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Abstract
In a vineyard we examined the effects of broad-spectrum herbicides with three different active ingredients (glyphosate, glu-
fosinate, flazasulfuron) on soil microorganisms. Mechanical weeding served as control treatment. Treatments were applied 
within grapevine rows and soil samples taken from there in 10–20 cm depth 77 days after application. Fungi were analyzed 
using classical sequencing technology and bacteria using next-generation sequencing. The number of colony-forming units 
(CFU) comprising bacteria, yeasts and molds was higher under flazasulfuron compared to all other treatments which had 
similar CFU levels. Abundance of the fungus Mucor was higher under flazasulfuron than glufosinate and mechanical weed-
ing; Mucor was absent under glyphosate. Several other fungi taxa were exclusively found under a specific treatment. Up to 
160 different bacteria species were found – some of them for the first time in vineyard soils. Total bacterial counts under 
herbicides were on average 260% higher than under mechanical weeding; however due to high variability this was not sta-
tistically significant. We suggest that herbicide-induced alterations of soil microorganisms could have knock-on effects on 
other parts of the grapevine system.
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With an increasing intensification of viticulture, chemical 
weed control within and between grapevine rows is more 
widely used (Keller 2015). Weeds compete with vines for 
water and nutrients and herbicides are used to avoid trunk 
damage caused by mechanical weeding machinery and to 
reduce working time spent in the vineyard. Among the most 
often used herbicides in vineyards are those based on the 
active ingredients glyphosate, glufosinate and flazasulfuron 
(Bauer et al. 2017). While effects on soil organisms of fungi-
cides and/or insecticides have been reported from vineyards 
(Paoletti et al. 1998), very little is known on the impacts of 
herbicides (Zaller et al. 2018). Moreover, laboratory and pot 
studies showed various non-target effects of herbicides on 

soil microbial communities (van Hoesel et al. 2017; Wilkin-
son and Lucas 1969; Zaller et al. 2014).

Weed control measures can affect soil microorganisms 
either by eliminating weeds and their associated rhizosphere 
or by directly influencing the physiology and diversity of 
microorganisms (Carson et al. 2007; Corneo et al. 2013; 
Marilley and Aragno 1999). Studies are mainly concerned 
with bacterial communities; the few that studied fungi 
focused mainly on arbuscular mycorrhizal symbiosis in 
arable fields (Rillig 2004). Only a few studies investigated 
soil microbial communities in vineyards (Fernández-Calviño 
et al. 2010; Likar et al. 2017; Samad et al. 2017; Steenwerth 
et al. 2008; Zaller et al. 2018). A study reports significant 
different microbiomes between grapevines roots and rhizo-
sphere and weeds (Samad et al. 2017).

For healthy and fertile vineyard soils, a diverse popula-
tion of microorganisms is essential for plant health, plant 
growth and productivity (Chaparro et al. 2012; Zarraonain-
dia et al. 2015). Knowledge of interactions between micro-
organisms in the soil, the rhizosphere and the phyllosphere is 
increasing (Pinto and Gomes 2016). Bacterial communities 
on the grapes have been shown to influence the organolep-
tic properties of the wine, what contributes to a regional 
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terroir (Mezzasalma et al. 2017). Additionally, management 
practices as well as ecological and environmental factors 
influence soil microbiota (Pancher et al. 2012; Zehetner 
et al. 2015), thereby affecting the characteristics of the wine 
(Zarraonaindia et al. 2015).

The objective of the current study was to examine poten-
tial effects on soil microorganisms of three commonly used 
herbicides in comparison to mechanical weeding. The three 
herbicides differed in their mode-of-action. Herbicide one 
contained the active ingredient glyphosate that acts on the 
5-enolpyruvylshikimate-3-phosphate (EPSP) synthase in 
plants (Steinrücken and Amrhein 1980). Herbicide two 
contained glufosinate that acts on glutamine synthetase 
(Duke 2014). Herbicide three was based on flazasulfuron 
that inhibits the amino acid synthesis, cell division and ulti-
mately plant growth (Magné et al. 2006). Studies on herbi-
cide effects on soil microbial communities can help devel-
oping more sustainable weed control measures for vineyard 
management.

Materials and Methods

The study was conducted in 2016 in an experimental vine-
yard (Rothäcker XV) of the Federal College and Research 
Center for Viticulture and Pomology, in Klosterneu-
burg, near Vienna, Austria (coordinates 48.294809ºN, 
16.324693ºE; 192 m above sea level). The vineyard con-
sisted of 22, on average 30 m long vineyard rows and was 

established in 2011 with the white grape variety Gewür-
ztraminer (Vitis vinifera L.) using trellis (grapevine within-
row distance: 1.0 m; row distance: 2.8 m). The area is south-
facing, slightly inclined and the inter-rows were cultivated 
according to the Austrian soil erosion prevention programme 
allowing only tillage of every second inter-row, while leav-
ing the other rows uncultivated and vegetated (ÖPUL 2007). 
The vineyard was organically fertilised once (23 March 
2016, 61 kg N/ha; product BioAgenasol, Agrana, Austria); 
plant protection measures were applied evenly across the 
vineyard following good viticultural practice (Table 1). 
Soils at the study site developed from alluvial soils of 
sandy, brown primary material and rounded pebble stones; 
additionally, chiselled Flysch marl stemmed from colluvial 
processes.

We selected two rows for each herbicide treatment. 
Each herbicide treatment covered the undergrowth of five 
grapevines at a width of 0.5 m; a distance of two untreated 
grapevines was left between herbicide applications. Between 
herbicide treated rows two rows were left untreated to avoid 
cross-contamination.

We used four different treatments for weed control within 
grapevine rows: three broadband herbicides with different 
active ingredients and mechanical weeding as a control. All 
herbicides were applied according to good farming practice 
at the recommended dosage. Roundup PowerFlex (Mon-
santo Agrar Deutschland, Düsseldorf, Germany) with the 
active ingredient glyphosate as potassium salt (200 g/L) 
was applied in a concentration of 3.75 L/ha. Basta 150 SL 

Table 1   Plant protection applied 
additionally to the weed control 
treatments in the study vineyard 
during the course of the 
experiment. Soil samples were 
taken on 23 June 2016

Date 2016 Pest/disease Product Dosage Manufacturer

13 April Grape leaf rust mites Thiovit Netzschwefel 3.0 kg/ha Syngenta Agro
22 April Powdery mildew Thiovit Netzschwefel 2.0 kg/ha Syngenta Agro

Vivando 0.15 L/ha BASF SE
Downy mildew Polyram WG 0.8 kg/ha BASF SE
Grape black rot
Dead arm

9 May Powdery mildew Thiovit Netzschwefel 2.0 kg/ha Syngenta Agro
Vegas 0.25 L/ha Nisso Chemical Eur

Downy mildew Polyram WG 0.8 kg/ha BASF SE
Grape black rot
Dead arm

1 June Powdery mildew Thiovit Netzschwefel 2.0 kg/ha Syngenta Agro
Flint max 0.18 kg/ha Bayer Crop Science

Downy mildew Dithane Neo Tec 2.0 kg/ha Star Agro
Rotbrenner disease
Dead arm

18 June Powdery mildew Thiovit Netzschwefel 2.0 kg/ha Syngenta Agro
Vegas 0.5 L/ha Nisso Chemical Eur

Downy mildew Aktuan gold 1.56 kg/ha BASF SE
Cuprofor flow 1.0 L/ha Kwizda Agro
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(Bayer CropScience Austria, Vienna, Austria) based on glu-
fosinate-ammonium was applied at 5.0 L/ha. Katana (ISK 
Biosciences Europe, Brussels, Belgium) based on flazasul-
furon was applied at 200 g/ha.

Herbicides were applied by an experienced viticultural 
technician early in the morning with a backpack sprayer on 7 
April 2016 first at a temperature of 12°C under calm condi-
tions. Mechanical weeding was also performed on 7 April 
2016 using a hand weeding tool; no herbicides were applied 
between rows. As recommended by the manufacturer, Basta 
was applied a second time (7 June 2016). Vegetation height 
at the time of weed control applications was about 20 cm.

Two bulk soil samples per treatment replicate were taken 
on 23 June 2016 (77 days after the first herbicide applica-
tion) from the middle of the treated rows in 20 cm distance 
to the grapevine at 10–20 cm depth using a quadratic soil 
corer (5 × 5 × 10 m, length × width × depth).

For determination of microbial counts and identifying 
the microorganisms 1 g of each soil sample was randomly 
selected and used for a dilution series. As nutrient solution 
three different agar plates were used, Malt Extract Agar 
MEA (Weidenbörner 1998), Wallerstein Laboratory WL 
and Tryptic Soy Agar TSA (Carl Roth GmbH, Karlsruhe, 
Germany). After 6 days of incubation at 24°C the microbial 
colonies were assessed by visually differentiating bacteria, 
yeasts and molds.

Yeasts were purely cultivated on MEA agar and cultivated 
in Malt Extract bouillon for 4–7 days. Then yeasts were 
reamed with a mortar and purified with a MasterPureTM-
Purification Kit (MCD85201 Epicentre, Illumina Company, 
USA). Afterwards an ITS1–ITS4 PCR (White et al. 1990) 
was performed. Bacteria were purely cultivated on PC agar 
and cultivated overnight in Standard I nutrient bouillon (art. 
1.07882.0500, Merck, Darmstadt, Germany). DNA purifica-
tion was carried out with MasterPureTM - purification kit 
(MCD85201 Epicentre, Illumina Company, USA) followed 
by a PCR with AC1 and AC3 primer (Poblet et al. 2000).

For gel band purification a WizardSV Gel and PCR 
Clean–Up System (A 9281, Promega, USA) was used. 
Sequencing was performed by an external laboratory (Euro-
fins Genomics GmbH, Ebersberg, Germany). DNA results 
were analysed using the database of the US National Center 
for Biotechnology Information (https​://www.ncbi.nlm.nih.
gov/).

From the same soil samples, about 400 g of fresh soil 
was sent to a commercial laboratory (Eurofins Genomics, 
Ebersberg, Germany) in order to perform next-generation 
sequencing (NGS). The DNA-extraction was performed 
using a NucleoSpin soil kit (Macherey Nagel, Düren, Ger-
many). Analyses were made with an Illumina MiSeq v3, 
2 × 300 bp Modus. For the target region V1V3 the primers 
V1V3_F: AGA​GTT​TGA​TCA​TGG​CTC​AG and V1V3_R: 
GTA​TTA​CCG​CGG​CTG​CTG​ were used. The applied 

PCR program involved 2 min 95°C, then 28 cycles (30 s 
95°C + 50 s 50°C + 1 min 72°C), then 6 min 72°C and finally 
4°C. The genetical sequences were attached to the associ-
ated 16S region. The taxonomic comparison was done with 
the software QIIME (version 1.8.0, http://qiime​.org) and 
the NCBI database. After preprocessing and quality filter-
ing 2,408,208 16S-gen sequences with a range from 127,194 
to 566,193 sequences per sample were gained. Diversity of 
microbial communities from NGS data were analysed by 
calculating Shannon diversity and evenness indices on the 
taxonomic categories phyllum, class, order, family, genus 
and species.

Prior to the microbiome analysis, raw reads were demulti-
plexed/debarcoded based on the unique forward and reverse 
sequencing indices and/or inline-barcode sequences. To 
preserve only high-quality reads, all reads with sequencing 
errors or reads with ambiguous bases (“N”) were removed. 
Indices/barcodes as well as primer sequences were clipped 
from the reads. The remaining set of high-quality reads was 
processed using minimum entropy decomposition (Eren 
et  al. 2015). Minimum entropy decomposition (MED) 
provides a computationally efficient means to partition 
marker gene datasets into OTUs (Operational Taxonomic 
Units). Each OTU represents a distinct cluster with signifi-
cant sequence divergence to any other cluster. By employ-
ing Shannon entropy, MED uses only the information-rich 
nucleotide positions across reads and iteratively partitions 
large datasets while omitting stochastic variation. The MED 
procedure outperforms classical, identity-based clustering 
algorithms. Sequences can be partitioned based on relevant 
single nucleotide differences without being susceptible to 
random sequencing errors. This allows a decomposition of 
sequence data sets with a single nucleotide resolution. Fur-
thermore, the MED procedure identifies and filters random 
“noise” in the dataset. This includes singletons and puta-
tive chimeric sequences. To assign taxonomic information 
to each OTU, BLAST alignments of cluster representative 
sequences to the NCBI sequence database were performed. 
A most specific taxonomic assignment for each OTU was 
then transferred from the set of best-matching reference 
sequences. Hereby, a sequence identity of 80% across at least 
80% of the representative sequence was a minimal require-
ment for considering reference sequences. Further process-
ing of OTUs and taxonomic assignments was performed 
using the QIIME software package (version 1.8.0, http://
qiime​.org/). Abundances of bacteria and archaea taxonomic 
units were normalized using lineage-specific copy numbers 
of the relevant marker genes to improve estimates (Angly 
et al. 2014). Results of read preprocessing, OTU picking, 
and taxonomic assignment is presented in Table 2.

The number of OTUs correlates with the diversity of the 
data set. Sequences that were considered as noise by the 
OTU picking algorithm were not assigned to an OTU. This 
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includes singletons and putative chimeric sequences. The 
fraction of OTUs that could be assigned to taxa indicates 
how well the microbiome is represented in the used refer-
ence database. A copy-number correction was performed for 
bacterial species only (Angly et al. 2014). To do so, the num-
ber of reads assigned to a species was divided by the known 
or assumed copy-number of marker genes/regions. After 
preprocessing, sequences were clipped to 255 bp length to 
remove low quality bases from the 3′ end and to ensure that 
all sequences have the same length. The latter is crucial for 
the MED analysis.

Statistical analysis of CFUs and OTUs were performed 
using the FASTQ file format (Cock et al. 2010) within the 
software package R (version 3.0.2, The R Foundation for 
Statistical Computing 2013). Shannon- and Evenness indices 
were analysed using one-way analysis of variance (ANOVA) 
with the factor herbicide treatment (4 levels). Mean com-
parisons between herbicide treatments were performed using 
Tukey tests. Differences with p < 0.05 were considered to be 
significant.

Results and Discussion

Weed control significantly affected total CFUs in vineyard 
soils. Significantly more total CFUs were found under fla-
zasulfuron (24.13 ± 83.32 × 106, mean ± SD) than under 
glyphosate (0.27 ± 0.79 × 106), glufosinate (2.78 ± 9.32 × 106) 
or the control treatment (1.56 ± 5.48 × 106; Fig. 1). Weed 
control treatments had no significant effect on the proportion 
of yeasts, molds and bacteria in soil samples (Fig. 1). There 
was a trend for considerably more molds and yeasts but less 
bacteria under flazasulfuron than under the other treatments, 

however due to high heterogeneity this was not statistically 
significant. Such unclear patterns of herbicide effects on the 
microbial soil communities have also been reported by oth-
ers (Kopčáková et al. 2016; Newman et al. 2016). However, 
a clear difference in soil bacterial and fungal composition 
in vineyards was reported between herbicide treated and 
untreated grapevine rows (Chou et al. 2018; Hendgen et al. 
2018).

NGS analyses showed that abundances of cultivable 
and not-cultivable soil bacteria under herbicide treatments 
were on average 264% higher than under mechanical weed-
ing (Fig. 2). However, due to high data variability this was 
not statistically significant. Across treatments we found 
strains of the following taxa with decreasing abundances: 
Proteobacteria (35.8% ± 3.6%, mean ± SD across treat-
ments), Actinobacteria (13.0% ± 2.4%), Gemmatimonadetes 
(5.5% ± 1.0%), Acidobacteria (3.5% ± 0.5%), Nitrospira 
(3.4% ± 0.9%), Bacterioidetes (3.1% ± 0.6%), Ignavibacte-
riae (2% ± 0.1%), Plantomycetes (1.7% ± 0.3%), Firmicutes 
(1.2% ± 0.2%), Chloroflexi (1.0% ± 0.2%), Verrucomicro-
bia (0.9% ± 0.3%), Cyanobacteria (0.2% ± 0.1%), Armati-
monadetes (0.1% ± 0.1%), Synergistes (0.005% ± 0.003%), 
Tenericutes (0.003% ± 0.003%), Thermodesulfobacteria 
(0.02% ± 0.02%) and unclassified strains (30.6% ± 2.3%).

Considering individual fungal taxa, only the abundance 
of Mucor was significantly affected by herbicide treatments 
(Fig. 3a). Mucor was absent under glyphosate and highest 
under flazasulfuron with similar CFUs under mechanical 
weeding and glufosinate (Fig. 3a). Mucor spp. are very com-
mon mainly in organic plant material like compost, fruits 
or vegetable, wood pellets and farmyard manure and are 
known to cause food spoilage (Domsch et al. 2007; Hoog 
et al. 2000). Mucor has been detected in air samples in 

Table 2   Summary of next generation sequencing preprocessing

Parameter OTUs Percentage

Total number of input sequences 2,411,541 100.0
Remaining sequences after preprocessing 

and quality filtering
2,408,208 99.9

Total number of sequences assigned to 
OTUs

1,851,837 76.8

Total number of sequences assigned to taxa 1,284,409 53.3
Copy-number corrected total count 685,031 N/A
Total number of OTUs 6957 100.0
Number of OTUs assigned to taxa 4728 68.0
Sequences per sample assigned to OTUs
 Min 99,429
 Max 432,715
 Median 144,058
 Mean 231,479
 Std. dev. 145,993

Fig. 1   Mean proportions of yeasts, bacteria and molds in soil samples 
in vineyards rows after mechanical weeding (mech) or three herbicide 
treatments (glyph…glyphosate, glufo…glufosinate, flaza…flazasulfu-
ron). Different letters denote significant differences of the total CFU 
counts (Tukey HSD, p < 0.05). Data obtained by classical sequencing
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Italian vineyards (Magyar et al. 2009), in grape berries in 
the Tokaj wine region in Hungary (Felšöciová et al. 2015) 
and is described as a pathogenic fungus on pear fruits (Mari 
et al. 2000). To the best of our knowledge the current study 
is among the first describing Mucor from vineyard soil sam-
ples below 10 cm depth.

The ubiquitous Aspergillus sp., Penicillium sp. and Fusar-
ium sp. were detected in all treatments with high variability 
(Fig. 3b–d; Table 3), however no significant effect of weed 
control was seen. Alphaproteobacteriaceae and Caulobac-
teriaceae were observed in all samples but with little varia-
tion among treatments (Fig. 3c). Presence of Caulobacterales 
(Fig. 3e) have been described in the Chardonnay and Merlot 
varieties (Campisano et al. 2014; Pinto and Gomes 2016) 
and in grapevine roots (Samad et al. 2017) and in association 
with copper (Andreazza et al. 2012). In the current study 
there was a not-significant trends of 1%–37% higher reads of 
Caulobacter under herbicides than under mechanical weed-
ing. Also, Thermosulfobacteria showed a not-significant 
trend to 9%–58% higher reads under herbicide treatments 
than under mechanical weeding (Fig. 3f). Thermodesulfo-
bacteria are sulfate-reducing usually found in hot springs 
(Meyer-Dombard and Amend 2014; Wang et al. 2013) and 
were described after treatment with Autographa californica 
multiple nucleopolyhedovirus (Fu et al. 2015) or after bio-
char application (Abujabhah et al. 2017).

Fig. 2   Composition of soil bacteria and archeobacteria communities 
in vineyards rows after mechanical weeding (mech) and three herbi-
cide treatments (glyph…glyphosate, glufo…glufosinate, flaza…flaza-
sulfuron). Data obtained by NGS sequencing

Fig. 3   Selected taxa of soil microorganisms in vineyards rows 
under mechanical weeding (mech) and application of three herbi-
cide (glyph…glyphosate, glufo…glufosinate, flaza…flazasulfuron). 
Means ± SD. Different letters denote significant differences (Tukey 
HSD, p < 0.05). Fungi data obtained using classical sequencing, bac-
teria data by NGS sequencing

Table 3   Presence (+) or absence (−) of particular fungi taxa in soil 
samples under mechanical weeding (mech) and application of three 
herbicides (glyph…glyphosate, glufo…glufosinate, flaza…flazasulfu-
ron)

Taxa in alphabetical order

Fungi taxa Mech Glyph Glufo Flaza

Acremonium sp. – – + –
Arthroderma sp. – – – +
Aspergillus sp. + + + +
Cladosporium sp. – + + –
Clonostachys rosea + – – –
Colletotrichum sp. – + – –
Cunninghamella sp. – + – –
Dipodascus sp. + – – –
Fusarium sp. + + + +
Gongronella butleri – – + –
Mortierella sp. – + – –
Mucor sp. + – + +
Paecilomyces marquandi – – + –
Penicillium sp. + + + +
Scedosporium sp. – + – –
Sporothrix sp. – – + –
Striatibotrys sp. – + – +
Trichoderma sp. + + – –
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Changes in bacterial reads were reported in the rhizos-
phere of glyphosate-tolerant of corn (Zea mays) and soybean 
(Glycine max) in response to glyphosate treatment (Newman 
et al. 2016).

Many fungi described in the current study are reported 
from vineyard soils for the first time, mainly because of the 
use of modern sequencing methods (Morgan et al. 2017; Wei 
et al. 2018). Several taxa were also found specifically under 
certain treatments. Thus, for the sake of clarity we present 
an overview of presence/absence data of soil microorgan-
isms found in different weed control treatments (Table 3). 
However, given the fact that our study only covers one field 
season in one experimental vineyard we decided for a cau-
tious interpretation of the findings. Overall, it has to be noted 
that there is a great lack of knowledge on specific functions 
for most taxa in soil. More long-term studies are needed to 
assure the generality of our findings.

Under mechanical weeding only the yeast species Clonos-
tachys rosea and the saprophytic fungi Diapodascus sp. were 
found while they were absent under herbicide treatments 
(Table 3). Clonostachys rosea is widespread occurring in the 
soil and in rotten plants and can suppress spores of botrytis 
bunch rot (Dong et al. 2004; Morandi et al. 2003) and can be 
pathogens against yeasts (Li et al. 2006; Zhao et al. 2005). 
Chemical isolates of C. rosea also showed a negative effect 
on the nematodes Caenorhabditis elegans, Panagrellus redi-
vivus, and Bursaphelenchus xylophilus (Zhang et al. 2008). 
Species of the family Dipodascaceae are saprophytically in 
the plant sap of trees (e.g., Dipodascus albidus) or are colo-
nizing dead insects (Cannon and Kirk 2007).

Under glyphosate only the fungi Colletotrichum sp., Cun-
ninghamella sp., Mortierella sp. and Scedosporium sp. were 
found (Table 3), suggesting that herbicide-specific nutrients 
favors these fungi. Many Colletotrichum species are plant 
pathogenic and have a mutualistic relationship with their 
host plant (Rodriguez and Redman 2008). For example 
Colletotrichum coccodes causes tomato anthracnose on the 
fruit, black dots on the roots and blemishes on the surface 
of potatoes (Hughes 1958). Cunninghamella sp. is affected 
by fertilization and can be suppressed by Stachybotrys sp. 
(= Striatibotrys sp.) and Trichoderma viride (Domsch et al. 
2007). Mortiella sp. is together with Mucor one of the first 
yeast taxa growing on roots of debilitated plants (Deacon 
2005; Salt 1977; Webster 2012).

Under glufosinate only the fungi Acremonium sp., 
Gongronella butleri, Paecilomyces marquandi and Sporo-
thrix sp. were found (Table 3). The genus Acremonium 
covers more than 100 species living saprophytically on 
dead plant material or in the soil. Many species can cause 
diseases in humans (Domsch et al. 2007; Fincher et al. 
1991; Hoog et al. 2000). Gongronella butleri is one of 
the most important species of the Zygomycetes class also 

used for industrial production (Bartnicki-Garcia 1968; Tan 
et al. 1996). Paecilomyces marquandi can be detrimental 
to nematodes and can cause allergies in humans (Kilama 
et al. 2007; Mücke and Lemmen 2005). Additionally, it 
contains leucinostatine having an antimicrobial effect 
against grampositive bacteria and many fungi (Fukushima 
et al. 1983a, b). The fungi Sporothrix sp. can be found in 
the soil and on decomposing plant material and can induce 
infections in humans and animals (Barros et al. 2011; de 
Meyer et al. 2008; Vasquez-del-Mercado et al. 2012).

Under flazasulfuron only the yeast Arthroderma sp. 
were exclusively found (Table 3). Not much is known 
about the role of Arthroderma in ecological systems, how-
ever it may cause skin problems in humans (Hiernickel 
et al. 2016).

Several taxa were found under more than one treatment 
(Table 3). Species of the genus Cladosporium are very 
common and mainly occur in the soil and on plants, we 
found Cladosporium sp. under glyphosate and glufosinate. 
The fungi genus Trichoderma was found under mechani-
cal weeding and under glyphosate and is normally occur-
ring in all soil types is representing the most commonly 
cultivated fungi also forming avirulent symbioses with 
plants (Harman et al. 2004). The mold Striatibotrys sp. 
(also called Stachybotrys sp.) produces the stachybotrys 
mycosis pathogen (Summerbell et al. 1989) and was found 
under glyphosate and flazasulfuron.

This is among the first field studies investigating the 
effects of three commonly used herbicides and mechanical 
weeding on soil microorganisms in vineyards. As all treat-
ments left weed material on ground, the finding that cer-
tain herbicides stimulated or suppressed certain fungi sug-
gests that herbicide-specific active ingredients, adjuvants 
or nutrients might be responsible for this effect. Although 
the study vineyard was evenly treated with other pesticides 
according to good viticultural practice, potential interac-
tions with specific herbicides are likely. It is important to 
note that the findings need to be interpreted with caution 
as the study was conducted during one field season in one 
experimental vineyard. Overall, we know very little about 
the role of microorganisms in vineyard soils and their con-
sequences for health, yield and quality of the grapevine 
(Belda et al. 2017). However, the microbial terroir concept 
suggests important association between microorganisms 
in different compartments of the vineyard ecosystem and 
wine characteristics (Bokulich et al. 2014; Gilbert et al. 
2014; Miura et al. 2017). Clearly, more long-term studies 
are needed to further elucidate non-target effects of pesti-
cides used in vineyard management.
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