Skip to main content
. 2017 Oct 25;21(4):723–756. doi: 10.1007/s10683-017-9546-z

Table 4.

A comparison of the estimated parameters across preference functionals (part 1)

Parameter Method x y α β ρ
r PC RREU RRRD − 0.121*** 0.988 0.849
r PC AREU ARRD − 0.048*** 1.035 0.875
s PC RREU RRRD 0.538*** 0.789*** 0.795
s PC AREU ARRD 0.046*** 0.844*** 0.879
g PC RRRD ARRD 0.624*** 0.442*** 0.451
r AL RREU RRRD 0.185** 0.639*** 0.801
r AL AREU ARRD 0.009*** 0.528*** 0.700
s AL RREU RRRD 0.001 1.058*** 0.987
s AL AREU ARRD − 0.001 1.037*** 0.997
g AL RRRD ARRD 0.373*** 0.579*** 0.617
r LC RREU RRRD − 0.179*** 1.082 0.923
r LC AREU ARRD − 0.040*** 0.884** 0.913
s LC RREU RRRD 0.078*** 0.938 0.941
s LC AREU ARRD 0.055** 0.963 0.950
g LC RRRD ARRD 0.095 0.975 0.731
r HL RREU RRRD − 0.174*** 0.835** 0.773
r HL AREU ARRD − 0.030*** 0.829*** 0.848
s HL RREU RRRD − 0.111* 1.139** 0.890
s HL AREU ARRD 0.008 1.210** 0.847
g HL RRRD ARRD 0.421*** 0.388*** 0.769

This table is for where the parameters are comparable. The α (intercept) and β (slope) values are obtained from a regression of the estimated parameter value for the y preference functional against the estimated parameter value for the x preference functional. The ρ value is the correlation coefficient. If they produce the same estimates α should be zero and β should be unity

The hypotheses being tested are α = 0 and β = 1

Key: preference functionals: RREU: expected utility with cRRa utility function, AREU: expected utility with cARa utility function, RRRD: rank dependent with cRRa utility function, ARRD: rank dependent with cARa utility function

Elicitation methods: PC: pairwise choices, AL: alocations, LC: lottery choice (Becker–DeGroot–Marschak mechanism), HL: Holt Laury price list

* Significantly different (from 0 for α and from 1 for β) at 10%; ** at 5% and *** at 1%