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Study Objectives: An oral appliance (OA) is a validated treatment for obstructive sleep apnea (OSA). However, therapeutic response is not certain in any 
individual and is a clinical barrier to implementing this form of therapy. Therefore, accurate and clinically applicable prediction methods are needed. The goal 
of this study was to derive prediction models based on multiple awake assessments capturing different aspects of the pharyngeal response to mandibular 
advancement. We hypothesized that a multimodal model would provide robust prediction.
Methods: Patients with OSA (apnea-hypopnea index [AHI] > 10 events/h) were recruited for treatment with a customized OA (n = 142, 59% male). 
Participants underwent facial photography (craniofacial structure), spirometry (mid-inspiratory flow at 50% vital capacity [MIF50] and mid-expiratory flow 
at 50% vital capacity [MEF50] and the ratio MEF50/MIF50) and nasopharyngoscopy (velopharyngeal collapse with Mueller maneuver and mandibular 
advancement). Treatment response was defined by 3 criteria: (1) AHI < 5 events/h plus ≥ 50% reduction, (2) AHI < 10 events/h plus ≥ 50% reduction, 
(3) ≥ 50% AHI reduction. Multivariable regression models were used to assess predictive utility of phenotypic assessments compared to clinical 
characteristics alone (age, sex, obesity, baseline AHI).
Results: Craniofacial structure and flow-volume loops predicted treatment response. Accuracy of the prediction models (area under the receiver operating 
characteristic curve) for each criterion were 0.90 (criterion 1), 0.79 (criterion 2), and 0.78 (criterion 3). However, these prediction models including phenotypic 
assessments did not provide a statistically significant improvement over clinical predictors only.
Conclusions: Multimodal awake phenotyping does not enhance OA treatment outcome prediction. These office-based, awake assessments have limited 
utility for robust clinical prediction models. Future work should focus on sleep-related assessments.
Commentary: A commentary on this article appears in this issue on page 1837.
Clinical Trial Registration: Registry: Australian New Zealand Clinical Trials Registry, Title: Multimodal phenotyping for 
the prediction of oral appliance treatment outcome in obstructive sleep apnoea, Identifier: ACTRN12611000409976, URL: 
https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=336663
Keywords: obstructive sleep apnea, oral appliance therapy, mandibular advancement, treatment outcome prediction, sex
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INTRODUCTION

Obstructive sleep apnea (OSA) is a chronic sleep disorder and 
is increasing in prevalence.1 OSA is associated with a range 
of sequelae, including daytime symptoms and cardiometabolic 
and neurocognitive dysfunction.2,3 Hence, OSA requires life-
long treatment adherence to prevent morbidity. First-line ther-
apy, positive airway pressure (PAP), is effective but long-term 
adherence is often suboptimal.4 An oral appliance (OA) is an 
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alternative therapy that holds the mandible in a protruded posi-
tion in order to enlarge the airway. An OA is generally used 
as a second-line treatment because of individual variations in 
efficacy.5 Approximately one-third of patients will show mini-
mal improvement in OSA with OA therapy.6 Inability to pre-
dict which patients will not respond to OA therapy is a clinical 
barrier and reliable treatment prediction methods are needed.

A range of prediction methods for OA treatment outcome 
have been proposed and have been recently reviewed.7 Some 

BRIEF SUMMARY
Current Knowledge/Study Rationale: Predicting treatment response to oral appliance therapy in patients with sleep apnea has been an ongoing 
challenge and robust prediction methods are needed. A variety of simple awake prediction tests have been proposed but not successfully validated. 
This study aimed to combine multiple simple phenotypic assessments into a single prediction model.
Study Impact: Our derived prediction models suggest that combined awake phenotyping tests do not improve prediction compared to clinical 
characteristics alone. This work suggests that robust prediction of oral appliance treatment response may need to include information from 
sleep assessments.
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prediction models show promise; however, prospective vali-
dation is necessary for clinical use. Our group has previously 
derived prediction models using awake-based assessments 
including craniofacial characteristics,8,9 flow-volume loops 
(spirometry),10 and observation of the pharyngeal response to 
mandibular advancement via nasopharyngoscopy.11 However, 
in new patient samples predictive utility has degraded. For 
example, flow-volume loops were not predictive in a subse-
quent patient sample.12 Heterogeneity in predictive perfor-
mance may be explained by the small sample sizes used in 
derivation studies and the complexity of the pharyngeal re-
sponse to mandibular advancement, which involves a range 
of structural and functional characteristics, complicated by 
sleep state changes. Prediction models derived from wake-
fulness-based assessments are attractive in terms of clinical 
applicability. We hypothesized that a range of awake phe-
notypic assessments with a previously demonstrated role in 
prediction and capturing different aspects of upper airway 
function would provide a more robust prediction model. The 
aim of this study was to use multimodal office-based phe-
notypic assessments to develop a clinically useful prediction 
model of OA treatment response.

METHODS

This study received ethical approval (Sydney Local 
Health District, Protocol No. X11-0134 & HREC/11/
RPAH/192) and informed consent was obtained from all 
participants. This study was registered with the Austra-
lian New Zealand Clinical Trials Registry (ANZCTR Trial 
ACTRN12611000409976).

Participants
Participants were patients from a sleep clinic who were re-
ferred for evaluation of sleep-disordered breathing. Those with 
confirmed OSA (apnea-hypopnea index [AHI] > 10 events/h) 
by in-laboratory polysomnography and those who were willing 
to try OA therapy were recruited. Women were targeted for 
recruitment in an attempt to enrich the sample. Minimal exclu-
sion criteria were set to ensure a generalizable sample. Exclu-
sion criteria were limited to contraindications to OA therapy 
(eg, periodontal disease and insufficient teeth).

OA Therapy and Treatment Outcome Definitions
The OA used was a customized, two-piece appliance 
(SomnoDent, SomnoMed Australia) with previously estab-
lished efficacy.6 Patients initially received the device at 70% 
maximum protrusive level and incrementally titrated the de-
vice until maximum comfortable mandibular advancement 
limit was reached (average 14.6 ± 9.8 weeks). Maximal ad-
vancement was confirmed by the treating dentist/orthodon-
tist. Treatment outcome was determined by in-laboratory 
polysomnography. For both the diagnostic and treatment 
study, apneas and hypopneas were scored using standard 
definitions. Specifically, hypopneas were defined as a ≥ 50% 
reduction of preceding airflow amplitude associated with 
either ≥ 3% oxygen desaturation or arousal. We used 3 cri-
teria of treatment response6: criterion 1: treatment AHI < 5 
events/h plus ≥ 50% reduction (complete response), criterion 
2: treatment AHI < 10 events/h plus ≥ 50% reduction in AHI 
from baseline, criterion 3: ≥ 50% reduction in AHI from 
baseline (partial response).

Multimodal Phenotyping Assessments
Before commencing OA acclimatization, participants at-
tended a research visit in which they underwent the following 
assessments.

Nasopharyngoscopy
Participants underwent a nasopharyngoscopy procedure, 
as previously described.11 Prior to the procedure, patients 
were instructed to perform the Muller maneuver (maximal 
inspiration against a closed airway) until both patient and 
physician were confident in its performance. The pharyngeal 
response in the velopharyngeal region (behind the soft pal-
ate), both without and with maximum mandibular advance-
ment, was recorded as one of four levels (Figure 1): < 25% 
(slight collapse), 25% to < 50% (modest collapse), 50% 
to < 75% (substantial collapse), ≥ 75% (predominant col-
lapse).13 Velopharyngeal collapse was recorded after three 
consistent observations.

Spirometry
Flow-volume loops were obtained in the erect position and 
were performed in accordance with the American Thoracic 
Society guidelines.14 The highest values of three technically 
satisfactory performances were used. Variables of interest 
were: mid-inspiratory flow at 50% vital capacity (MIF50) and 
mid-expiratory flow at 50% vital capacity (MEF50) and the ra-
tio MEF50/MIF50

.10

Figure 1—Nasopharyngoscopic evaluation of the 
velopharyngeal response to the Mueller maneuver during 
mandibular advancement.

The velopharyngeal response was graded as one of four levels of 
collapse: (A) slight (< 25% collapse), (B) modest (25% to < 50% 
collapse), (C) substantial (50% to < 75% collapse), (D) predominant 
(≥ 75% collapse). The level of collapse was assigned after the operator 
was satisfied that three consistent observations were obtained.
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Craniofacial Photography
Craniofacial assessment was performed by quantitative facial 
photography.15,16 Briefly, a front and profile photograph was 
taken in natural head position with neutral facial expression. 
Photographs were analyzed using imaging software (ImageJ 
v1.51j8, National Institutes of Health, Bethesda, Maryland, 
United States) to obtain x and y coordinates of facial land-
marks. Landmarks were used to calculate craniofacial angles 
and linear measurements. Craniofacial measurements retained 
for consideration in the multivariable model were those that 
showed a relationship with treatment response (P < .1, when 
controlled for influence of body mass index [BMI], height, age, 
and sex). These four craniofacial measurements are illustrated 
in Figure 2.

Statistical Analysis
Statistical analysis was performed using SPSS software (ver-
sion 24, IBM SPSS Statistics, Armonk, New York, United 
States). Treatment responders and nonresponders were com-
pared by independent t test (continuous variables) and chi-
square test (categorical variables). Interaction tests between 
sex and potential predictor variables were performed. This 
was done to confirm that there were no sex differences in 
the relationship between clinical/phenotypic variables and 
treatment response which would warrant separate models for 
males and females (data not shown). Prediction models for 
OA treatment response (logistic regression) were built in two 
steps. First, common clinical variables were entered. Second, 
phenotypic characteristics were considered (backward likeli-
hood ratio method). Models were adjusted for height and eth-
nicity. Diagnostic statistics were calculated for each model 
(sensitivity, specificity, positive predictive value, negative 
predictive value). Receiver operating characteristic (ROC) 
curves were produced in SPSS using the predicted probabili-
ties variable from the logistic regression models for each of 
the treatment response criteria. The areas under the ROC 
curves for the clinical-only and clinical plus phenotypic mod-
els were compared.17 Statistical significance was accepted 
at P < .05.

RESULTS

Participant Characteristics
A total of 158 patients were recruited to the study. Of these, 
149 (59% male) completed the protocol (Table 1). The rea-
sons for withdrawal from the study (n = 16) were as follows: 
n = 1 withdrew due to unrelated illness, n = 1 withdrawn as 
scheduled for nasal surgery before final sleep study, n = 1 
wanted to change to PAP therapy, n = 6 could not tolerate 
OA treatment, n = 5 were lost to follow-up, n = 2 completed 
final sleep study at submaximal mandibular protrusion. Par-
ticipants were middle aged (56.3 ± 11.0 years), were over-
weight (BMI 29.5 ± 5.0 kg/m2), reported Caucasian ethnicity 
(approximately 80%), and had moderate OSA. OA treatment 
reduced AHI by more than 50%, with a mean treatment 
AHI of 11.8 ± 13.2 events/h. In terms of treatment response, 
32.5% were complete responders and 70.4% were partial 

responders. There was no difference in the final mandibular 
advancement level provided by the device between respond-
ers and nonresponders.

Clinical Characteristics and Treatment Response
Nonresponders tended to be older, although this was only sta-
tistically significant for criterion 1. Anthropometric measures 
(BMI, neck circumference, waist circumference) were on av-
erage higher in nonresponders (Table 1). Baseline AHI was 
higher in nonresponders, by response criteria 1 and 2. There 
was no sex difference in OA treatment response rates.

Multimodal Prediction Models
A base model was constructed that consisted of clinical pre-
dictors only (age, sex, BMI, neck circumference, waist cir-
cumference, and baseline AHI). The contribution of clinical 
variables to this base model are shown in Table 2. The clini-
cal predictors varied by treatment response criteria. Baseline 
AHI was a significant predictor by all three criteria. For cri-
teria 1 and 2, treatment response was associated with lower 
AHI. By criterion 3, treatment responders had a higher AHI, 
likely a function of the treatment response definition. By cri-
teria 1 and 3, younger age was a predictor. BMI and neck cir-
cumference were borderline significant predictors (P = .05) 
in the criterion 1 model. Sex or waist circumference were not 
significant predictors.

Figure 2—Illustration of facial measurements related to 
oral appliance treatment response.

Four craniofacial measurements derived from profile photographs 
differed between responders and nonresponders and were considered 
in prediction models. Lower face height (linear distance between 
landmarks sn and me), facial axis angle (angle formed between the 
line intersecting landmarks t and n and the line intersecting landmarks 
go and gn), maxillary depth angle (angle between landmarks t, n, and 
sn), and maxillary-mandibular plane angle (angle of the intersection 
of the Frankfort plane and line connecting through landmarks me and 
sn). Landmarks: gn = gnathion, go = gonion, me = menton, n = nasion, 
sn = subnasion, sup = infraorbital rim, t = tragion.
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Phenotypic variables considered for the multimodal model 
were: lower face height, maxillary depth angle, maxillary/
mandibular plane angle, facial axis angle, MIF50, MEF50/
MIF50, level of velopharyngeal collapse with performance of 
Muller maneuver with mandibular advancement (< 25%, 25% 
to < 50%, 50% to < 75%, or ≥ 75%). For treatment response 
criterion 1, MEF50/MIF50 and two craniofacial variables (lower 
face height, maxillary depth angle) contributed to the model. 
For criterion 2, two craniofacial variables (maxillary depth 
angle, maxillary/mandibular relationship angle) contributed 
to the model. For criterion 3, MEF50/MIF50 and maxillary 
depth angle contributed to the model. Diagnostic accuracy of 
the multimodal prediction models is outlined in Table 2. The 
predictive accuracy of the models improved with addition of 
phenotypic variables compared to models using clinical data 
alone (defined by a higher area under the ROC curve). How-
ever, the improvement in predictive accuracy (area under the 
ROC curve) compared to the clinical model was not statisti-
cally significant (Figure 3).

Clinical Application of Oral Appliance Prediction Models
There was no significant improvement in the predictive ac-
curacy of models including multimodal phenotypic variables 
compared to the clinical variable models. Therefore, there is 
no clinical justification for performing these additional assess-
ments. The optimal logistic regression models (forward likeli-
hood method) based on clinical variables alone are presented in 
Table 3. The formulas for predicted probability of OA treatment 
response for a given patient are provided to allow calculation of 
the probability of treatment response. The optimal cutoff points 
based on ROC curve analysis (selected for maximal sensitiv-
ity and specificity using Youden index) are presented for each. 

However, these presented models have not been cross-validated 
or tested in an independent sample. However, the presentation 
of these models is to give an indication of the clinical utility, or 
lack thereof, of models based on clinical variables.

DISCUSSION

This study describes a novel clinical prediction method for OA 
treatment response that uses multimodal tests applied during 
wakefulness. We additionally present prediction models by 
three commonly used criteria for OA treatment response. Our 
logistic regression models show good to fair predictive accu-
racy in terms of the area under the ROC curve. The awake 
phenotypic variables assessed in this study did contribute to 
the derived prediction models. However, there was not a sig-
nificant improvement in predictive accuracy compared to a 
model based on clinical variables alone. Therefore, there is not 
a clinical justification for performing these additional awake-
based tests to predict OA treatment response.

We included phenotypic assessments, which met two con-
ditions: (1) they can be performed during wakefulness in an 
office setting, and (2) they have a previously demonstrated role 
in OA treatment outcome prediction. We included MIF50 and 
MEF50/MIF50 variables from spirometry, which are surrogate 
markers of site of pharyngeal collapse.10 The second assessment 
was awake nasopharyngoscopy, which has previously shown 
a large difference between responders and nonresponders in 
terms of percentage collapse of the velopharyngeal airway 
with performance of the Mueller maneuver (−80% versus 
+9%).11 The third phenotype was craniofacial structure using 
facial photography. Our phenotypic data were predictive of OA 

Table 1—Sample characteristics.

All
Criterion 1 Criterion 2 Criterion 3

Responder Nonresponder Responder Nonresponder Responder Nonresponder
Clinical Data

n (%) 142 (100) 46 (32.5) 96 (67.6) 75 (52.8) 67 (47.1) 100 (70.4) 42 (29.6)
Male sex, n (%) 84 (59.2) 31 (67.4) 53 (55.2) 45 (60) 39 (58.2) 58 (58.0) 26 (61.9)
Caucasian ethnicity, n (%) 112 (78.9) 33 (71.7) 79 (82.3) 54 (72.0) 58 (86.6) 76 (76.0) 36 (85.7)
Age (years) 56.3 ± 11.0 53.0 ± 11.1 57.8 ± 10.6* 55.4 ± 11.0 57.3 ± 10.9 55.3 ± 10.6 58.7 ± 11.5
BMI (kg/m2) 29.5 ± 5.0 27.2 ± 3.9 30.6 ± 5.1*** 28.0 ± 4.6 31.2 ± 4.9*** 29.2 ± 5.2 30.3 ± 4.5
Neck circumference (cm) 39.9 ± 3.7 39.3 ± 3.2 40.1 ± 3.9 39.2 ± 4.9 40.6 ± 4.1* 39.5 ± 3.3 40.6 ± 4.3
Waist circumference (cm) 102.6 ± 12.2 98.4 ± 10.4 104.6 ± 12.6** 99.0 ± 10.5 106.5 ± 12.9*** 101.3 ± 11.4 105.9 ± 13.5*
AHI (events/h) 28.7 ± 17.5 19.3 ± 9.8 33.2 ± 18.6*** 23.6 ± 12.1 34.4 ± 20.8*** 29.6 ± 17.5 26.6 ± 17.5
Severe OSA, n (%) 50 (35.2) 8 (17.4) 42 (43.8)** 21 (28.0) 29 (43.3) 40 (40.0) 10 (23.8)

Treatment Data
Treatment AHI (events/h) 11.8 ± 13.2 4.3 ± 2.8 16.3 ± 13.9 4.3 ± 2.8 20.1 ± 15.1*** 6.7 ± 5.7 23.4 ± 18.0***
%∆AHI −56.8 ± 41.9 −85.4 ± 10.7 −43.1 ± 44.4*** −80.5 ± 12.0 −30.3 ± 47.7*** −77.0 ± 12.9 −8.6 ± 47.6***
Final protrusion (mm) 8.7 ± 2.8 8.7 ± 2.9 8.7 ± 2.8 8.7 ± 2.7 8.7 ± 3.0 8.7 ± 2.8 8.7 ± 3.0
%maximum protrusion 81.2 ± 26.9 76.7 ± 24.6 83.1 ± 27.7 78.4 ± 24.0 84.2 ± 29.6 82.0 ± 28.5 79.6 ± 23.5

Data are presented as mean ± standard deviation or n (%) as indicated. Characteristics of the entire sample and treatment responders and nonresponders 
using the three criteria for response: (1) AHI < 5 events/h plus ≥ 50% reduction, (2) AHI < 10 events/h plus ≥ 50% reduction, (3) ≥ 50% AHI reduction. 
Asterisks indicate statistical significance: * = P < .05, ** = P < .01, *** = P < .001. AHI = apnea-hypopnea index, BMI = body mass index, OSA = obstructive 
sleep apnea.



1883Journal of Clinical Sleep Medicine, Vol. 14, No. 11 November 15, 2018

K Sutherland, AS Chan, J Ngiam, et al. Multimodal Prediction Model for Oral Appliance Therapy

treatment outcome; however, there was not a statistically sig-
nificant difference in predictive accuracy compared to models 
based on clinical variables alone. Clinical characteristics (age, 
obesity measures, and baseline AHI) have a known association 
with OA treatment and are readily available. However, on their 
own these characteristics generally perform poorly in predic-
tion of treatment outcome (less than 65% correctly classified).6 
A prediction model that requires additional effort in obtaining 
assessments must be able to improve classification of treatment 
response beyond clinical characteristics alone. The inclusion of 
awake assessments in our models did not strengthen predictive 
accuracy; therefore, we do not see a role for this combination 
of phenotypic assessments in robust prediction. The predictors 
in our models vary by treatment definition, suggesting these 
factors are not generalizable. Predictive accuracy was high-
est for models where the outcome was a complete response 

(AHI < 5 events/h, criterion 1). This most stringent definition 
of responders likely represents a less heterogeneous group in 
that they are able to resolve OSA by this form of treatment. 
With more liberal response definitions, particularly criterion 3 
(≥ 50% AHI decrease), responders are heterogeneous in terms 
of their AHI level achieved through treatment.

Our results generally align with previous findings. A higher 
MEF50/MIF50 ratio from flow-volume loops had predictive 
value in discriminating treatment responders, in concordance 
with the original prediction study.10 Craniofacial structure 
has been associated with treatment response, primarily using 
lateral cephalometry. However, the exact craniofacial struc-
tures relating to response vary, due to factors such as small 
samples, different measurements, and variations in treatment 
response definitions.18 In this study, we used a novel applica-
tion of facial photographic phenotyping. We identified four 

Table 2—Multimodal prediction models for oral appliance treatment response.

Criterion 1 Criterion 2 Criterion 3

Variables Odds Ratio 
(95% CI) P Variables Odds Ratio 

(95% CI) P Variables Odds Ratio 
(95% CI) P

Clinical 
Predictors

Age 0.93
(0.87, 0.99) .02 Age 0.99

(0.95, 1.03) .63 Age 0.95
(0.91, 1.0) .05

Sex 0.90
(0.15, 5.39) .91 Sex 0.67

(0.16, 2.65) .55 Sex 0.82
(0.21, 3.25) .77

BMI 0.74
(0.55, 1.0) .05 BMI 0.85

(0.69, 1.05) .13 BMI 0.99
(0.80, 1.22) .90

Neck circumference 1.32
(1.0, 1.76) .05 Neck circumference 1.11

(0.89, 1.34) .35 Neck circumference 1.11
(0.89, 1.39) .36

Waist circumference 0.99
(0.86, 1.14) .85 Waist circumference 0.99

(0.90, 1.08) .76 Waist circumference 0.94
(0.86, 1.04) .22

AHI 0.90
(0.85, 0.96) .01 AHI 0.97

(0.94, 1.00) .04 AHI 1.05
(1.01, 1.09) .01

Phenotypic 
Predictors

MEF50/MIF50
3.47

(1.00, 12.07) .05 Maxillary depth angle 0.93
(0.84, 1.02) .10 MEF50/MIF50

2.50
(0.82, 7.64) .11

Lower face height 4.25
(1.50, 12.05) .01

Maxillary-mandibular 
relationship angle

0.94
(0.87, 1.01) .09 Maxillary depth angle 0.89

(0.81, 0.98) .02
Maxillary depth angle 0.86

(0.77, 1.00) .04

Diagnostic 
Statistics

Correctly classified 81.8% Correctly classified 70.2% Correctly classified 72.7%

Sensitivity 64.7% Sensitivity 73.8% Sensitivity 91.8%

Specificity 88.5% Specificity 66.7% Specificity 27.8%

PPV 68.8% PPV 69.2% PPV 75.0%

NPV 86.5% NPV 71.4% NPV 58.8%

ROC AUC (95% CI) 0.90 (0.84, 0.95) ROC AUC (95% CI) 0.79 (0.71, 0.87) ROC AUC (95% CI) 0.78 (0.69, 0.86)

Logistic regression was used to develop prediction models for treatment response by all three criteria: (1) AHI < 5 events/h plus ≥ 50% reduction, (2) AHI < 
10 events/h plus ≥ 50% reduction, (3) ≥ 50% AHI reduction. The models were built by first entering clinical predictors and then phenotypic variables from 
nasopharyngoscopy, spirometry and craniofacial photography using the backward likelihood ratio method. Phenotypic variables entered into the model in 
this second stage are listed for each criterion. Models are adjusted for height and ethnicity. AHI = apnea-hypopnea index, AUC = area under the curve, 
BMI = body mass index, CI = confidence interval, MEF50 = mid-expiratory flow at 50% vital capacity, MIF50 = mid-inspiratory flow at 50% vital capacity, 
NPV = negative predictive value, PPV = positive predictive value, ROC = receiver operating characteristic.
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Figure 3—Comparison of ROC curves for oral appliance treatment outcome prediction models based on (1) clinical variables 
only and (2) clinical plus phenotypic assessment variables.

Separate prediction models were built for treatment response based on the three criteria: (1) AHI < 5 events/h plus ≥ 50% reduction, (2) AHI < 10 events/h 
plus ≥ 50% reduction, (3) ≥ 50% AHI reduction. The top row of ROC curves are models made from clinical variables only (for each treatment response 
definition criteria). The bottom row shows ROC curves for models with the addition of phenotypic awake assessments. There is an improvement in the 
AUC for all models from the top to the bottom row; however, this was not a statistically significant improvement (P > .05). AUC = area under the curve, 
CI = confidence interval, ROC = receiver operating characteristic.

Table 3—Clinical regression models for oral appliance treatment response.
Criterion 1 Criterion 2 Criterion 3

Predictor 
Variables

Variable OR P Variable OR P Variable OR P
AHI 0.93 .001 AHI 0.97 .013 Waist circ. 0.97 .043
Age 0.96 .041 BMI 0.89 .004
BMI 0.89 .014

z 6.62 − [(0.072 × AHI) − (0.039 × Age) − (0.12 × BMI)] 4.46 − [(0.031 × AHI) − (0.12 × BMI)] 4.12 − (0.03 × waist circumference)
Correctly 
Classified 73.6% 66.4% 71.4%

Area Under 
ROC Curve 0.8 0.7 0.6

Optimal Cutoff 
Point

(Sensitivity, 
Specificity)

Predicted probability of 0.36
(80.4%, 70.8%)

Predicted probability of 0.61
(92.0%, 43.3%)

Waist circumference of 104.5 cm
(52.4%, 65.3%)

Because phenotypic tests did not provide a statistical improvement in prediction on top of clinical variables, we provide logistic regression models for 
treatment response based on clinical variables alone. Clinical predictors were included in the model using the forward likelihood ratio method for entering 
predictor variables into the model. The odds ratio indicates the change in odds of response for a one unit increase in the predictor (with the other predictors 
held constant). The predicted probability can be calculated for a given patient based on the model equation (1 / (1 + e−z)). The value of z is given for each 
model. The performance of each model is indicated by the area under the ROC curve. ROC curves were used to define an optimal threshold value for 
classification of treatment responders and nonresponders and the associated sensitivity and specificity of prediction based on that cutoff is given. These 
models have not been cross-validated or tested in an independent sample. Criterion: (1) AHI < 5 events/h plus ≥ 50% reduction, (2) AHI < 10 events/h plus 
≥ 50% reduction, (3) ≥ 50% AHI reduction. AHI = apnea-hypopnea index, BMI = body mass index, OR = odds ratio, ROC = receiver operating characteristic.
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facial photographic measurements associated with treatment 
response using statistical analysis. Responders tended to have 
a longer lower face, increased facial axis angle, and reduced 
maxillary and mandibular position angles, suggestive of max-
illary/mandibular retrusion. The results of this study suggest 
a relationship between facial surface measurements and OA 
treatment response and demonstrates that this simpler, nonra-
diographic technique may have utility in assessing craniofa-
cial structure in relation to OSA treatment outcome. We have 
not found qualitative assessment of nasopharyngoscopy to be 
predictive.13 However, a prospective study has found quanti-
tative analysis of nasopharyngoscopic images in conjunction 
with baseline AHI to be predictive of OA outcome in Japanese 
patients with OSA.19

In this study we wished to explore the influence of sex on 
OA treatment response. We targeted females in recruitment in 
an attempt to achieve sex balance, ending up with a 60:40 split 
of men and women. Previous findings have suggested women 
are more likely to respond to OA treatment.20 In our models, 
sex was not a significant predictor of treatment response and 
we have previously shown no difference in response rates in 
a larger dataset of women (n = 109).6 Moreover, we did not 
find any sex differences in the relationship between treatment 
response and any of the clinical or phenotypic predictors. 
Nor did we identify a difference in treatment response rates 
between sexes.

We designed our study to include prediction tests based 
on specific criteria (ie, phenotypic assessments that would be 
simple to apply in wakefulness). However, our included as-
sessments are by no means representative of all potential pre-
dictors. A Belgian study is underway to look at the predictive 
value of mandibular advancement on parameters from awake 
nasopharyngoscopy, drug-induced sleep endoscopy (DISE), 
and computational fluid dynamics derived pharyngeal resis-
tance changes from patient-specific geometry.21 Lower thera-
peutic PAP pressure requirement is associated with response, 
albeit with population-specific pressure thresholds.22,23 Thera-
peutic PAP pressure appears to be a reasonable surrogate for 
pharyngeal collapsibility24 and a highly collapsible pharyngeal 
airway is a poor substrate for OA efficacy.25 There is increasing 
interest in nonanatomical pathophysiological traits that con-
tribute to OSA.26 These include characteristics such as respi-
ratory dilator muscle insufficiency, premature arousal before 
dilatory muscles can take effect (low arousal threshold), and 
ventilatory overshoot to disturbance (high loop gain). Assess-
ment of these traits in a small number of patients who have 
undergone treatment for OA identified higher loop gain as well 
as collapsibility as indicators of a smaller AHI reduction with 
OA therapy.25 Overnight studies to measure nonanatomical 
traits such as loop gain are complex and restricted to research; 
however work is emerging to use algorithms to derive these 
characteristics from clinical polysomnography.27 Our study 
does not incorporate sleep-based assessments such as DISE 
and nonanatomical pathophysiological contributors. It will be 
interesting to assess any additive role of these in prediction in 
future studies.

There is yet a robust, validated awake prediction method for 
OA treatment response7 but there is an emergence of clinical 

sleep testing methodology for this purpose. Remote-controlled 
mandibular protrusion to monitor effects during sleep has been 
a concept in OA treatment prediction for some time, with stud-
ies with prototype protrusion devices published in 2002 and 
2006.28,29 Recent appearance of a commercial device for this 
purpose has allowed further investigation and demonstrated 
good predictive accuracy based on a prediction algorithm us-
ing respiratory events in supine REM sleep.30 We have sub-
sequently confirmed predictive accuracy of the method for 
discriminating responders and nonresponders, albeit with 
a higher test failure rate (> 20%) and requirement for maxi-
mal mandibular protrusive position to be reached during 
the study.31 Despite these nuances, monitoring the effects of 
mandibular protrusion during sleep (whether by a temporary 
device, or remote controlled positioner) shows promise as a 
prediction method.

The current study includes a large sample to investigate 
multimodal assessments during wakefulness. We believe our 
study has the advantage of using a sample generalizable to 
our sleep clinic population through setting minimal inclusion 
criteria. We also enriched the sample with women to explore 
potential sex differences and have a range of OSA severity in 
the sample (35% severe OSA). Furthermore, we present the 
data using three commonly used criteria for treatment re-
sponse. However, there are limitations to the study. Although 
we have a large sample for this type of study, multiple predic-
tors would favor even larger samples. Our nasopharyngoscopic 
assessment did not produce quantitative analysis; however, we 
wanted to move toward a model that had a high possibility of 
clinical adoption. We have not provided a validation of the de-
rived models, which is an essential step before adopting any 
prediction model into clinical practice. We have not validated 
the current models, as we do not deem the contribution of these 
phenotypic assessments robust enough to warrant this.

CONCLUSIONS

The ability to identify a priori which patients are likely to 
receive therapeutic benefit from OA treatment has been an 
ongoing challenge since the introduction of these devices for 
OSA treatment. A range of clinical characteristics and pre-
diction tests ranging in complexity, in both sleep and wake 
states, have been proposed for this purpose. However, there 
are currently no adequately validated models. In this study, we 
combined multiple awake-based phenotypic assessments in an 
effort to improve prediction. Although we have produced mod-
els with reasonable diagnostic accuracies, we have not found 
that the addition of phenotypic assessments improves predic-
tion beyond models using only clinical characteristics. Our 
work suggests the need to focus on sleep-related phenotypes 
in future studies.

ABBRE VI ATIONS

AHI, apnea-hypopnea index
BMI, body mass index
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DISE, drug induced sleep endoscopy
MEF50, mid-expiratory flow at 50% vital capacity
MIF50, mid-inspiratory flow at 50% vital capacity
OA, oral appliance
OSA, obstructive sleep apnea
ROC, receiver operating characteristic
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