the total number of genes K¼1000. We then simulate gene

expression matrices from NðMX;diagðr2
1; . . . r2

KÞÞ. In the clinical

model, 10 genes are randomly selected to impact clinical outcome

through methylation and 10 randomly impact not through methyla-

tion (i.e. The IM vector has 10 out of K genes equal one and the

remaining are zero, and similarly for I
�M . The selected genes in IM

and I
�M can possibly overlap). For selected genes in IM and I

�M , the

corresponding cM
k and c �M

k are set to 10. The coefficients for clinical

data cC
l (1 � l � L) are also set at 10 and r2 ¼ 9 to simulate clinic-

al outcome Y.

After full multi-omics datasets are simulated, data with missing-

ness are generated with a% of samples with missing gene expression

data and another non-overlapping b% of samples with missing

methylation data. We simulate three scenarios of missingness: (I)

Missing only gene expression data with (a, b)¼(0.1, 0), (0.2, 0) and

(0.5, 0); (II) Missing only methylation data with (a, b)¼(0, 0.1),

(0, 0.2), (0, 0.5); (III) Non-overlapping samples missing either gene

expression or methylation data with (a, b)¼(0.1, 0.1), (0.2, 0.2),

(0.3, 0.3). For Scenario I, we evaluate CC and FBMG approaches

and compare with full. Similarly for Scenario II, we compare

CC, FBMM and full. Finally for Scenario III, we compare

CC, FBMG, FBMM, FBMGM and full. In this case, FBMG imputes

gene expression but ignores samples with missing methylation and

similarly, FBMM imputes methylation but ignores samples with

missing gene expression. FBMGM utilizes all samples and imputes

both gene expression and methylation.

3.2 Results
Figure 2 shows the outcome prediction performance by RMSE for

all three scenarios. We first focus on small sample size situations

N ¼ 50� 200. In Scenario I, CC, FBMG and full have similar per-

formance when a ¼ 10% missing but FBMG clearly outperforms

CC when missingness increases to 20% and 50%, showing the bene-

fit of imputation as expected. In contrast, FBMM performs much

worse than CC in Scenario II with b ¼ 10% methylation missing-

ness and FBMM only slightly outperform CC when missingness

increases to 50%. Results of Scenario III are consistent with results

3804 Z.Fang et al.



of Scenarios I and II. FBMM and FBMGM perform worse than CC at

a ¼ b ¼ 10%. FBMM, FBMG and FBMGM outperform CC at

a ¼ b ¼ 50%. It is worth noting that when sample size increases to

N¼500, the data information is strong enough such that CC has

performance similar to full. Imputation almost always create more

data uncertainty and have worse performance than CC, especially

since the majority of the imputed data are irrelevant to the clinical

outcome.

We next examine feature selection performance by AUC values in

Table 1 (ROC curves shown in Figure 3 and Supplementary Figure

S1a–c). In Scenario I, FBMG always has higher AUC values than CC

especially when missingness a increases to 25% or 30%. On the con-

trary, FBMM has lower AUC than CC except for N¼50, 100 in

b ¼ 50%. The message becomes mixed in Scenario III as expected.

We noticed that since methylation is the up-regulator of gene ex-

pression and indirectly impact the clinical outcome, imputing

methylation is generally less effective than imputing gene expression.

With increasing missing proportion, the benefit of imputation esca-

lates. But when the missing proportion is small or sample size large,

the uncertainty brought by imputation will overshadow the contri-

bution from partially observed data (see Supplementary Appendix

Section 5).

4 Impute or not: a decision scheme by cross-
validation

From the mechanistic model in Figure 1b, gene expression and

methylation data are not symmetric. Methylation data can be pre-

dictive to gene expression data and further predictive to outcomes.

On the other hand, gene expression data are less predictive to

methylation to help outcome prediction. As we have shown in simu-

lations, imputations do not always improve prediction performance

compared with CC analysis. Whether imputation would improve

outcome prediction depends on the types of missingness (missing the

upstream methylation data or missing the downstream gene

expression data or both), the proportion of missingness and sample

size. To guide the decision, we propose a self-learning CV scheme.

Specifically, we apply 10-fold CV by leaving 10% of CC samples as

the test set (for Scenario III N¼500, we apply 50-fold CV). We

apply CC, FBMG, FBMM and FBMGM to the remaining training

data, calculate parameter estimates and apply to test set. The pro-

cedure is repeated across all 10-folds and RMSE can be calculated

on all test sets. The method with the smallest RMSE is selected to

determine whether and how to impute. We conducted sensitivity

analysis for this CV scheme (see Supplementary Appendix Section

1.2). We note that to evaluate performance of CV scheme in RMSE

evaluation of outcome prediction in the Section 5, nested CV will be

used (i.e. An outer loop of CV is used to evaluate RMSE and an

inner loop of CV scheme for method selection is performed in each

training set of the outer loop).

Figure 4 shows scatter plot of RMSE performance comparing

FBMG and CC in Scenario I (Fig. 4a; a ¼ 50% missing gene expres-

sion) and FBMM and CC in Scenario II (Fig. 4b; b ¼ 50% missing

methylation) in 50 independent simulations. In Scenario I, FBMG

generally has smaller RMSE than CC in small sample sizes (N¼50,

100, 200). But for N¼500, RMSE of FBMG becomes slightly larger

than CC on average. For missing methylation in Scenario II, FBMM

performs better than CC at N¼50 but gradually becomes worse

than CC at N¼100, 200 and 500. We applied the CV scheme in

each simulation to determine whether imputation should be per-

formed or not. Simulations shown by circles represent correct deci-

sions (i.e. CV scheme decides to impute and the RMSE of

imputation is indeed smaller than RMSE of CC or vice versa) and

cross represents incorrect decision. The result shows universally

high accuracy of CV scheme decision. When the decision is wrong,

imputation and CC RMSEs are close to each other (near the diag-

onal line) and the incorrect decision only minimally impacts the

Fig. 3. The ROC curves for feature selection comparison on Scenario I:

a 6¼ 0; b ¼ 0. Asterisk on each ROC curve is the point with maximum

Youden index

Fig. 2. Model prediction by RMSE ðŷ Þ comparing different methods and full

data
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outcome prediction. Figure 4c shows box plots of RMSE generated

from different approaches (CC, FBMG, FBMM, FBMGM, CV) for

Scenario III (a ¼ b ¼ 25%). At N¼50, FBMG and FBMGM both

perform well and CV generates similar small RMSE. When N

increases to 500, FBMGM becomes much worse and CC performs

slightly better than FBMG. Again, the CV scheme makes mostly cor-

rect decision and thus generates small RMSE close to the lowest. In

conclusion, the simulation results indicate effectiveness of the CV

scheme in determining the best strategy of whether and how to im-

pute when encountering missingness in multi-omics data.

5 Real application

5.1 Data and approach
We apply the proposed full Bayesian model with missingness to 460

children asthma nasal epithelium samples obtained from asthma

study at Children’s Hospital of Pittsburgh, with complete DNA

methylation data from Illumina 450k chips and RNA-Seq gene ex-

pression data. All data were preprocessed with standard procedures

and bioinformatics tools. We used M-value for methylation level for

better model fitting. The RNA-seq gene expression counts were

transformed to TPM (transcripts per million), a continuous value

also more valid for the model assumptions. We filter out genes with

small mean expression level (<130.41) or small standard deviation

(<23.83) to obtain K¼1000 genes for the analysis. We then select

methylation sites matched to these 1000 genes. Since some genes

have many corresponding methylation sites, we perform PCA to

identify the top eigen-methylation sites as input to the model. We

take no more than three PCs per gene or less than three PCs that ex-

plain at least 75% variation. This generates J¼2619 eigen-

methylation features for the analysis. The PCA analysis reduces re-

dundant (highly correlated) information in methylation sites and in-

dependence of eigen-methylation features fits the model

assumptions well. Similar to simulation, we generate three scenarios

of missingness: (I) a ¼ 50%, (II) b ¼ 50%, (III) a ¼ b ¼ 20%. For

each scenario, we repeat 50 times.

Serum Immunoglobulin E (IgE) level is a primary clinical out-

come in children asthma studies. We take log-transformed IgE level

as our clinical outcome, and age and gender as clinical variables.

Together with the gene expression and methylation PCs, we run our

model with full data and three scenarios of missingness to compare

CC approach and full Bayesian model with missingness (FBMG,

FBMM and FBMGM).

5.2 Outcome prediction and feature selection
Table 2 shows the RMSE of outcome prediction from complete case

analysis and FBMs. When 50% samples have missing gene expres-

sion (Scenario I), FBMG had reduced RMSE compared with CC

(dropped from 43.34.19 to 36.04). In contrast, FBMM had inflated

RMSE compared with CC when 50% of missing methylation (51.59

compared with 39.54 in Scenario II). When gene expression and

methylation both missed 20% of samples (i.e. 40% of samples had

missing values in Scenario III), FBMG had the smallest RMSE

(38.71) compared with FBMGM (46.15), FBMM (54.23) and CC

(39.09). Our CV scheme performed the automatic selection of

Table 1. AUC of different methods in simulation studies

Scenario I Scenario II Scenario III

Missing N Full CC FBMG CC FBMM CC FBMG FBMGM FBMM

Lowa 50 0.676 0.649 0.672 0.631 0.613 0.616 0.628 0.652 0.583

100 0.899 0.867 0.878 0.883 0.777 0.826 0.753 0.826 0.703

200 0.967 0.976 0.983 0.961 0.863 0.946 0.859 0.913 0.789

Meda 50 0.676 0.619 0.665 0.626 0.597 0.574 0.61 0.646 0.528

100 0.899 0.813 0.862 0.807 0.774 0.762 0.745 0.826 0.699

200 0.967 0.941 0.961 0.939 0.861 0.903 0.858 0.917 0.795

Higha 50 0.676 0.53 0.637 0.557 0.588 0.534 0.583 0.636 0.512

100 0.899 0.699 0.835 0.681 0.742 0.638 0.75 0.833 0.7

200 0.967 0.892 0.964 0.88 0.814 0.828 0.782 0.883 0.765

aLow, medium and high missing proportion for Scenario I and II are 10%, 25% and 50% for either a or b, respectively; and for Scenario III is 10%, 20% and

30% for both a and b.

(a) (b) (c)

Fig. 4. (a and b) In missing Scenario I (a ¼ 50%; b ¼ 0) and Scenario II

(a ¼ 0; b ¼ 50%), scatter plot of RMSEs between two methods are shown,

where circle means cross-validation scheme generates correct decision, and

cross means mistakes. Sample size N varies from 50; 100; 200; 500. (c)

Box plot of RMSE of different methods and CV selection scheme in Scenario

III (a ¼ b ¼ 25%)
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whether and how to impute, and the RMSE was always close to the

best (I: 36.61, II: 41.09 and III: 40.02). Figure 5a shows scatter plot

or box plot of RMSEs of different methods in all three Scenarios.

Similar to the simulation result, CV scheme mostly selected the best

method and the mistakes were near the diagonal line with little pre-

dictive impact.

Unlike in simulation, no underlying truth is available for real

data and thus calculation of AUC is not possible. Figure 5b treats

the predicted outcome from full data as the surrogate of underlying

truth and compare feature selection from each method with the sur-

rogate (i.e. x-axis shows the same number of features selected by the

designated method and full and y-axis demonstrates the overlap be-

tween the two). A curve with higher overlap shows better similarity

of feature selection with the surrogate, an indication of better per-

formance. Similar to the RMSE result, FBMG performed better than

CC in Scenario I, CC better than FBMM in Scenario II, and FBMG

and CC performed better than FBMM and FBMGM in Scenario III.

CV scheme performs close to the best. All results from this real

application are largely aligned with our observations in simulation

studies.

We next investigate whether feature selection from the imput-

ation methods or method selected by CV scheme represent better

functional annotation in a biological sense. We obtained the top 200

genes from feature selection of each method by posterior probability

order and then performed pathway enrichment analysis by one-

sided Fisher’s exact test. We collected 2467 pathways from four

pathway databases (KEGG, Reactome, Biocarta and GO) with the

restriction of pathway size between 10 and 500. The enrichment p-

values were then adjusted for multiple comparisons by Benjamini–

Hochberg procedure. We found 27 enriched pathways from the full

data analysis under FDR¼1%. We used these 27 pathways as a sur-

rogate of gold standard to benchmark functional annotation per-

formance of each method. Figure 6 shows box-plots of the minus

log-transformed p-values from pathway enrichment of the 27 path-

ways in each method. As expected, FBMG had better p-value signifi-

cance distribution than CC in Scenario I. In Scenario II, CC

performed better than FBMM. FBMGM and FBMG outperformed

CC in Scenario III. The CV scheme automatically determined

whether and how to impute, and it always perform close to the best

in each scenario.

6 Discussion

Integrative analysis of multi-level omics data brings unique insights

to the modulating relationship between different types of omics

data. Feature selection and model prediction are two important

goals in multi-omics integration, which empowers discovery of

disease-associated biomarkers, survival prediction and risk assess-

ment. Several methods have been developed to fulfil these goals,

including iBAG using a two-layer Bayesian hierarchical model to

discover both association between genes and clinical outcome, and

that between gene and upstream regulators. However, none of these

methods are able to handle the potential large proportion of missing

data in the data integration. In this article, we propose a full

Bayesian model with missingness (FBM) inspired by iBAG model, to

jointly perform feature selection, model prediction and missing data

incorporation. In addition to the mechanistic model and clinical

model originally proposed by iBAG, FBM includes a third layer of

missingness model to incorporate samples with missingness. The

flexibility of Bayesian hierarchical modelling and Gibbs sampler

technique enables us to jointly model association among data and

infer parameters in all three layers of models together. The Laplace

(double exponential) prior initially used in iBAG could not realize

exact feature selection. FBM applied spike-and-slab prior for more

effective feature selection and allows Bayesian FDR control. We

demonstrated outcome prediction and feature selection performance

of FBM using extensive simulations.

From the extensive simulations, we then further realized that im-

putation is not always favoured over complete case analysis. For ex-

ample, in high dimensional genomic data analysis, when missingness

exists in upstream regulators (i.e. methylation), uncertainty will be

increased to impair final inference. When the missing proportion is

relatively small and the sample size is large (i.e. signal is strong), CC

analysis also often outperforms FBM. To decide the best handling of

data with missingness, we proposed a self-learning cross-validation

decision scheme. Previously, we have developed a similar self-

training selection scheme to select the best microarray missing value

imputation method and its downstream biological impact (Brock

et al., 2008; Oh et al., 2011). In both simulation and the childhood

(a)

(b)

Fig. 5. (a) Scatter plot of RMSEs between two methods are shown, where cir-

cle means cross-validation scheme generates correct decision, and cross

means mistakes. (b) The number of overlapped genes (features) selected by

each methods compared with full asthma data. On x axis is the top number of

genes selected by each method

Table 2. RMSE (S.E.) of different methods

Methods Scenario I Scenario II Scenario III

CC 43.34 (5.33) 39.54 (6.85) 39.09 (5.43)

FBMG 36.04 (4.73) 38.71 (5.73)

FBMGM 46.15 (4.74)

FBMM 51.59 (6.71) 54.23 (4.50)

CV 36.61 (3.78) 41.09 (6.17) 40.62 (7.36)

Fig. 6. Compare different methods for the �log10ðpÞ value of the top 27 path-

ways taken from full data with q-value <0.01
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asthma application, we showed superior performance of the CV

scheme in prediction outcome and feature selection.

While Bayesian hierarchical model allows complex parameter

structures, it also comes with a computational cost when using con-

ventional inference approaches such as Metropolis–Hastings or its

special case, Gibbs sampling. In FBM, fast Gibbs sampling was ap-

plicable using conjugate priors and the convergence was generally

fast (B¼2000). We have optimized the R code using Cþþ with

Rcpp package. The computing takes 90 min for a reasonably large

dataset with N¼500 samples, K¼1000 genes, J¼2000 methyla-

tions and B¼2000 MCMC iterations using a regular computer with

1 Intel Xeon CPU (2.40 GHz). Since the computation burden grows

linearly with sample size, feature size and number of iterations,

applying FBM with parallel computing could be a solution to sub-

stantially speed up computing and allow routine omics applications.

An R package, data and source code to replicate all results in this

article are available on GitHub (https://github.com/CHPGenetics/

FBM).
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