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Abstract

In this paper, we propose a novel multi-view learning method for Alzheimer’s Disease (AD) 

diagnosis, using neuroimaging and genetics data. Generally, there are several major challenges 

associated with traditional classification methods on multi-source imaging and genetics data. First, 

the correlation between the extracted imaging features and class labels is generally complex, 

which often makes the traditional linear models ineffective. Second, medical data may be 

collected from different sources (i.e., multiple modalities of neuroimaging data, clinical scores 

or genetics measurements), therefore, how to effectively exploit the complementarity among 

multiple views is of great importance. In this paper, we propose a Multi-Layer Multi-View 
Classification (ML-MVC) approach, which regards the multi-view input as the first layer, and 

constructs a latent representation to explore the complex correlation between the features and 

class labels. This captures the high-order complementarity among different views, as we exploit 

the underlying information with a low-rank tensor regularization. Intrinsically, our formulation 

elegantly explores the nonlinear correlation together with complementarity among different views, 

and thus improves the accuracy of classification. Finally, the minimization problem is solved by 

the Alternating Direction Method of Multipliers (ADMM). Experimental results on Alzheimers 

Disease Neuroimaging Initiative (ADNI) data sets validate the effectiveness of our proposed 

method.

Introduction

Alzheimer’s Disease (AD) is a severe irreversible neurodegenerative disease, devastating 

lives of millions in the world (Cuingnet et al. 2011). Its early diagnosis, and treatment can 

improve the quality of life dramatically for both patients and their caregivers. There have 

been several studies (Weiner et al. 2017) in the recent years exploiting different aspects 

of the disease, and hence there are multiple modalities of data (e.g., Magnetic Resonance 

Imaging (MRI) and Positron Emission Tomography (PET)) or multiple types of features 

available for this task (May et al. 1999). Generally, an important aspect of such works is 
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that these features are often complementary, since they are from different measurements 

representing the same subject(s). On the other hand, it is evident that each individual 

modality alone cannot characterize the categories comprehensively, as each of them encodes 

different but interrelated properties of the data (Chaudhuri et al. 2009; Xu et al. 2013; Gong 

et al. 2016; Luo et al. 2013a; 2013b). Considering each modality (or type of features) as 

one view of the data, we propose to model the problem as a multi-view learning framework. 

Specifically, in this paper, we introduce a novel model for multi-view learning applied to the 

vital task of AD diagnosis.

Owing to the usefulness of exploiting the complementarity among multiple modalities or 

multiple types of features, multi-view learning has been the focus of intense investigation. 

Earlier methods usually tried to minimize the disagreement between two views based on 

co-training (Kumar and Daumé 2011). There are various theoretical analyses (Blum and 

Mitchell 1998; Chaudhuri et al. 2009; Wang and Zhou 2007) supporting the success and 

appropriateness of such approaches. Besides, multiple kernel learning (MKL) (Zien and Ong 

2007; Liu et al. 2017) is another way of handling multiple views, which uses a predefined 

set of kernels for multiple views and learns an optimal combination of kernels to integrate 

these views. Recently, some methods are proposed to advocate for the learning of a latent 

common subspace across different views, typically, based on canonical correlation analysis 

(CCA) (Chaudhuri et al. 2009; Kakade and Foster 2007). For AD diagnosis, the recent 

works (Zhu et al. 2014, 2016) propose to transform the original features from different 

modalities to a common space by canonical correlation analysis. Although great progress 

has been achieved, some main limitations still exist: (1) Most existing methods usually 

explore linear correlation between multi-view input data and class labels, thus, they are 

not applicable to uncover complex correlations, compared to nonlinear methods; (2) MKL 

based methods map the features into a kernel space to explore the nonlinearity among 

the features and labels, however, simply weighting different views will not be enough 

for exploiting the complex correlation within each view and among different views, e.g., 

high-order correlations.

In this paper, we propose a novel multi-view learning approach termed as Multi-Layer 
Multi-View Classification (ML-MVC), which focuses on addressing the above limitations 

in a unified framework. As shown in Fig. 1, given the data with multiple views (taking 

multiple modalities as example), our method aims to simultaneously explore the complex 

correlation between input and output, as well as the complementarity among multiple 

views. Based on the multiple modalities or multiple types of features of data, referred 

to as multi-view input, we introduce a middle layer for feature extraction with kernel 

technique to account for nonlinearity. Accordingly, the classification model is learned based 

on the mapped and refined middle-layer features (or latent representation) instead of the 

original ones. Furthermore, to exploit the correlation among multiple views, the kernel 

matrices are jointly stacked and regarded as a tensor, which is low-rank constrained to 

capture the complementary information from multiple views. As shown in Fig. 1, the dashed 

box indicates the middle layer for the latent representation corresponding to the nonlinear 

feature mapping and high-order correlation of multiple views. Empirical results on real data 

demonstrate the effectiveness of the proposed method. The optimization of our model is 

conducted by the Alternating Direction Method of Multipliers (ADMM) (Boyd et al. 2011).
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The highlights of the proposed ML-MVC method and this paper are summarized as follows: 

(1) We simultaneously explore the complex correlation between features and classes, while 

exploiting the high-order correlation among multiple kernel matrices of different views. (2) 

The method can be regarded as a multi-layer model, where the middle layer is equipped 

with kernel trick to account for nonlinearity, corresponding to the latent representation. 

(3) Instead of performing prediction based on the kernel mapping features, our method 

learns the prediction model based on the refined kernel mapping features, which thoroughly 

explores the correlation of multiple views. (4) Based on the Alternating Direction Method 

of Multipliers (ADMM) (Boyd et al. 2011), our method is optimized efficiently and 

the convergence can be practically reached. (5) The experiments on multi-modalilty and 

multi-feature Alzheimers Disease Neuroimaging Initiative (ADNI) dataset validate the 

effectiveness of our method for classification on multi-view data.

Problem Formulation

Notations

Let x1, ···, xN ∈ ℝD denote N feature vectors of N samples in the D-dimensional space, and 

X = [x1, ···, xN] is the D × N feature matrix whose columns are the samples. For the vth view, 

we use xi
(v) and X(v) to denote one sample and the feature matrix, respectively.Y = [y1, ···, 

yN] is the corresponding label matrix with yi = [yi1, ···, yiC]⊤ being the label vector of the ith 

sample, and yij = 1 if sample xi belong to the jth class, and yij = 0 otherwise, where C is the 

number of classes. We use the bold calligraphic font to denote a high-order tensor, e.g., K. 

For clarity, the main notations used in this paper are listed in Table 1.

Background

Given the multi-view training data as {X(1), …, X(V); Y}, where X(v) ∈ ℝDv×N is the 

feature matrix for the vth view and Y ∈ ℝC×N is the class label matrix. Accordingly, a 

straightforward formulation for the multi-view learning is as follows:

minW, B ‖Y − WX − B‖F
2 + λ‖W‖F

2 , (1)

where X = [X(1); ⋯; X(V )] ∈ ℝ∑v = 1
V Dv × N concatenates different views directly, with Dv 

being the dimensionality of the vth view. ||·||F is the Frobenius norm. W = [w1, ···, wC]⊤ ∈ 
ℝC×D are learned models for C classes, where D = ∑v = 1

V Dv. B ∈ ℝC×N corresponds to bias. 

This objective function directly extends the conventional ridge regression for multi-view 

data. Although simple in form and easy for optimization, there are two main issues: (1) The 

simple concatenation of multiple views may suffer from the curse of dimensionality and 

could not well explore the complementarity among different views. (2) This model focuses 

on linear correlation between multi-view input and class labels, which makes it improper for 

more complex problems. In this work, we focus on addressing these issues in a seamless 

framework.
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Multi-Layer Multi-View Classification

To address the nonlinearity issues, we aim to design a multilayer objective function with the 

following general form

min
S, W(v) ℒ(SZ, Y) + λ1ℛ1({W(v)}v = 1

V
)

Feature‐mapping Regularization
+ λ2ℛ2(S)

Model Regularization
, (2)

where ℒ(·) is the loss function and λ1 > 0, λ2 > 0 are tradeoff factors for two regularization 

terms ℛ1(·) and ℛ2(·). Z = [Z(1); ···; Z(V)] concatenates the latent representation of multiple 

views. Compared with the straightforward formulation in Eq. 1, rather than directly learning 

classification model based on the original features, we introduce a middle layer to learn 

the latent representation, i.e., Z(v) = [z1
(v), …, zN

(v)], where zi
(v) = W(v)xi

(v) + b(v) and the bias b(v) 

can be omitted since it can be absorbed into the projection matrixW(v) (Nie et al. 2010). 

Then, based on the latent representation, the classification model S is learned, forming our 

multi-layer model. For nonlinearity, according to the Representer Theorem (Dinuzzo and 

Schölkopf 2012), we have:

Theorem 1—Given any fixed matrix S, the objective function in (2) w.r.t. W(v) is defined 

over a Hilbert space ℋ. If (2) has a minimizer w.r.t. W(v), it admits a linear representer 

theorem of the form W(v) = P(v)X(v)⊤, where P(v) ∈ ℝK×N is the coefficient matrix.

According to (Dinuzzo and Schölkopf 2012), the proof of Theorem 1 is straightforward 

due to the decoupled property for each model wc
(v). By introducing kernel mapping with 

Representer Theorem, we have Φ(X(v)) = [ϕ(x1
(v)), ⋯, ϕ(xN

(v))] with ϕ(·) mapping the original 

feature x(v) to ϕ(x(v)), and accordingly, we have W(v) = P(v)Φ(X(v))⊤. For simplicity, we use 

the same ϕ(·) for different views. Therefore, based on (2) the objective function turns out to 

be

min
S, P(v), K(v)

1
2‖SZ − Y‖F

2 + γ
2 ∑

v = 1

V
‖P(v)Φ(X(v))⊤‖F

2

ℛ1:Feature‐mapping Regularization

+ η
2‖S‖F

2

ℛ2:Model Regularization

.
(3)

Since we aim to explore the correlations among different views using a tensor structure 

instead of directly concatenating each type of features, there is one important issue that we 

need to take care of. Specifically, we should note that the data from different views (e.g., 

different modalities of medical imaging data) often have different dimensionalities, while we 

have to arrange them into a single tensor with fixed dimensionality for all of them. Thanks 

to the advantages of the kernel technique, our objective function could naturally resolve the 

mentioned issues and explore the high-order correlations among multiple views as follows:
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min
S, P(v), K(v)

1
2‖PO(SZ − Y)‖F

2

+ α‖K∼ ‖∗ + β
2‖K − K∼ ‖F

2

ℛ3:High‐order correlation

+ γ
2 ∑

v = 1

V
‖P(v)Φ(X(v))⊤‖F

2

ℛ1:Feature‐mapping Regularization

+ η
2‖S‖F

2

ℛ2:Model Regularization

s . t . K = T(K(1), …, K(V )), K∼ = T(K(1), …, K(V )),
Z = [Z(1); ⋯; Z(V )] and Z(v) = P(v)K(v),

(4)

where the operator (·) constructs a tensor by combining multiple kernel matrices (naturally 

with equal dimensionality) as shown in Fig. 1. We have the kernel matrix corresponding 

to the vth view K(v) = Φ(X(v))⊤Φ(X(v)) and try to seek the more reasonable K(v) to exploit 

the high-order correlation, i.e., K(v) = K(v) + E(v). ℘O acts as a filter function, which forces 

the loss to only account for the labeled samples. Specifically, let oi be an indicator variable 

showing the existence of label for sample i, i.e., oi = 1 if we have the label, and a very 

small scalar ε > 0 otherwise. o will then be defined as the indicator vector from all 

indicator variables of training samples. Accordingly, we can define a diagonal matrix O 
= diag(o), denoted as the filter matrix, and hence ℘O(A) = AO. Note that ε > 0 is a small 

value to strictly guarantee the unique solution of the optimization problem (see P(v) and 

K(v)-subproblems in the next section).

We introduce a low-rank tensor constraint to jointly explore the intrinsic correlations 

across multiple kernel matrices of these multiple views. Note that tensor can be seen as 

a generalization of the matrix concept, and hence we define the tensor nuclear norm similar 

to (Liu et al. 2013b; Tomioka et al. 2011), which generalizes the matrix (i.e., 2- mode or 

2-order tensor) case (e.g., (Liu et al. 2013a)) to higher-order tensor as

‖K‖∗ = ∑
m = 1

M
ξm‖K(m)‖∗, (5)

where ξm’s are constants satisfying ξm > 0 and ∑m = 1
M ξm = 1. Without prior, we set ξ1 = … = 

ξM = 1/M. K ∈ ℝI1×I2×…×IM is a M-order tensor, and K(m) is the matrix by unfolding the 

tensor K along the mth mode defined as unfoldm(K) = K(m) ∈ ℝIm×(I1×…×Im−1×Im+1…×IM) 

(De Lathauwer et al. 2000; Zhang et al. 2015). The nuclear norm ||·||* controls the 

tensor under a low-rank constraint. In essence, the nuclear norm of a tensor is a convex 

combination of the nuclear norms of all matrices unfolded along each mode.

Remarks—1) The model regularizer ℛ2(·) for S can be customized for different 

tasks. For example, we employ Frobenius norm for AD/PD diagnosis which belongs to 

multiclass classification, while for multi-label classification, we can use other techniques 

(e.g., low-rank) to explore the correlation among different labels. 2) The matrices K(v)
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s are approximations of the kernel matrices K(v)s, and it is difficult to ensure K(v)s 

to be strict kernel matrices. 3) For our model, the kernels themselves can be regarded 

as the entries of feature vectors within a generalized linear model (Roth 2004), i.e., 

ϕ(x(v)) = [k(x(v), x1
(v)), …, k(x(v), xN

(v)), 1]⊤.

To summarize, our model has the following merits: (1) Our model focuses on exploring 

complex correlations among the features and the class labels by introducing a middle layer 

equipped with kernel technique; (2) Benefiting from the kernel technique, the high-order 

correlation of different views is thoroughly exploited by learning the latent representation 

approximate to the kernel matrices of different views equipped with a low-rank tensor; (3) 

Both the complex input-output correlation and the high-order multi-view correlation are 

addressed seamlessly in a unified framework.

Optimization

Our objective function in Eq. (4) simultaneously seeks to optimize multiple projections 

P(v)s, matrices K(v)s and model S. Since it is not jointly convex with respect to all 

the variables P(v)s, K(v)s and S, we employ Alternating Direction Method of Multipliers 

(ADMM) (Boyd et al. 2011). To adopt the alternating direction minimization strategy to 

our problem, we need to make our objective function separable. Therefore, we introduce 

auxiliary variables G, and induce the following equivalent problem to be minimized

ℒ(P(1), …, P(V ); K(1), …, K(V ); S; G; W)
= 1

2‖PO(SZ − Y)‖F
2

+ γ
2 ∑

v = 1

V
‖P(v)Φ(X(v))⊤‖F

2

+ β
2‖K − K∼ ‖F

2
+ 〈W, K∼ − G〉 + μ

2 ‖K∼ − G‖F

2

+ η
2‖S‖F

2 + α‖G‖∗,

(6)

where W is the Lagrange multiplier in tensor form. The operator 〈·, ·〉 defines the tensor 

inner product and μ is a positive penalty scalar. For the above objective function, the 

sub-problems can be solved as follows:

• Update P(v). The objective function with respect to updating P(v) is

min
P(v)

1
2‖( ∑

u ≠ v
S(u)Z(u) + S(v)P(V )K(v) − Y)O‖

F

2

+ γ
2‖P(v)Φ(X(v))⊤‖F

2

.

Taking the derivative with respect to P(v) and setting it to zero, we get
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AP(v) + P(v)B = C
with A = γ(S⊤S)−1, B = K(v)O⊤O and
C = (S⊤S)−1(S(v)⊤(Y − ∑

u ≠ v
S(u)Z(u)))O⊤O .

(7)

The above equation is a Sylvester equation (Bartels and Stewart 1972), and we have the 

follow proposition:

Proposition 1

The Sylvester equation (7) has a unique solution.

Proof—The Sylvester equation AP(v) + P(v)B = C has a unique solution for P(v) exactly 

when there are no common eigenvalues of A and -B (Bartels and Stewart 1972). Since B 
is a positive definite matrix, all of its eigenvalues are positive: bi > 0. While since A is a 

positive semi-definite matrix, all of its eigenvalues are nonnegative: ai ≥ 0. Hence, for any 

eigenvalues of A and B, ai + bj > 0. Accordingly, the Sylvester equation (7) has a unique 

solution.

• Update K(v). To update K(v), we should optimize the following objective 

function

min
K(v)

1
2‖( ∑

u ≠ v
S(u)Z(u) + S(v)P(v)K(v) − Y)O‖

F

2

+ γ
2‖ ∣ P(v)Φ(X(v))‖F

2

+ β
2 ∑

v = 1

V
‖K(v) − K(v)‖F

2

+ 〈W(v), K(v) − G(v)〉 + μ
2 ‖K(v) − G(v)‖F

2

,

where G = (G(1), …, G(V)), W = (W(1), …, W(V)) with G(v) andW(v) 

corresponding to the vth view. Taking the derivative with respect to K(v) and 

setting it to zero, we get the following equation

AK(v) + K(v)B = Cwith A = (β + μ)(P⊤S⊤SP)−1, B = O⊤O, C = (P⊤S⊤SP)−1

(P⊤STYO⊤O + βK + μG − P⊤S⊤ ∑
u ≠ v

S(u)Z(u)O⊤O − γP⊤P − W) . (8)

Similar to (7), the above equation is also a Sylvester equation (Bartels and 

Stewart 1972) and has a unique equation.

• Update S. To update the model S, we should optimize the following objective 

function

minS
1
2‖(SZ − Y)O‖F

2 + η
2‖S‖F

2 .
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Taking the derivative with respect to S and setting it to zero, we get the updating 

rule as

S = (YOO⊤Z⊤)(ZOO⊤Z⊤ + ηI)−1 . (9)

• Update . To update the tensor auxiliary variable G, we should optimize the 

following objective function

minG α‖G‖∗ + μ
2 ‖G − (K∼ + 1

μW)‖
F

2
.

According to the tensor rank definition in Eq. (5), we have the equivalent formulation as

minG(m)
α ∑

m = 1

M
‖G(m)‖∗ + μ

2 ∑
m = 1

M
‖G(m) − (K(m) + 1

μW(m))‖
F

2

. (10)

Accordingly,G(m) could be efficiently updated with G(m)
∗ = proxλm

tr (K(m) + 1
μW(m)). λm = α/μ 

denotes the thresholds of the spectral soft-threshold operation proxλm
tr (L) = U max (S − λm, 0)VT

with L = USVT being the Singular Value Decomposition (SVD) of the matrix L, and the 

max operation being taken element-wise. Intuitively, the solution is truncated according to 

the matrix K(m). We update all G(m)s and thus the tensor G is updated accordingly.

Additionally, the Lagrange multipliers can be updated as follows:

W W + μ(K∼ − G) . (11)

For clarification, the optimization procedure is summarized in Algorithm ??.

Remarks

Note that, simply initializing all the block variables with zero will mislead the optimizations 

to trivial solutions. Based on this, we randomly initialize S and can obtain rather stable 

performance in practice.
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Algorithm 1

Optimization for our ML-MVC model.

Complexity and Convergence

Our method is composed of four main sub-problems. For updating P(v) and K(v), the 

classical algorithm for the Sylvester equation is the Bartels Stewart algorithm (Bartels and 

Stewart 1972), whose complexity is O(N3). The complexity of updating S is O(N2C + CNK 
+ K3), where C, K and N are the size of label set, the dimension of latent representation, and 

the number of samples, respectively. For updating G (the nuclear norm proximal operator), 

the complexity is O(N3). Overall, the total complexity is O(N2C + CNK + K3 + N3) for 

each iteration. Under the condition C ≪ K and C ≪ N, the total complexity is basically 

O(K3 + N3). It is difficult to generally prove the convergence for our algorithm. Fortunately, 

empirical evidence on the real data presented suggests that the proposed algorithm has very 

strong and stable convergence behavior even with randomly initialized S.

Experiments

Experiment setup

In all experiments, the data are split into 10 non-overlapping folds with 9/10 and 

1/10 as training and testing data, and reporting the average results and standard 

deviation. We conduct standard 10-fold cross-validation for each split with the 

hyperparameters selected from {0.01, 0.1, 1, 10, 100} for α, and {0.1, 1, 10, 
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100} for the other hyperparameters. Gaussian kernel is employed for each type of 

features, i.e., k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉 = exp (‖xi − xj‖2

2σ2 ) where σ = median({||xi − xj||}i≠j). For 

hyperparameters of other methods, they are tuned for the best performance according to 

their respective published papers. We conducted experiments on two different sets of data 

with multiple modalities and multiple types of features. We evaluate the performance of all 

methods in terms of accuracy.

Compared methods

To comprehensively evaluate the proposed method, we divide the compared methods into 

3 groups, i.e., methods using one, two and all three types of modalities/features. We 

employ a support vector classification model as the basic classifier which is from the 

LIBSVM toolbox 1 publicly available for the compared methods. The comparison methods 

include: • Single view and two-view concatenation using SVM (with Gaussian kernel); • 

Multiview CCA (Rupnik and Shawe-Taylor 2010) which can obtain one common space for 

multiple views. • Matrix Completion (Cabral et al. 2011) which predicts the class label with 

matrix completion based on a Rank Minimization criterion, with all views concatenated. 

• Multiclass Multiple Kernel Learning (Zien and Ong 2007) which provides a convenient 

and principled way based on MKL for multiclass problems. • Vector-valued Manifold 

Regularization based Multi-View Learning (VMR-MVL) (Minh et al. 2013), which is a 

semi-supervised multi-view classification method.

The intuitions for comparing with these methods are: (1) Single-view methods operate on 

each view independently using SVM, thus, they provide the evaluation of the quality for 

each view. Moreover, it can clarify if the multi-view treatment is essential for the overall 

performance or not. (2) Multiple-view methods can integrate multiple views, and here 

several of them are employed as comparisons to evaluate the effectiveness of our method in 

integrating multiple views. (3) Since nonlinearity (using kernel technique) is involved in our 

method, we employed kernel SVM as the basic classifier. (4) VMR-MVL is a very related 

method to ours, which also uses both training and testing multi-view data in the formulation.

Results on data with multiple modalities

First, we test our method on the multi-modality data set with 3 modalities, i.e., MRI, PET 

and Single Nucleotide Polymorphisms (SNP) genetics data. There are 360 subjects in this 

study, including 85 AD, 185 mild cognitive impairment (MCI), and 90 normal controls (NC) 

subjects, where MCI is the early stage of AD and these subjects have their MRIs scanned at 

first screening time.

For this study, we download ADNI 1.5T MR and PET images from the ADNI website 2. 

The MR images are collected by using a variety of scanners with protocols individualized 

for each scanner. To ensure the quality, these MR images are corrected for spatial distortion 

caused by B1 field inhomogeneity and gradient nonlinearity. The PET images are collected 

1 https://www.csie.ntu.edu.tw/cjlin/libsvm/ 
2 http://adni.loni.usc.edu/ 
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by 30–60 min post Fluoro-Deoxy Glucose (FDG) injection. The operations, i.e., averaging, 

spatially alignment, interpolation to standard voxel size, intensity normalization, and 

common resolution smoothing are performed for these images. In our experiments, we 

extract 93 ROI-based neuroimaging features for each neuroimage (i.e., MRI or PET). In 

addition, for SNP data, according to the AlzGene database 3, only SNPs that belong to the 

top AD gene candidates are selected. Accordingly, there are 3123 SNP features used.

Results and Analysis—The performance of our method along with the compared 

methods are reported in Table 2, where View1, View2 and View3 correspond to MRI, 

SNP and PET data, respectively. The values in red, green and blue indicate the top three 

performers, and several observations are drawn as follows: (1) The methods using multiple 

views are generally superior to the methods with one single view. For example, compared 

with SVM using View1, SVM with both View1 and View3 achieves an improvement of 

about 6%, and the performance of SVM with two views are usually much better than 

those of SVM with single view. This confirms the necessity and effectiveness of integrating 

multiple views. (2) Compared with other multi-view methods, ours outperforms all, which 

demonstrates the effectiveness of our method for classification with multi-view data. (3) 

Though competitive result is achieved, with low-rank tensor constraint, the performance 

improvement of 4.6% is further obtained. This validates the effectiveness of exploring 

multiple views with low-rank high-order tensor. It is very important to note that we are 

classifying the the data into three classes simultaneously, as opposed to binary methods that 

are widely and conventionally used in neuroimaging fields. Hence, it is not fair to directly 

compare our results with theirs, as our method exploits a more realistic and practical case.

Results on data with multiple types of features

Here, we also conduct experiments on the resting-state functional MRI (RS-fMRI) data set 

with multiple types of features. In this study, there are 195 subjects, including 32 AD, 95 

MCI, and 68 NC subjects. The RS-fMRI data are acquired from ADNI and parcellated 

into 116 regions according to the Automated Anatomical Labeling (AAL) template. The 

mean RS-fMRI time series of each brain region is band-pass filtered (0.015–0.15 Hz). Head 

motion parameters (Friston24), mean BOLD signal of white matter, and mean BOLD signal 

of cerebrospinal fluid are all regressed out from the RS-fMRI data to further reduce artifacts. 

Similar to fMRI analysis methods, we construct the functional connectivity network for each 

subjects, by calculating the Pearson’s correlation of the mean signals from each pair of the 

ROIs. This constructs a full graph with correlation values and weights on the edges.

Three types of features are extracted from these graphs, and each is considered as a view 

in our multi-view method: (1) Nodal betweenness: The betweenness centrality is a measure 

of centrality in a graph, based on shortest paths. For each pair of nodes in a graph, there 

exists at least one shortest path between the nodes. The nodal betweenness centrality is the 

number of these shortest paths that pass through node i. (2) Nodal clustering coefficients: 

The coefficients are computed for each node to quantify the probability that the neighbors 

of node i are also connected to each other. (3) Nodal local efficiency: The efficiency of 

3 http://www.alzgene.org/ 
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a network measures how efficiently information is exchanged within a network, which 

gives a precise quantitative analysis of the networks’ information flow. The local efficiency 

represents the efficiency of a subgraph, which consists of all node i’s neighbors.

Results and Analysis—The performance of all compared methods are listed in Table 3, 

where View 1, View 2 and View 3 denote nodal betweenness, nodal clustering coefficients 

and nodal local efficiency, respectively. According to the performance, several observations 

are drawn as follows: (1) Generally, SVM with multiple views is slightly superior to 

SVM for each single view. We note that these multiple types of features for this dataset 

are extracted from different aspects of one single modality, which generally leads to 

less complementarity among different views than that of multiple modalities. (2) Similar 

to the results reported in Table 2, our method outperforms all the other competitors, 

while much better performance is achieved when using the low-rank tensor constraint. (3) 

The kernelized methods are generally superior than linear ones, which demonstrates that 

exploring nonlinear correlation between features and class label is powerful. Overall, the 

results validate the effectiveness of simultaneously exploring nonlinear correlation between 

features and labels, and exploiting the complimentary information among multiple views as 

well.

Model Analysis—To well characterize our model, we provide several analytical curves 

for our method. Firstly, as shown in the top row of Fig. 2, in practice the convergence 

of our algorithm can be achieved within less than 50 iterations for both multi-modality 

and multi-feature cases. Secondly, according to the middle row of Fig. 2, it is observed 

that our low-rank tensor constraint is relatively effective and the performance is robust 

with respect to different tradeoff hyperparameter α in our objective function (4). Finally, 

the dimensionality of the latent representation is explored in the bottom row of Fig. 2, 

which demonstrates that our method can achieve promising results with a relatively low 

dimensionality.

Conclusion

We have proposed a novel multi-view learning method to take advantage of multiple views 

of data. By introducing kernel technique, our model well explores the complex correlations 

among features and class labels. Furthermore, by constraining the kernel matrices of 

different views to be low-rank tensor, the high-order correlation among different views 

is thoroughly exploited. Experiments on both multi-modality and multi-feature data clearly 

validated the superiority of our method over the state-of-the-arts. Although effective, there 

are also several directions to improve our method in the future, including incorporating 

weights for different views and more efficient optimization algorithm for large-scale data.
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Figure 1. 
Illustration of the multi-layer multi-view learning framework for AD prediction. Our model 

jointly exploits the nonlinear feature mapping, explores high-order correlation of multiple 

views and learns classification model.
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Figure 2. 
Model analysis on multi-modality (left column) and multi-feature (right column) data. The 

rows from top to bottom correspond to convergence curves, performance with respect to α 
and K, respectively.
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Table 1

Table of main notations used in the paper.

Model Specification

Notation Meaning

X(v) ∈ ℝDv×N feature matrix of the vth view

Y ∈ℝC×N label matrix

Z(v) ∈ ℝK×N latent representation for the vth view

P(v) ∈ ℝK×N projection corresponding to the vth view

S ∈ ℝC×VK classification model

K ∈ ℝK×N×V tensor of kernel matrices

G ∈ ℝK×N×V auxiliary variables in tensor form

W ∈ ℝK×N×V Lagrange multiplier in tensor form

K(m)/G(m) unfolded matrix of tensor K/G

μ > 0 penalty hyperparameter for constraints
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Table 2

Accuracy on multi-modality data.

No. Configuration Accuracy

1 View1 0.517 ± 0.064

2 View2 0.508 ± 0.107

3 View3 0.542 ± 0.101

4 View1+View2 0.531 ± 0.061

5 View1+View3 0.575 ± 0.073

6 View2+View3 0.556 ± 0.109

7 AllViewConcatenate 0.608 ± 0.075

8 Multiview CCA 0.581 ± 0.072

9 Matrix Completion 0.514 ± 0.092

10 MultiClass MKL 0.582 ± 0.091

11 VMR-MVL 0.579 ± 0.081

12 Ours (α = 0) 0.579 ± 0.050

13 Ours + Tensor (α = 10) 0.625 ± 0.069
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Table 3

Accuracy on multi-feature data.

No. Configuration Accuracy

1 View1 0.461 ± 0.128

2 View2 0.466 ± 0.125

3 View3 0.471 ± 0.115

4 View1+View2 0.477 ± 0.117

5 View1+View3 0.462 ± 0.096

6 View2+View3 0.477 ± 0.122

7 AllViewConcatenate 0.467 ± 0.119

8 Multiview CCA 0.482 ± 0.106

9 Matrix Completion 0.410 ± 0.115

10 MultiClass MKL 0.451± 0.113

11 VMR-MVL 0.481 ± 0.131

12 Ours (α = 0) 0.481 ± 0.108

13 Ours + Tensor (α = 100) 0.502 ± 0.122
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