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Abstract
Purpose The aim of the study is to use Raman spectroscopy to analyze the biochemical composition of medulloblastoma and
normal tissues from the safety margin of the CNS and to find specific Raman biomarkers capable of differentiating between
tumorous and normal tissues.
Methods The tissue samples consisted of medulloblastoma (grade IV) (n = 11). The tissues from the negative margins were used
as normal controls. Raman images were generated by a confocal Raman microscope—WITec alpha 300 RSA.
Results Raman vibrational signatures can predict which tissue has tumorous biochemistry and can identify medulloblastoma.
The Raman technique makes use of the fact that tumors contain large amounts of protein and far less lipids (fatty compounds),
while healthy tissue is rich in both.
Conclusion The ability of Raman spectroscopy and imaging to detect medulloblastoma tumors fills the niche in diagnostics.
These powerful analytical techniques are capable of monitoring tissue morphology and biochemistry. Our results demonstrate
that RS can be used to discriminate between normal and medulloblastoma tissues.
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Medulloblastoma (MB) is the most common embryonal tu-
mor of the central nervous system (CNS) (70% of all). It is
located only in the posterior fossa. In the group of patients <
18 years of age, it constitutes 18% of all brain tumors and 30%
concerning the posterior fossa. The median of age is 9 years
with two occurrence peaks, 2–4 and 6–8 years of age. The
frequency of occurrence revolves around 0.5/100,000 chil-
dren. A more frequent occurrence in the male sex is suggested
(♂:♀, 1.8:1).

The basic feature of MB biology is its huge local malice
and the ability to spread through cerebrospinal fluid (CSF).
The contemporary comprehensive treatment of tumors con-
sists of surgical removal followed by pharmacological chemo-
therapy and megavoltage CNS therapy. The principle is the

use of surgical treatment at the first stage. Radiotherapy is not
used in patients under 3 years of age who are treated exclu-
sively with chemotherapy and palliative surgical procedure in
primary disseminated disease (M2–M4 Chang classification).

The recurrence of the neoplastic process occurs most fre-
quently during the first 2 years after the end of treatment. As a
rule, it occurs at the place of the original location.

The results of the last years’ research quite unequivocally
indicate the possibility of improving the effects of MB treat-
ment with the application and appropriate selection of conven-
tional methods. However, the maximum 5-year survival rates
achieved at 75–85% for the standard-risk groups and 60–69%
in the high-risk groups seem to be the limit.

Although precise delineation of the tumor excision border
is a crucial step in patient treatment and survival, there are
currently no methods able to differentiate normal tissue from
tumor during operation. Traditional methods such as radiog-
raphy, ultrasonography, computed tomography, and magnetic
resonance imaging are insufficient in spatial resolution and
have limited intraoperative availability [14, 16]. This could
be counteracted by Raman spectroscopy, a promising simple,
quick, and non-invasive method.

Raman spectroscopy (RS) and imaging (RI) are methods
that measure inelastic scattering of light, providing informa-
tion about vibrations of tissue components in samples. As a
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result, Raman spectroscopy can provide biochemical informa-
tion of tissues without using any contrast agents [1, 3].

Recent years brought a great number of papers indicating
usefulness of Raman spectroscopy in brain research on ani-
mals [11, 17, 23] as well as preliminary research on human
brain [10, 11, 13, 15, 20]. However, the studies included indi-
vidual cases. Here, we studied 11 cases of medulloblastoma
and 3 samples from the safety margin as a control.

The aim of the study is to use Raman spectroscopy to
analyze the biochemical composition of medulloblastoma
and normal tissues from the safety margin of the CNS and to
find specific Raman biomarkers capable of differentiating be-
tween tumorous and normal tissues.

Materials and methods

Study participants and tissue preparations

All experiments were performed in compliance with relevant
laws and guidelines of the Bioethical Committee at the Polish
Mother’s Memorial Hospital Research Institute in Lodz (53/
216) and of the Ministry of Health of the Republic of Poland.
Written informed consent was obtained from patients. The
tissue samples consisted of medulloblastoma (grade IV) (n =
11). The tissues from the negative margins were used as nor-
mal controls.

Microtomed 16-μm-thick tissue sections were obtained
from frozen blocks of the material removed during surgical
operation at the Polish Mother’s Memorial Hospital (Lodz,
Poland) and placed on CaF2 substrates (CRYSTAL GmbH,
Germany) for Raman spectroscopy and Raman imaging mea-
surements. Parallel 6-μm tissue sections were obtained and
stained with H&E followed by histology examination for all
the specimens by a certified neuropathologist from the Polish
Mother’s Memorial Hospital Research Institute in Lodz. The
tissue sections were examined by Raman spectroscopy and
Raman imaging. MRI images were used for visualization
and location of the tumor region for each patient.

Raman spectroscopy and imaging

Raman images were generated by a confocal Raman micro-
scope—WITec alpha 300 RSA (Ulm, Germany)—consisting
of an Olympus microscope coupled with a 300-mm Czerny–
Turner monochromator (Princeton Instruments Acton
SP23000; 300-mm imaging triple-grating monochromator/
spectrograph) and a thermoelectrically cooled CCD camera
(ANDOR Newton DU970N-UVB-353; EMCCD chip with a
1600 × 200 pixel format, 16 μm dimension each) operating in
the standard mode at − 64 °C with full vertical binning. The
excitation laser beam was a second harmonic of the Nd:YAG
laser (532 nm) which was focused on the sample with a × 40-

magnification objective (NIKON CFI Plan Fluor C ELWD
40×: NA 0.60, WD 3.6–2.8 mm; DIC-M, C.C.0-2) to the laser
spot of 1 μm determined by the laser wavelength and micro-
scope objective being used. The average laser excitation pow-
er was 10 mW, with a collection (integration) time of 0.5 s and
a spectral step of 2 cm−1 in the fingerprint range of 200–
1800 cm−1 and high-frequency region of 1800–3600 cm−1.
A piezoelectric table was used to record Raman images. The
spectra were collected at one acquisition per pixel and a 1200-
line-mm−1 diffraction grating with the spectral bandpass vary-
ing from about 5.5 cm−1 per pixel at about 200 cm−1 to about
3.3 cm−1 per pixel at 3600 cm−1. Raman images (50 × 50 μm,
100 × 100 points per line) from the fingerprint spectral regions
of the human brain tissue from the tumor mass and from the
safety margin were constructed.

Detailed methodology on data pre-processing and multi-
variate data analysis used in the paper is available elsewhere
[6, 8, 9].

The percentage of blue and red areas of images presented in
the BResults and discussion^ section was calculated with
Color threshold and Measure option of the ImageJ software
(US National Institutes of Health, Bethesda, MD, USA).

Results and discussion

Here we show results of the examination of 11 tissue samples
of medulloblastoma compared with normal tissue from the
safety margin.

Figure 1 shows MRI, microscopy, and Raman images as
well as Raman spectra for medulloblastoma (A) and normal
(B) tissues.

First of all, it is important to note that Raman mapping of
human tissues can generate images as accurate as histology
images with unique spatial resolution, sensitivity, and capabil-
ities [1–4, 7].

A detailed insight into Fig. 1 shows spectral alterations in
the chemical and morphological composition of the diagnosed
medulloblastoma compared with normal tissue. The most im-
portant differences are in lipid and protein content marked on
Raman images and spectra as blue (the band at 2845 cm−1

corresponds to CH2 sym. str. of lipids) and red (the band at
2930 cm−1 corresponds to CH3 sym. str. of lipids) areas,
respectively.

The calculated areas of blue and red from Fig. 1 show 29,
24, and 20% of lipids for tumorous tissue and 58% area of
lipids for normal tissue.

Figure 2 shows vector-normalized average spectra from
Raman imaging for all analyzed samples of medulloblastoma.
The results show that the spectra of all samples were highly
reproducible.

Figure 3 shows the vector-normalized average spectra for
medulloblastoma and normal tissues.
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The results presented in Fig. 3 show that the Raman vibra-
tional signatures can predict which tissue has tumorous

biochemistry and can identify medulloblastoma. A detailed
insight shows significant differences in lipid (1064, 1270,

Fig. 1 MRI images, Raman images, and Raman spectra of
medulloblastoma (P27, P34, P38) (A) and Raman image and Raman
spectra of normal tissue (B). The line colors of the spectra correspond

to the colors of the Raman maps. Integration time for images, 0.5 s;
resolution step, 0.5 μm; laser excitation power, 10 mW
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1304, 1444, and 2845 cm−1) and protein (1240, 1368, 1586,
1658, and 2930 cm−1) content. Abramczyk et al. [1, 7, 26]
showed that the Raman technique makes use of the fact that
tumors contain large amounts of protein and far less lipids
(fatty compounds), while healthy tissue is rich in both.
Particularly interesting are the differences at 1586 cm−1, de-
scribed as a marker of malignancy in tumors [21, 24].
Literature mostly merges this peak with the C=C bending
mode of phenylalanine [5, 12, 19, 25], but our latest research
shows that this also corresponds with phosphorylation of ty-
rosine. Also, the amide III band is shifted from 1270 to
1228 cm−1 as a result of phosphorylation. This is consistent
with the latest research on phosphorylation inhibitors as a
therapy for medulloblastoma [18].

For clinical application, the most important finding of the
paper is the ratio of protein to lipid content presented in
Table 1. This feature can be used to discriminate between

normal and tumorous tissues. Table 1 shows the ratio for
high frequencies and for the fingerprint region as well as
the ratio calculated from the areas of proteins (Aproteins)
and lipids (Alipids) from Raman images.

One can see that all studied cases of medulloblastoma
tissue samples have the ratios I2930/I2845, I1586/I1444, and
Aproteins/Alipids significantly higher than those for normal
tissue, which demonstrates lower content of lipids in tu-
mors. This is consistent with literature, where chromatog-
raphy measurements show significantly reduced levels of
polyunsaturated fatty acids (PUFA) and phospholipids in
CNS tumors [22].

Both the ratios I2930/I2845 and I1586/I1444 can be used for
diagnostic purposes. Although the results presented in the
paper are highly reproducible, they are carried out on tissue
slices, and for medical uses, more in vivo research should be
conducted.

Fig. 3 Average Raman spectra for
medulloblastoma and normal
tissues

Fig. 2 Average spectra from
Raman images for 11 cases of
medulloblastoma
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Conclusions

The ability of Raman spectroscopy and imaging to detect me-
dulloblastoma tumors fills the niche in diagnostics. These
powerful analytical techniques are capable of monitoring tis-
sue morphology and biochemistry. Our results demonstrate
that RS can be used to discriminate between normal and me-
dulloblastoma tissues by monitoring alterations in lipid and
protein content using I2930/I2845 and I1586/I1444 ratios.
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