Skip to main content
. 2015 Nov 26;8(2):95–119. doi: 10.1007/s40820-015-0073-1

Table 4.

A summary of recent researches about graphene-based gas sensors for H2 detection at room temperature

Sensing material Structure of sensor Target gas T res(s) LOD T rec(s) Ref.
Pt/RGO/SiC FET H2 300 Voltage shift of ≈100 mV for 1 % H2 (100 °C) [145]
GR/Pt Chemiresistor H2 540 16 %/4 vol% [140]
Multilayered GR/Pd nanoribbon Chemiresistor H2 21 55 %/40 ppm 23 [146]
GR/Pt Chemiresistor H2 700 1 % concentration (175 °C) 700 [141]
GR/Pt Chemiresistor H2 120 80 %/1 % concentration 1200 [142]
GR/(Pt + Pd) Chemiresistor H2 <2 2 % concentration (40 °C) 18 [143]
GR/Pd Chemiresistor H2 1 % concentration [147]
GR/Pd Chemiresistor H2 900 20 ppm 1800 [148]
GR First-principle calculation H2 [149]
RGO/TiO2/(Pd + Pt) Chemiresistor H2 18 92 %/500 ppm (180 °C) 29 [150]
RGO/SnO2 + Pt Chemiresistor H2 5 1 % concentration 4 [151]
RGO/Pd Chemiresistor H2 0.20 % [152]
GR with mono-atom-vacancy First-principle calculation H2 10−35 mol L−1 [144]
RGO/Pd Chemiresistor H2 1200 0.4 %/0.2 ppm 900 [153]
GO Chemiresistor H2 270 6 %/800 ppm 306 [154]
PMMA/Pd NPs + SL GR Chemiresistor H2 108 66 %/2 % 330 [155]
GR/SnO2 NPs FET H2 1.2 3/100 ppm 1.6 [156]
GO/PEDOT:PSS Chemiresistor H2 30 4.2 %/100 ppm 25 [157]

RGO reduced graphene oxide, GR Graphene, PMMA Polymethylmethacrylate, NPs Nanoparticles, SL Single layer