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ABSTRACT
The relationship between CpG content and DNA methylation has attracted considerable interest
in recent years. Direct or indirect methods have been developed to investigate their regulatory
functions based on various hypotheses, large cohort studies, and meta-analyses. However, all of
these analyses were performed at units of CpG blocks and, thus, the influence of finer genome
structure has been neglected. Herein, we present a novel algorithm of base-pair resolution to
systematically investigate the relationship between CpG contents and DNA methylation. By
introducing the concept of ‘complementary index’ we examined the methylomes of 34 adult
and 7 embryonic tissues and successfully fitted the relationship of DNA methylation and CpG
density into a nonlinear mathematical model. A further algorithm was developed to locate the
regions where CpG density does not match expectations from the model, termed ‘conflict of gap’
(COG) regions. Interestingly, COGs are highly concordant in human and mouse and their distribu-
tions display a tissue-specific pattern. Based on COG methylation patterns we correctly classified
tissues according to their function or origin. We demonstrate that COGs based on our method can
reveal more and deeper information than traditional differential methylation region (DMR)
approaches. We also found that when COGs are located near to transcription start site (TSS),
these regions can determine which promoters will be utilized for initiating gene transcription.
Furthermore, COGs located far from the TSS perform as enhancers in terms of histone modifica-
tion, sequence conservation, transcription factor binding, and DNase I-hypersensitivity.
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Introduction

Vertebrate genomes have a global CpG-poor land-
scape that is interspersed with stands of CpG
islands (CGI) [1,2]. DNA methylation, which
occurs almost exclusively at 5-cytosine of CpG
context in most tissues, is greatly modulated by
such CpG landscape [3]. CpG-poor regions often
exhibit hypermethylation, while CpG-dense
regions often exhibit hypomethylation [4]. The
inverse correlation between DNA methylation
and CpG density has been demonstrated by
numerous studies using various traditional methy-
lation-investigating approaches [4], and was
recently further validated by large-scale sequen-
cing studies [5–7]. In addition to a large cohort

surveys and meta-analyses, examination of the
relationship between CpG content and DNA
methylation is well documented in the literature,
including many recent works testing direct regula-
tory mechanisms [8] or combining CpG content
with motifs [9,10]. Analysis of 580,427 CpG sites
in more than 28,000 subclones, found that about
half of the low-CpG density amplicons were highly
methylated, while only 10% high-CpG density
amplicons showed the same level of methylation.
This suggests that CpG density is a better indicator
than G + C content for the methylation states of
amplicons [5]. Methylation profiling of more than
275 million CpG sites in human and mouse tissues
also found that methylation levels fell sharply at
high CpG densities [7].
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DNA methylation patterns are thought to be
established during embryonic development and
are then faithfully inherited in somatic cells by
the so called ‘maintenance mechanism’ [11,12].
DNA methyltransferase 1 (DNMT1), the mainte-
nance DNMT, can preferentially recognize the
unmethylated cytosine on the nascent strand in a
methylated CpG context during DNA replication
[13]. The de novo DNMTs, i.e., DNMT3a and
DNMT3b, are responsible for establishing the
proper methylation patterns during early embryo-
nic development on the genome recently contrib-
uted to by both parents, which had become almost
devoid of methylation due to the rapid and exten-
sive demethylation process prior to implantation
[14,15]. This classical model has served us well for
many years. However, experimental observations
have been accumulating that do not fit with this
model [16,17], including the measurable propor-
tion of hemimethylated CpG sites [18], active
removal of methyl groups by demethylation path-
ways [19,20], low methylation fidelity [21,22], and
group behavior of methylation that is not predict-
able from a model where CpG sites are indepen-
dent [16]. More complex models have been
proposed [16,17] that require the cooperativity of
different DNMT enzymes, as well as other proteins
such as ubiquitin-like plant homeodomain and
RING finger domain-containing protein 1
(UHRF1), proliferating cell nuclear antigen
(PCNA), euchromatic histone lysine methyltrans-
ferase 2 (EHMT2), or even demethylases [16].
These new observations and models suggest that
maintaining the methylation landscape is an intri-
cate and costly process.

The landscape of CpG dinucleotide is believed
to be molded, at least partially, by DNA methyla-
tion [1,4]. In vertebrates, CpG is the only dinu-
cleotide context that exhibits abundant
methylation [3,14]. The spontaneous deamination
of 5mC to thymine creates C to T mismatches,
whose removal by thymine DNA glycosylase is
insufficiently effective [23], thereby leading to
overall underrepresentation of CpG dinucleotide
by generating many long-run CpG depleted
regions [1]. Invertebrate DNA displays almost no
methylation and, as a result, CpG occurs at an
expected frequency throughout the genome [4].
The CpG methylated sites and the regions without

CpG depletion probably have been preserved by
selective pressure in vertebrate genomes through-
out evolution, which eventually generated the
inversely correlated landscape of DNA methyla-
tion and CpG density [1,2,4,16]. Actually, such
arrangement of the CpG and methylation land-
scape has important biological significance
[14,24]. The typical CpG-dense regions, CGIs, are
present in approximately 70% of annotated gene
promoters, including virtually all housekeeping
genes and a great proportion of tissue-specific
genes and developmental regulator genes [25].
Vacancy of methylation at CGIs ensures the unim-
peded transcription of physiologically important
genes [14]. Global hypermethylation at CpG-poor
regions is involved in various key biological pro-
cesses, such as X chromosome inactivation,
imprinting, the silencing of germline-specific
genes, suppressing repetitive elements transposi-
tion, and inhibiting promiscuous promoter initia-
tion [6,14,23].

A deviation in these methylation landscapes
could lead to severe biological consequences
[12,24,26–28]. This was shown in a mice study
with disrupted DNMT1, in which DNA methyla-
tion was globally decreased and the inverse corre-
lation between DNA methylation and CpG density
was notably blurred. The authors of this study
reported that the disrupted DNMT1 mice did not
survive past mid-gestation [13]. Embryonic or
postnatal lethality was also reported in mice with
disrupted DNMT3A or 3B due to aberrant methy-
lation pattern [15]. Disrupted correlation of DNA
methylation and CpG density has been reported in
various cancers [29], characterized by hyper-
methylation in transcription start site (TSS) asso-
ciated CGIs, which have high CpG density and
usually low methylation in normal tissues [26,30].
Furthermore, in cancer, hypomethylation occurs
globally across the genome, which mostly has low
CpG density and high methylation in normal tis-
sues [27,31].

Although the inverse correlation between DNA
methylation and CpG distribution has been
observed in various species [4,14,24], and a devia-
tion of such a correlation would lead to severe
disorders [24,27,28,32], no approach is currently
available to quantitatively describe this inverse
correlation or to locate the aberrant regions that

722 Z. LI ET AL.



deviate from such a correlation. In this study, by
exploiting the methylomes from over forty tissues,
we developed an algorithm to mathematically
describe the pattern of DNA methylation and
CpG density to allow the detection of deviated
regions. We also report that the deviated regions
may dictate the expression of genes that are
important for tissue specification, irrespective of
their distance to the transcription start.

Results

The distribution of CpG dinucleotides changes
with evolutionary diversification

To investigate the representation of CpG dinucleo-
tide in evolutionarily divergent organisms, the
observed-to-expected ratios (O/E) of all 16

dinucleotide combinations were calculated for the
genomes of 10 species ranging from E. coli to
human. The O/E of CpG dinucleotide progressively
diminishes from 1.2 in E. coli to 0.2 in human, while
other dinucleotides remain stable at around 1.0
(Figures 1(a), S1, and Supplementary Table 1).
Furthermore, the distribution of CpG dinucleotide
is also changed throughout the evolutionarily path-
way, as illustrated by the Hilbert curves which are
two-dimensional representations of one-dimen-
sional data while keeping local features of the data
(see methods) (Figure 1(b)). CpG sites tend to form
clusters and this tendency becomes more and more
obvious along the lineage to higher vertebrates, as
shown by the spots on Hilbert curves, which are
fairly clear in T. guttata, mice, and human, yet
become obscure in D. rerio and N. parkeri, and are
almost invisible in other species (Figures 1(b) and

Figure 1. Clustering tendency of CpG dinucleotide changes with evolutionary divergence. (a) O/E heat maps of all 16 dinucleotides
in ten species representing an evolutionary progression towards higher vertebrates. The 1st and 2nd base of dinucleotides are shown
at left and top respectively. The color denotes O/E values. (b) 2D Hilbert curves of CpG dinucleotide. CpG density is denoted by red
color. Chromosome 1 is used here except E. coli for which whole genome is used. A blowout at the right to show the details of a part
of the whole chromosome/genome. (c) Histograms of the distances (bp) between a CpG site and its following 25th CpG site along
genome. The first peaks indicate the existence of clustered CpGs whose distances are short, while the major peaks represent the
average distances between CpGs in the genome. (d) 2D Hilbert curves of ApT dinucleotides. (e) Histograms of the distances (bp)
between an ApT site and its following 25th ApT site along genome. (f) Tracks of CpG density and ApT density in UCSC genome
browser. CpG and ApT densities were calculated as the occurrences in 2500 bp sliding windows.

EPIGENETICS 723



S2). The phenomenon of forming two peaks in the
inter-distance distributions of CpG sites provides
extra evidence. The tendency of forming two sepa-
rate peaks becomes more and more clear along
vertebrate evolution, suggesting that some CpG
sites cluster together with short distance apart,
while others spread out with longer distance apart
(Figures 1(c) and S3). On the contrary, no cluster
forming tendencies were observed for the other
dinucleotides (Figures 1(d-e), S4 and S5). The den-
sity tracks on Figures 1(f) and S6 show the forma-
tion of sharp peaks intervened with a long range of
flatten valleys, while other dinucleotides appear as
even plateaus.

The altered distribution of CpG dinucleotide
complementarily matches DNA methylation

CpG density is inversely correlated with DNA
methylation, as shown by CpG islands with dense
CpGs that usually possess low DNA methylation
levels while genomic regions with sparse CpGs
usually have high DNA methylation levels [1,6,16].
To systematically investigate the correlation
between CpG dinucleotide and DNA methylation,
we applied, to the whole-genome bisulphite sequen-
cing (WGBS) data from mouse cerebellum, the slid-
ing window approach that shifted one base each
time and calculated CpG density and methylation
level in each window. Most windows had CpG den-
sity lower than 50 and DNA methylation levels
higher than 80% (Figure 2(a)). Some windows with
CpG density greater than 100 had low methylation
levels of less than 10%, which together led to a
correlation coefficient of −0.726 (Figure 2(a)). The
same trend was also observed in other mouse and
human tissues, as well as at different mice develop-
mental stages (Figure S7). To take a closer look at
the inverse correlation between CpG density and
DNA methylation, we cut CpG density into more
than 300 levels and the average DNA methylation
was calculated for each level. Clear inverse correla-
tions were observed in 18 human tissues and 16
mouse tissues, and at 6 developmental stages in the
mouse (Figures 2(b) and S8). Such inverse correla-
tion was also observed along the gene body from
transcription start site (TSS) to transcription end
site (TES) (Figure 2(c)). The gene groups with
higher CpG density exhibited overall lower DNA

methylation. Along the gene body, CpG density
gradually went down, meanwhile DNA methylation
went up at almost the same pace as CpG density,
making them become mirror images of each other,
irrespective of whether the human (Figure 2(c)) or
mouse genome was observed (Figure S9). The win-
dow size used in the above analyses was 2500 bp and
it was of note that, in this sliding window analysis,
the inverse correlation between CpG density and
DNA methylation was independent of window size
used (Figure S10).

The sliding window approach is able not only to
globally reveal the inverse correlation between CpG
density and DNA methylation, but also to quantita-
tively measure the degree of such an inverse correla-
tion. CpG density exhibited a pattern of long low-
lying area occasionally intervened with sharp peaks,
which matched well with the pattern of DNAmethy-
lation of vast plateaus occasionally intervened with
deep valleys (Figures 2(d), S11 and S12). Putting
them together after unifying their scales, the peaks
of CpG density just wedged into the valleys of DNA
methylation (Figure 2(e)). We introduced the term
‘complementary index’ (CI) to systematically assess
how well CpG density matched with DNA methyla-
tion. Most CpG sites showed high complementarity,
with an average CI of 0.864 in human adrenal tissue
and 0.8273 in mouse lung tissue, with about 85.8%
and 78.1% CpG sites having CIs of no less than 70%
in human aorta and mouse bone marrow tissues
(Figure 2(f)). Interestingly, most non-complimentary
CpG sites were in gene promoter regions, particu-
larly in the mouse (Figure 2(g)), indicating the exis-
tence of some forces deviating promoter DNA
methylation from the expected pattern.

A genome-partitioning algorithm was developed
based on the complementarity between CpG
density and DNA methylation

Given the high complementarity between CpG
density and DNA methylation in most genome
regions, we conjectured that genome regions
enriched with uncomplimentary CpG sites might
have been specially preserved during evolution and
had important biological significance. To locate
potential regions, we developed a ‘complementar-
ity-based genome partitioning algorithm’ (CGPA)
that employed exponential function (see methods)
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to fit the overall trend of CpG density and DNA
methylation. Then, we utilized the deviation from
the fitted exponential curve (pcin Figure 3(a))
along with the relative differences of DNA methy-
lation and CpG density (pdin Figure 3(a)) to assign
each CpG site into four categories, Conflicts of
Gap (COG), Conflicts of Overlap (COO),
Harmony with Medium Values (HMV), and
Harmony with Extreme Values (HEV) (Figure 3
(a)). Here, harmony denotes that CpG density and
DNA methylation get along well with one’s valley

matching complementarily with another’s peaks or
vice versa (Figure S13(a-b)), while, conversely,
conflict denotes that CpG density and DNA
methylation does not get along so well, for exam-
ple, valleys (COG, Figure S13(c)) or peaks (COO,
Figure S13(d)) appear simultaneously for CpG
density and DNA methylation. The genome was
partitioned by searching for the consecutive
appearance of CpG sites of the same category
with a tolerance of two out-of-category CpG sites
(Figure 3(b)). Most of the genome was assigned to

Figure 2. Negative correlation and complementary matching between CpG density and DNA methylation. (a) Density map of CpG
density and DNA methylation. The scatter plot between CpG density and DNA methylation was converted to density map via two-
dimension kernel density estimation to avoid overploting. Chromosome 18 in mouse cerebellum tissue was used here. CpG density
was calculated as the occurrences of CpG sites in each 2500 bp sliding window. DNA methylation was calculated using the grand
method in each 2500 bp sliding window. The histograms of DNA methylation and CpG density are at the top and right respectively.
Cor denotes Pearson correlation coefficient. (b) The inverse correlation of DNA methylation for binned CpG density. Data were from
chromosome 15 of each of the 18 human tissues. Shown at upper right corner is the mean ± SD of Pearson correlation coefficient of
18 tissues. (c) The inverse correlation of DNA methylation and CpG density along gene body. All mouse known genes (n = 32,595)
were divided into 10 groups according to CpG density height of promoter regions, and each gene was further divided into 40 bins
along gene body from transcription start site to transcription end site. In each bin of each group, the average CpG density and DNA
methylation were calculated (d) Overall complementary matches in UCSC genome browser. DNA methylation (mouse bone marrow
tissue) and CpG density were shown separately for Watson (above the baseline) and Crick (below the baseline) strands. (e)
Complementary matches under one unified scale. Scales of DNA methylation and CpG density were unified to the range of 0 to
1 by modified Min-Max rescaling and plotted in one graph. (f) Histograms of Complementary index. Data were from chromosome 19
of aorta tissue and bone marrow tissue for human and mouse respectively. (g) Percentage of complementary (complementary index
>70%) and uncomplimentary (complementary index <70%) sites in promoter, intergenic and gene body regions in human and
mouse genome.
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harmonious regions, with HMV and HEV regions
occupying around 90% of the genome in most
tissues (Figure S14(a), Supplementary Table 2).
This is consistent with the fact that high comple-
mentarity exists between CpG density and DNA
methylation across the whole genome (Figure 2(d-
e)). Furthermore, the numbers of each type of
region detected in human and mouse were consis-
tent. Of the eight tissues available in both species,
thymus had the least number of COGs (13,782 and
9,796 for human and mouse, respectively), but the

most number of COOs (18,703 and 24,834). In
contrast, pancreas had the most number of COGs
(75,589 and 89,122), but the least number of
COOs (14,207 and 17,535) (Supplementary
Table 2). Pearson correlation coefficients of the
number of COG, COO, HEV between human
and mouse tissues reached 78.52%, 72.17%, and
52.83%, respectively (Figure 3(d)), demonstrating
that the CGPA approach based on complementar-
ity of CpG density and DNA methylation was
robust and species-independent.

Figure 3. Nonlinear modelling and algorithm development based on complementarity between CpG density and DNA methylation.
(a) Genome partition algorithm (see methods) by modelling the relationship between CpG density and DNA methylation with
nonlinear function. Complementary coefficient pcand differential coefficient pd were divided into three categories high (H, pd> 70%
quantile, pc> 70% quantile), medium (M, 20% quantile< pd < 70% quantile, 20% quantile< pc < 70% quantile) and low (L, pc< 20%
quantile,pd < 20% quantile) according to their distributions. Combining pc andpd , genome was partitioned into four types of regions:
Conflict of Gap (COG) regions, Conflict of Overlap (COO) regions, Harmony with Medium Value (HMV) regions, and Harmony with
Extreme Value (HEV) regions. (b) Partitioned regions snapshot from UCSC genome browser. Both single site and sliding window
representations are presented. In single site view, CpG sites are marked out by blue bars, methylation is the fraction of methylated
reads in total covered reads for each CpG site on Crick (above baseline) and Watson (below baseline) strands. In sliding window
view, CpG and methylation refer to CpG density and average methylation in each window on both strands. The four region types,
COG (green), COO (blue), HMV (cyan), and HEV (red) are labelled at the top. (c) The proportions in 18 human tissues of COO and COG
that coincided with various genome feature regions (3’UTR, 5’UTR, promoter, exon, intron). Coefficient of variations were calculated
as the ratio of standard deviation to mean in 18 tissues. (d) Positive correlations of the amount of HMV, COG and COO regions in the
eight tissues shared by human and mouse. (e) Unsupervised hierarchical clustering analysis of human and mouse tissues based on
DNA methylation level in COG and DMR regions. Tissues were colored to reflect the similarities of their normal functional or
developmental origins. Human and mouse DMRs were from the studies[6,34].
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We compared the distribution of COG and
COO in different genomic feature regions, such
as 3'UTRs, 5'UTRs, promoters, exons, introns,
and other regions. A high degree of variation of
COG distribution among 18 human tissues was
observed, especially in 5'UTR and promoter
regions (Figure 3(c)). On the contrary, COO dis-
tribution remained stable across different tissues
(Figure 3(c)). The coefficient of variation (CV) for
COG reached 28.3% and 22.3% for 5'UTRs and
gene promoters, respectively, while the highest CV
for COO was only 3.7% (Figure 3(c)). A similar
result was also observed in 16 mouse tissues
(Figure S15). This finding indicated that COG
might play an important role in regulating tissue-
specific gene expression, while COO may partake
in general roles in all tissues. Considering the
higher prevalence of COO in all 18 human tissues
and 16 mouse tissues in short interspersed nuclear
element (SINE) regions (Figure S14(b)), we spec-
ulate that COO is involved in suppressing SINE
jumping.

To further investigate the variability of COGs
among different tissues, unsupervised hierarchical
clustering analysis was performed according to
DNA methylation level of COG regions. Since
COGs are tissue dependent and were called sepa-
rately for each of the 16 mouse tissues, clustering
was also performed separately for each tissue
(Figures 3(e) and S16). The clustering results for
the 16 mouse tissues displayed high concordance.
In most cases, tissues with similar biological ori-
gins were clustered together, such as blood-produ-
cing tissues (spleen, thymus and bone marrow),
ectoderm-derived tissues (cerebellum, cortex, and
olfactory bulb), mesoderm-derived tissues (heart,
lung, kidney, uterus and skin), and endoderm-
derived tissues (colon, intestine, pancreas, stomach
and liver) (Figures 3(e) and S16). Interestingly,
similar clustering results were also obtained
according to 286,652 differential methylated
regions (DMRs) derived from the publication of
Hon et al. [33] (Figures 3(e) and S16). Clustering
analysis also shows high concordance among 18
human tissues and similar results were obtained
between COGs and DMRs (1,198,132, from
Schultz et al. [6]) (Figure 3(e) and S17). This
denotes that although COG regions were ten
times less frequent than those of DMRs, their

identification captured the majority of the tissue
methylation variations that would be detected by
several orders of magnitude more DMRs.

We then calculated Pearson correlation coeffi-
cient (PCC) between each pair of 16 mouse tissues
(a total of 120 combination pairs) according to
methylation level at COG or DMR regions
(Supplementary Table 3). The tissue pairs from
the same germ layers, such as spleen vs. thymus,
cortex vs. olfactory bulb, colon vs. intestine, and
heart vs. lung, showed the highest correlation for
both COGs and DMRs (Figure S18). The tissue
similarities determined by DMRs and COGs were
highly concordant for all the 120 combinations of
tissue pairs (Figure S19). Even higher concordance
was observed in human DMRs and COGs
(Supplementary Table 4, Figures S18 and S19).
These together demonstrate that although COG
regions were determined by the complementarity
of CpG density and DNA methylation, they could
achieve a similar level of tissue methylation differ-
entiation as DMR regions that were intentionally
located for the most varied CpGs.

Transcription start site-proximal COGs might be
involved in selective promoter usage

COGs exhibit high variabilities among different
tissues, indicated not only by their coincidence
with regulatory genomic elements (Figure 3(c)),
but also by their ability to correctly classify tissues
(Figures 3(e), S16 and S17), suggesting that COGs
play important roles in regulating tissue-specific
gene expression. To find out the COGs with the
highest potential of tissue-specific gene expression
regulation, we separated COGs into two groups,
variable COGs with methylation standard devia-
tion (SD) greater than 0.15 and stable COGs with
SD < 0.15 (Figure s4(a) and S20). The variable
COGs were further separated into TSS-proximal
COGs (tpCOGs) that may have direct effects on
gene expression and TSS-distal COGs (tdCOGs)
that may exert their effects in an indirect way
(Figure 4(b), Supplementary Table 5). Human
and mouse had similar number of stable COGs
(36,611 ± 3,293 for 18 human tissues and
36,921 ± 5,388 for 16 mouse tissues). However,
the number of variable COGs was significantly
higher (P = 0.0042, t-test) in human
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(3,974 ± 1387) than in mouse (2,739 ± 739), espe-
cially for tpCOGs (P = 4.55 × 10−11, t-test)
(Figure S21). This observation was consistent
with the whole-body epigenome analysis that iden-
tified more DMRs in human (1,198,132) than in
mouse (286,652). These results may infer a more
biologically relevant role of DNA methylation var-
iations in humans, as previously suggested by
DNA methyltransferase (DNMT) knockout
experiments in human embryonic stem cells [34].
Mouse embryonic cells with simultaneous disrup-
tion of three DNMTs have no detectable growth
defects while human embryonic cells with the dis-
ruption of only DNMT1 leads to rapid cell death
[13]. Although the number of various COGs were
significantly different between human and mouse
tissues, their distribution showed high concor-
dance. In the 8 common human and mouse tis-
sues, the PCC reached 0.7902 for stable COGs,
0.7711 for variable COGs and 0.7746 for tdCOGs
(Figure S22), suggesting a high evolutionary con-
servation of CpG density and DNA methylation
complementarity and the species-independent
robustness of our algorithm.

tpCOGs are located close to TSSs and exhibit high
variations among tissues (Figures 3(c), Figure 4(a-b)
and S20), indicating they may affect tissue-specific
promoter usage. This speculation was supported by
multiple layer epigenetic data, including histone
modification, RNA polymerase II binding, and
CAGE-measured 5'-end mRNA transcription
(Figures 4(c) and S23-25). Toak3 is a gene with
three TSSs in the mouse genome (Figures 4(c) and
S23). TSS-I is located in a CpG island and demon-
strates high CpG density and low methylation in all
tissues, indicating that it is constitutively expressed,
which is consistent with the enrichments of
H3K4me3 and RNA polymerase II (polII) signal,
and the relative amount of 5' mRNA transcription
determined by CAGE. TSS-II was identified as
COGs in three immune tissues, bone marrow,
spleen, and thymus. Consistently, TSS-II has inter-
mediate CpG density, low methylation in three
immune tissues, high methylation in other tissues,
and the enrichment of H3K4me3, RNA polII, and
CAGE signal, specifically in three immune tissues. In
contrast, TSS-III was identified as having COGs in
nervous system-related tissues, including cerebel-
lum, cortex, and olfactory bulb, and exhibited similar

features in these tissues as did TSS-II in immune
tissues (Figures 4(c) and S23). Similar results were
also observed in other genes, such as mouse gene
Elmo1 (Figure S24) and human gene RORC
(Figure S25).

To systematically study the role of tpCOGs in
tissue-specific TSS usage, genes with at least one of
their promoters overlapping with tpCOGs were
identified (Supplementary Table 6). In total,
1,067 genes were identified, most of which (851,
79.8%) possess more than 2 promoters. These
genes possess, in total, 5,567 distinct promoters,
of which 30% coincided with tpCOGs
(Figure S26). Each of the 216 single-promoter
genes showed coincidence with tpCOGs in one
or multiple tissues. For the genes with multiple
promoters, the fraction of tpCOGs-coincident pro-
moters exhibited high variations. Among the 73
seven-promoter genes, the fraction of genes having
one, two, three, four, six, or seven promoters coin-
ciding with tpCOGs were 55%, 23%, 14%, 4%, 1%,
and 3%, respectively. Similar results were obtained
among the 39 ten-promoter genes (Figure S27).
Genes with lower numbers of promoters usually
displayed a wider span for the fraction of tpCOG-
coincident promoters, ranging from around 10%
to 100% (Supplementary Table 6), and the differ-
ent fractions were discernible as distinct peaks on
density plots (Figure S28). However, peaks became
obscure and shifted to the lower fraction part in
the plots in genes possessing higher numbers of
promoters. (Figure S28).

The promoters coincident with tpCOGs often
displayed different behaviour from those not coin-
cident with tpCOGs. TGFB3 is a five-promoter
gene with one promoter (promoter 4) coinciding
with tpCOG in aorta tissue (Figure S29). The
tpCOG-coincident promoters (TCPs) showed the
lowest methylation in aorta tissue and exhibited
various methylation levels among the other 17
tissues. In contrast, methylation of tpCOG-incoin-
cident promoters (TICPs) were stable, regardless
of the presence of high (promoter 1–3) or low
(promoter 5) methylation levels (Figure S29). The
TCP had relative low number of CpGs, while the
number of CpGs in TICPs had a bimodal distribu-
tion, with hypermethylated promoters (promoter
1–3) having extremely low numbers of CpGs, and
hypomethylated promoters (promoter 5) having
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notably high numbers of CpGs (Figure S29).
Similar results were also observed in other genes
(Figure S29). Systematic analysis confirmed these
observations. TICPs exhibited either extreme high
or extreme low methylation, while TCPs had an
even distribution among tissues (Figure S30(a-b)).
Consistently, the active histone modification
H3K4me3 exhibited a bimodal distribution for
TICPs but a single peak for TCPs (Figure S30(c-
d)). At the same time, TCPs exhibited much
higher methylation variations (methylation differ-
ence reaching 0.667 on average), than TICPs
(methylation difference was 0.269) (Figure S30
(e)). CpG number of TCPs (mean = 24) were
close to hypomethylated TICPs (mean = 16), but
much lower than hypermethylated TICPs
(mean = 76) (Figure S30(f)). These findings indi-
cated that while tpCOG-coincident promoters dis-
played tissue-specific methylation and histone
modification, the promoters not coincident with
tpCOGs remained constant among tissues. Similar
results were obtained for mouse data, suggesting
these findings are species-independent.

To more thoroughly compare the behaviors of
TCPs and TICPs, we constructed a heatmap to
show the methylation of all TCPs (1,616) and
TICPs (3,951) in 18 tissues. The promoters were
sorted by CpG number and tissues were clustered
by Pearson correlation (Figure 4(d)). As expected,
methylation was low at high CpG density. However,
different from the consistent low methylation across
all tissues for TICPs, some tissues existed that dis-
played relative high methylation for TCP at high
CpG density, as indicated by the tissues of pancreas,
esophagus, aorta, and adrenal (Figure 4(d)).
Promoter methylation increased progressively with
the decreasing of CpG number and had high methy-
lation at low CpG density. Similarly, different from
the consistent high methylation across all tissues for
TICPs, some tissues displayed low methylation for
TCPs at low CpG density (Figure 4(d)). This diver-
gence was further confirmed by the maximum dif-
ference of promoter methylation among the 18
human tissues. While the maximum difference was
only around 0.269 for TICPs, it reached over 0.667
for most TCPs, consistent with the larger tissue-
dependent variations of TCPs (Figure 4(d)). Such
variation reflects the overall methylation fluctua-
tions, considering that COG-derived tissue

clustering patterns is highly concordant with the
ones generated from all human DMRs (1,198,132)
(Figure 3(e)). To rule out the possible impacts of
genes on their promoters, we selected the two-pro-
moter genes with one promoter belonging to TCP
and another to TICPs, and juxtaposed their methyla-
tions. The results were similar to the case where all
multiple-promoter genes were considered, indicat-
ing that despite coming from the same genes, TCPs
and TICPs still show different behaviors
(Figure S31). The high variation of TCPs reflected
the high variation of promoter activity among tis-
sues. H3K4me3, an indicator of promoter activities,
showed inverse correlation with DNA methylation,
gradually becoming weaker with decreasing CpG
density. The maximum differences of H3K4me3
among tissues were obviously higher in TCPs than
in TICPs (Figure 4(d)). Similar results were obtained
in mouse (Figures S32 and S33). These data together
indicate that tpCOGs play crucial roles in regulating
tissue-specific gene expressions.

tdCOGs exhibit the characteristics of regulatory
elements

Although tpCOGs play important roles in determin-
ing selective promoter usage (Figure 4), tdCOGs
comprise the major portion of variable COGs in
human and mouse tissues (Figures 4(b) and S21).
To determine the functionality of tdCOGs, we com-
pared different layers of genomic and epigenetic
features between tdCOGs, enhancers, and promo-
ters. The enrichment of transcription factor binding
sites is usually a prominent indicator of potential
regulatory elements. Examination of 243 transcrip-
tion factor binding motifs showed that tdCOG, pro-
moter, and enhancer have similar and significantly
higher transcription factor binding potentials than
random genomic regions in human adrenal (P < 1 x
10−100, t-test) (Figure 5(a)). High transcription factor
binding potentials of tdCOGs were consistently
observed in all 18 human tissues (Figure 5(b)).
DNase I accessibility is indicative of chromosome
states and its enrichment is an important indicator
of potential regulatory elements. The DNase
I-hypersensitive site (DHS) is highly enriched in
tdCOGs compared with random genomic regions
and reaches the same level of that observed for
enhancers and promoters in human adrenal tissue
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(Figure 5(c)). Furthermore, we also observed the
high enrichment of DHS in tdCOGs, enhancers,
and promoters in the other 17 human tissues

(Figure 5(d)). Sequence conservation represents the
ability of a sequence to survive the selective pressure
exerted by the evolutionary process. Generally

Figure 5. tdCOGs are potential gene regulatory elements. (a-b) The significant enrichment of transcription factor binding motif in
tdCOGs. We obtained transcription factor motif (n = 243) from the HOMER database and (a) counted their overlapping with tdCOGs,
promoters, enhancers, and random genomic regions in human adrenal tissue. (b) P values (t-test) between tdCOGs and random
genomic regions were calculated in each of the 18 human tissues and shown in empirical cumulative distribution plot. (c-d) The
significant enrichment of DNaseI hypersensitivity in tdCOGs. We downloaded DNaseI hypersensitivity sites from UCSC genome
browser and (c) counted their overlapping with tdCOGs, promoters, enhancers, and random genomic regions in human adrenal
tissue. (d) P values (t-test) between tdCOGs and random genomic regions were calculated in each of the 18 human tissues and
shown in empirical cumulative distribution plot. (e-f) Higher sequence conservations in tdCOGs. We downloaded sequence
conservation data from UCSC genome browser and (e) calculated the mean conservation scores in tdCOGs, promoters, enhancers,
and random genomic regions in human adrenal tissue. (f) P values (t-test) between tdCOGs and random genomic regions were
calculated in each of the 18 human tissues and shown in empirical cumulative distribution plot. The vertical dashed lines in (b, d, f)
mark the x-axis value of P = 0.01. Random genomic regions were selected for multiple times with the same number of tdCOGs
(n = 769). (g) Genome wide comparison of CpG density, DNA methylation, sequence conservation, transcription factor bind motif
and DnaseI hypersensitivity sites between tdCOGs (G) and HMVs (H) for human adrenal tissue in circos plot. The outmost circle
indicates the cytobands of 24 head-to-tail connected chromosomes. Bar height in each circle denotes signal intensity of the
corresponding chromosome features. (h) Genome wide comparison of histone modification signals between tdCOGs and HVMs for
human adrenal tissue in circos plot. (i-k) Enrichment of histone modifications in tdCOGs, promoters, and enhancers in human adrenal
tissue. The regions, after expanding half of their length upstream and downstream, were divided into 100 equal bins. ChIP-seq reads
falling in each bin were averaged. (l) Comparison of histone modifications between tdCOGs and enhancers in 18 human tissues.
Using promoters as standard, we calculated the fold changes of H3K4me1, H3K4me3, and H3K27ac signals in tdCOGs and enhancers
in all 18 human tissues and presented them after log2-transformation.

EPIGENETICS 731



speaking, the higher the conservation, the more fun-
damental a role the product or function this
sequence has in the maintenance of the organism.
Conservation analysis among 30 species showed that
the conservation level of tpCOGs is similar to that of
promoters, which, in turn, is higher than that of
enhancers (Figure 5(e,f)). To get a genome-wide
view of all these signals, Circos plots were created
for human and mouse tissues. Generally, COGs
exhibited CpG density at the similar level with, or
lower than, HMVs, which is consistent with our
algorithm for detecting COGs (Figures 5(g) and
S34). As expected, the overall methylation level in
COGs is lower than in HMVs (Figures 5(g) and S34).
On the contrary, conservation signals, transcription
factor binding motif, andDNase I hypersensitivity in
COGs are higher than in HMVs. This indicates that
tdCOGs are more likely to be at open chromosome
areas, are favorable for transcription factor binding,
and are evolutionary conserved, which together con-
fer tdCOGs a high gene-regulating potential. Similar
results were obtained in mouse tissues (Figures S35
and S36), further confirming this conclusion.

Histone modification signals in tdCOGs provide
extra evidence strengthening the concept that
tdCOGs are regulatory elements. As shown in
Figure 5(h), tdCOGs display coherently stronger
H3K4me1, H3K4me3, and H3K27ac signals than
HMVs in human adrenal and the 17 other tissues
(Figure S37). Comparative analysis indicated that
tdCOGs has more similar histone modification pat-
terns with enhancers, rather than promoters (Figure 5
(i-l)). H3K4me1 is a typical histonemodificationmar-
ker for enhancers. As shown in Figure 5(i), tdCOGs
exhibited similar levels of H3K4me1 to enhancers in
the human adrenal, which was higher than in promo-
ters and much higher than random genomic regions.
H3K4me3 is a typical histonemodificationmarker for
gene promoters. Consistently, promoters displayed a
stronger H3K4me3 signal than tdCOG or enhancers,
while these two elements had similar signal intensity
(Figure 5(j)). H3K27ac is a modification marker pre-
sent both in gene promoters and enhancers. As shown
in Figure 5(k), this modification displayed the stron-
gest signal on gene promoters, followed by tdCOGs
and enhancers. To systematically investigate the simi-
larity of tdCOGs and enhancers in different human
tissues, we calculated fold changes of themean histone
modification signals of tdCOGs and enhancers

relative to promoters (Figure 5(k)). For H3K4me1,
tdCOGs and enhancers were similar in all tissues,
but consistently displayed elevated signal compared
to promoters; for H3K4me3, tdCOGs, and enhancers
had much lower signal than that of the promoters,
with enhancers being a slightly stronger than tdCOGs;
for H3K27ac, tdCOGs and enhancers had relative
lower signals than promoters. The signal distribution
in enhancers and promoters of H3K4me1, H3K4me3,
and H3K27ac signal is consistent with the specific
roles that each histone modification plays. The high
similarity of tdCOGs and enhancers suggest that
tdCOGs may act as enhancers in the regulation of
gene expression. We further analyzed histone modifi-
cations in 16 mouse tissues (Figures S38 and S39).
Again, tdCOGs acted similarly as enhancers, but not
promoters, indicating the likeness of tdCOGs and
enhancers are species-independent. Similar analyses
were also conducted with tpCOGs (Figure S40). In
contrast to tdCOGs, tpCOGs acted similar as promo-
ters, but not enhancers.

tdCOGs regulate the expression of genes crucial
for tissue functioning

To find out the target genes regulated by tdCOGs, we
evaluated the correlation between H3K27ac signals in
tdCOGs and H3K4me3 signals in gene promoters
across 18 human tissues (Supplementary Table 7).
This target gene-determination approach is built
upon the assumption that distal regulatory elements
should possess similar chromatin states to their target
genes. In this study, H3K27ac signals were used for
distal regulatory elements and H3K4me3 signals were
used for gene promoters. This approach has been
proven to be superior to the nearest gene-assigning
method which assumes that regulatory element regu-
lates the nearest genes or CTCF-defined chromatin
domain method which assumes that regulatory ele-
ments and their genes are in the same chromatin
domain defined by CTCF-binding sites [35,36].
H3K27ac signals and H3K4me1 signals were highly
concordant in tdCOGs, while the intensity of
H3K27ac signals were consistently higher than
H3K4me1 signals (Figure S41). In human adrenal
tissue, 769 genes were identified as the target genes
of 66 tdCOGs in chromosome 1 (Figure 6(a)). High
correlations of histone modification existed between
tdCOGs and their target genes (PCC = 0.883 ± 0.0065
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for eight representative target genes, and 0.69 ± 0.0023
for all target genes), while only weak correlation
existed between tdCOGs and untargeted genes
(PCC=−0.423±0.0084 for eight representative untar-
geted genes, and 0.27 ± 0.0012 for all untargeted
genes) (Figure 6(a)). tdCOGs and target genes usually
existed in a multiple-to-multiple manner, i.e., one
tdCOGs could target multiple genes
(mean = 17.8 ± 0.21) and one gene could be targeted
by multiple tdCOGs (mean = 1.07 ± 0.002). In total,
91.5% (15,718) of tdCOGs targeted more than one
gene, and 27.2% (55,777) genes were targeted by
more than one tdCOGs (Figure S42).

To systemically determine whether the high cor-
relation of histone modification between tdCOG
and its target genes led to high transcription of
these genes, we compared the PCC between
tdCOG H3K27ac vs. promoter H3K4me3, and
tdCOG H3K27ac vs. target gene transcription
(Figure 6(b)). It can be clearly seen that active
tdCOGs marked by H3K27ac are often associated
with higher levels of gene expressions (Figure 6(b)).
The topologically associating domain (TAD) iden-
tified by Hi-C technology also provides extra evi-
dence for the targeting relationship between
tdCOG and the corresponding target genes. As
shown in Figure S43 a, a tdCOG locates in the
same TAD as its target gene LINC01133. The
tdCOGs exhibit typical features of regulatory ele-
ments with low CpG density, low DNA methyla-
tion, and abundant H3K27ac signals. PCC between
H3K4me3 signals in LINC01133 promoter and
H3K27ac signals in tdCOGs among 18 human tis-
sues reached 0.7746 (Figure S43(b)), which strongly
suggests a regulatory relationship.

To check whether target genes are associated
with the normal functioning of the corresponding
tissues, we explored the biological process terms
from gene ontology (GO) present in The Database
for Annotation, Visualization, and Integrated
Discovery (DAVID). In the left ventricle, the 225
target genes were highly enriched in the GO terms
associated with muscle, myofibril, and heart func-
tions, such as muscle structure development, myo-
fibril assembly, sarcomere organization, heart
development, and more (Figure 6(c)). Twenty-
eight of the top 30 terms were clearly related to
cardiovascular system (Figure 6(c)). Furthermore,
over 75% of the GO terms displayed clear

association with the function of the tissue of ori-
gin, even tracking down to the 60th term on the list
(Figure 6(c)). Similar levels of association were
observed in other human and mouse tissues
(Figure S44). These observations support the
hypothesis that tdCOGs play important roles in
regulating both distal gene expression and the
normal functioning of the respective tissues
where tdCOGs are located.

Discussion

The underrepresentation and distribution uneven-
ness of CpG dinucleotides have been previously
documented in various vertebrate genomes
[1,2,4,37,38]. Both traits of CpG dinucleotides have
close connections with DNA methylation. In con-
trast from the conventional methods that are merely
able to interrogate the methylation status of a few
CpG sites, or at most thousands of CpG sites, WGBS
provides unprecedented throughputs that enable us
to address the methylation status of the whole gen-
ome at base resolution [6,7,29,33]. This technique
offers us a new opportunity to extensively explore
the interactions between DNAmethylation and CpG
distributions. Meanwhile, the vast amount of data
brings up new challenges in developing high-effi-
cient data-mining algorithms to discover the under-
lying biological significances. In this study, we
developed a CGPA algorithm that employs a sliding
window approach. This algorithm summarizes the
methylation and density of nearby CpG sites
(Figure 2), utilizes exponential function to fit the
correlation of DNA methylation and CpG density
(Figure 3(a)), and takes advantage of the deviation to
the fitted curve for locating the ‘aberrant regions’,
i.e., the COGs with deficient complementarity and
COO with excessive complementarity (Figures 3(b),
S14 and Supplementary Table 2). By combining dif-
ferent layers of epigenetic datasets, we demonstrated
herein that COGs could play important roles in
regulating both proximally or distally tissue-specific
gene expression (Figures 4, 6,S23-25).

Interestingly, although both belonging to non-
complementary regions, COG and COO display dis-
tinct behaviors (Figure 3). The coincidence of COG
with genome feature elements vary among tissues,
especially in 5'UTR and gene promoters. However,
COO remains stable (Figures 3(c) and S15).
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Although it cannot be completely ruled out that the
higher variability of COG results from tissue-specific
somatic DNA mutations, this observation is consis-
tent with the biological functions each of them per-
formed. While COO might be crucial for
suppressing the promiscuous translocation of SINE
repetitive elements (Figure S14(b)), COGs were
involved in regulating the expression of tissue-spe-
cific genes (Figures 4 and 6). Impressively, COGs,
despite being present in lower amounts than DMRs,
could reach similar levels of tissue discrimination as
DMRs (Figure 3(e)). Given that COGs were identi-
fied based merely on the complementarity between
CpG density and DNA methylation, while DMRs
were intentionally identified by methylation differ-
ences among tissues [6,33], this finding indicates that
important biological information is carried by the
complementarity of CpG density andDNAmethyla-
tion. In fact, in early vertebrate evolution, such com-
plementarity might have resulted from selective
pressure to deliver a desirable gene regulatory pro-
file. DNA methylation primarily occurs in the CpG
context, and the methylated cytosines are known to
be prone to spontaneously mutate to thymine via
deamination, finally leading to global CpG paucity in
vertebrate genomes. The CpG sites that stay highly
methylated and are also exempt from deamination
may have important biological implications. These
CpG sites were usually identified as harmony regions
in this study (Figures 3(b) and S13). However, in
some tissues, probably due to the demands of reliev-
ing tissue-specific promoters or regulatory elements,
DNAmethylation was cleared or reduced, leading to
the appearance of COGs. This may explain why
COGs have important gene regulatory functions
(Figures 4 and 6), are highly variable among tissues
(Figures 3(c) and S15), and possess a similar cap-
ability to differentiate tissues as do DMRs
(Figure 3(e)).

Robustness is a necessary property for an algo-
rithm that is used to mine large biomedical data-
sets, otherwise, perturbations among tissues or
across species would generate unstable results,
and may therefore lead to erroneous conclusions.
The CGPA algorithm we developed herein would
appear to possess high robustness. In the eight
tissues common between human and mouse, the
quantity of regions identified by the CGPA algo-
rithm, including COG, COO, and HMV, show

high consistency (Figure 3(d)). Furthermore, the
subcategory of COGs, such as stable COGs, vari-
able COGs, and tdCOGs, also showed high con-
cordance among the shared tissues (Figure S22).
These findings suggested the CGPA algorithm has
high tolerance for the variations between human
and mouse methylome data.

Our analysis further indicates that human and
mouse may have different reliance on DNA
methylation for modulating gene expression.
Although comparable quantities of stable COGs
were identified in human and mouse, variable
COGs, as well as tpCOGs and tdCOGs, were
more abundant in human than in mouse
(Figure S21). In line with our findings, more
DMRs were found among human than mouse
tissues [6,33]. Supporting the theory that human
cells depend more on DNA methylation for gene
regulation, recent gene knockout experiments in
embryonic cells, using CRISPR/Cas9 genome edit-
ing technology, demonstrated that deletion of
DNMT1 resulted in rapid cell death of human
ESCs, while corresponding mouse DNMT1−/-

ESCs exhibited no obvious defects [13,34].
Previous methylome studies principally focused

on DMR genomic regions [3,7,28,29]. Many algo-
rithms have been published for detecting DMRs
between two methylomes, such as tissue A vs.
tissue B, or cancer vs. normal [39–43]. However,
it is extremely challenging to locate DMRs, espe-
cially to precisely define boundaries, in situations
where multiple methylomes are being analyzed
[39,41]. DNA methylation has the default pattern
of hypermethylation in CpG-poor regions and
hypomethylation in CpG-dense regions. In this
study, we systematically investigated this pattern
in different human and mouse adult tissues and
across different developmental stages (Figures 2,
S8 and S9). We introduced a ‘complementary
index’ to quantitatively assess the matching degree
between DNA methylation and CpG density
(Figure 2(f)), and developed the CGPA algorithm
to locate the deviated genomic regions (Figure 3).
The key concept behind our analysis is that we
regarded CpG density as the reference for different
methylomes. As a consequence, each methylome
can be compared with the reference methylome
separately, and then the results are summarized
to find the target regions across multiple
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methylomes. The advantage of this strategy in
biological significance mining has been demon-
strated by the identification of tpCOGs and
tdCOGs and the confirmation in this study of
their gene regulating functions.

The CpG density-centered approach in this
study is different from the traditional CGI-cen-
tered approach. The CpG density-centered
approach takes into account every single CpG
site, no matter whether it is located in CpG-
dense or CpG-sparse region, thus making it possi-
ble to conduct continuous analysis along the gen-
ome. In contrast, CGI-centered approach is block-
wise, attracting most of the attention to CpG-
dense regions while neglecting the vast genome
areas with low or intermediate CpG densities.
Giving that latest sequencing technology can
determine the methylation level of all CpG sites,
such neglect is obviously not advisable.

Materials and methods

Datasets obtained from online resources

For mouse tissues, the WGBS methylome data were
downloaded from GEO accession GSE42836, the
ChIP-seq data and RNA-seq data were downloaded
from GSE29184. For human tissues, the WGBS
methylome data along with the corresponding
ChIP-seq data and RNA-seq data were downloaded
from GEO accession GSE16256 (SRA SRP000941).
The mouse dataset contains 16 different tissues
(GSM1051150 for bone marrow, GSM1051151 for
cerebellum, GSM1051152 for colon, GSM1051153
for cortex, GSM1051154 for heart, GSM1051155
for intestine, GSM1051156 for kidney,
GSM1051157 for liver, GSM1051158 for lung,
GSM1051159 olfactory for bulb, GSM1051160 for
pancreas, GSM1051161 for placenta, GSM1051162
for skin, GSM1051163 for spleen, GSM1051164 for
stomach, GSM1051165 for thymus, GSM1051166
for uterus) [34] and the human dataset contains 18
different tissues (SRX388739 aorta, SRX388738
adrenal, SRX263874, SRX213279 bladder,
SRX388732 fat, SRX190156, SRX263888,
SRX263889 gastric, SRX388734 Lung, SRX213280
liver, SRX263876, SRX263875 left-ventricle,
SRX263879, SRX190152 ovary, SRX388743 pan-
creas, SRX388735 psoas, SRX263891, SRX263890,

SRX190159 right-atrlum, SRX388736 right-ventri-
cle, SRX388747 small-bowel, SRX388737 spleen,
SRX190151, SRX263878 thymus) [6]. Cap analysis
of gene expression (CAGE) signals [44] and the
predicted promoters are also incorporated during
our analysis. CAGE allows measuring the expression
of eukaryotic capped RNAs and simultaneously map
the promoter regions All the CAGE data were
obtained from FATOM5 database (http://fantom.
gsc.riken.jp/5/). The dataset for motif analysis
came from HOMER [45] database (http://homer.
ucsd.edu/homer/). To perform DNase1 hypersensi-
tivity analysis and sequence conservation analysis,
the corresponding datasets were extracted and
downloaded from UCSC genome browser [46]
using the Table Browser data retrieval tool [47].

WGBS data processing

WGBS data were processed by Methylation Table of
Base Resolution (MTBR) pipeline, an inhouse-
developed tool available at https://github.com/
DMU-lilab/mtbr-pipeline. MTBR utilizes segemehl
[48] as the core to perform bisulfite-treated short
read mapping followed by automatically removing
of the wrong mapping reads and extracting of DNA
methylation information. Here, we used mouse
(mm9) and human (hg38) as reference genomes
that were downloaded from UCSC genome browser.

Observed-to-expected ratio (O/E) of dinucleotides

Given a dinucleotide XpY where, the observed-to-
expected ratio [49] was calculated by dividing the
proportion of the XpYdinucleotide in the genome
by what is expected by chance when Xand Y bases
are assumed to be independent outcomes of a
multinomial distribution. The formula used was

O=EXY ¼
#XpY
N

#X
N � #Y

N

# (1)

where#XpY, #X, #Y , Nare the number of XY
dinucleotide, number of X base, number of Y base
and total number of bases in the segment of con-
sideration. In this study, Nreferred to the whole
genome length of various species.
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2D visualization of dinucleotide distribution with
Hilbert curve

2D visualization of the genome-wide distribution of
dinucleotides, such as CpG and ApT, was performed
using Hilbert method [50,51]. 1D occurrence vectors
of dinucleotides on genomes of different species or
its partial segments were extracted, and were used as
inputs to produce 2D Hilbert visualization maps. All
these steps were done within the package
HilbertCurve [51] of R, a language and environment
for statistical computing and graphics.

Dinucleotide distance distribution

We calculated the distances (bp) between a dinu-
cleotide site and its nearest k-th dinucleotide site
of the same type. For example, if k = 25 and
dinucleotide is CpG, the distance refers to the
number of nucleobase pairs between a CpG and
its following 25th CpG. Histograms of these dis-
tances were generated to illustrate the evenness of
dinucleotide distribution along the genome.

CpG density

CpG density d0 is defined as the number of CpG
sites within a sliding windowLsw. Sliding window
was done by moving one base pair each time along
the chromosome from start to end. The Lsw sizes
of 2500 bp was used in this study unless otherwise
indicated.

DNA methylation level

Methylation level of each CpG site s0 is repre-
sented by the fraction of methylated reads in
total covered reads, and was calculated by

s0 ¼ NC

NC þ NT
# (2)

where NCis the number of Cytosine bases and NT

is the number of Thymine bases at the site of
interest. Cytosine base here stands for methylated
cytosine, since it remains as cytosine after bisulfite
treatment; Thymine base stands for unmethylated
cytosine, since it was converted to thymine by
bisulfite treatment. The methylation levels of a
genomic region, including COGs, promoters,

exons, introns, sliding windows, were calculated
by the grand method:

s0 ¼
P

NCP
NC þP

NT
# (3)

CpG density and DNA methylation rescaling

Modified Min-Max rescaling method was applied
to make CpG density and DNA methylation levels
comparable. Rather than using the maximum
value as the rescale upper limit, 90% quantile was
adopted to eliminate the side effects of outliers
originating from sequencing and mapping errors.
Herein, methylation is not confined to CpG sites,
but extended to every site in the genome by the
use of the sliding window approach. The methyla-
tion of a site refers to the grand methylation level
(see equation 3) of the window centered at that
site.

The rescaling formula used in our study is

zi ¼ xi �min xð Þ
quantile 90%; xð Þ �min xð Þ# (4)

where x is the value to be rescaled.

Complementary index

Rescaled CpG density d and methylation level s
shows some sort of mirror symmetry. We intro-
duced complementary index (CI) to quantitatively
measure this relationship. CI was calculated as

CI ¼ 1� 1� sþ dð Þj j# (5)

Genome partition algorithm (CGPA)

CpG density d and DNA methylation level s are
negatively correlated. However, dand s do not have
a simple linear relationship but rather a very com-
plicated one. To precisely describe the relationship
between CpG density and DNA methylation level,
a nonlinear model is proposed to fit the relation-
ship between CpG density and DNA methylation
level

d ¼ f sð Þ ¼ �k0e
�k0d þ d0# (6)

where k0 and d0 are parameters that should be
determined during data fittings.
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Generally, most of the data points are located
around the fitted curve. Data points far away from
the fitted curve are the most relevant to this study.
To assign each genome site to one of the four
categories, COG, COO, HMV and HEV, we intro-
duced the concepts of complementary coefficient
pc and differential coefficientpd. Complementary
coefficient is used to describe the distance between
CpG sites and the nonlinear curve in hs; di vector
space, and differential coefficient is used to
describe the relative difference between s andd.
The formulas used to calculate pc and pd are

pc ¼ cs � c0# (7)

where

cs ¼ f 0 sð Þ ¼ �k0e
�k0s# (8)

and

pd ¼ s� d
sþ d

�
�
�
�

�
�
�
�# (9)

respectively.

Searching for the regions of COG, COO, HMV,
and HEV

The whole genome was partitioned into COG,
COO, HMV and HEV regions according to the
pc and pd values. In this study, genome partition
was systematically established by first assigning
each nucleotide site a label of one of the four
categories (COG, COO, HMV, and HEV) and
then applying Run-length encoding (RLE) algo-
rithm to find the regions. Category of each site
was determined by the levels of pc and pd which
were partition into high (H), medium (M) and
low (L) by the 20% and 80% quantiles of their
distributions. Rules of how each kind of category
were assigned is shown in the attached table in
Figure 3.

To limit the false positives and decrease the
computation costs in our analysis, COGs and
COOs were further filtered with the methylation
level of COGs being lower than 0.65 and COOs
being higher than 0.75.

ChIP-seq and RNA-seq data processing

Mouse and human ChIP-Seq reads were aligned to
the reference genome mm9 and hg38 with Bowtie2
respectively [52]. Peaks were called using MACS
software [53]. RNA-Seq data were aligned to the
reference genome mm9 and hg38 with TopHat
software [54]. Expression value for Refseq gene
was calculated with Cufflinks software [55].

Predicting the target genes of tdCOGs

Target genes of tdCOGs were predicted according to
the correlation between dynamic regulatory activity
and gene expression across multiple tissues. Both
prediction and validation steps were adopted in
this study. In the predication step, H3K27ac signals
and H3K4me3 signals were used to represent reg-
ulatory element activity and gene expression activ-
ity, and in the validation step H3K27ac signals and
RNA-seq derived FPKM values were used, respec-
tively, for human tissues. Due to the unavailability
of some datasets in mouse tissues, we substituted
H3K4me1 for H3K27ac and ChIP-seq derived PolII
for FPKM. To make the results more reliable,
H3K27ac signals greater than 50 and H3K4me1
greater than 30 were kept in our analysis. Genes
are thought to be regulated by tdCOGs when the
corresponding correlation coefficient is greater than
0.6. According to the latest research on 3D genome,
regulatory elements and their target genes are
usually located in the same topologically associated
domain (TAD) [56–58]. In our study the distances
between tdCOGs and their target genes were con-
fined to be less than 5 Mbp, which is within the
anticipated range for TAD.
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