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Abstract

Current clinical treatment regimens, including many emergent immune strategies (e.g. checkpoint 

inhibitors) have done little to affect the devastating course of pancreatic ductal adenocarcinoma 

(PDA). Clinical trials for PDA often employ multi-modal treatment, and have started to 

incorporate stromal-targeted therapies, which have shown promising results in early reports. 

Focused ultrasound (FUS) is one such therapy that is uniquely equipped to address local and 

systemic limitations of conventional cancer therapies as well as emergent immune therapies for 

PDA. FUS methods can non-invasively generate mechanical and/or thermal effects that capitalize 

on the unique oncogenomic/proteomic signature of a tumor. Potential benefits of FUS therapy for 

PDA include: 1) emulsification of targeted tumor into undenatured antigens in situ, increasing 
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dendritic cell maturation, and increasing intra-tumoral CD8+/ T regulatory cell ratio and CD8+ T 

cell activity; 2) reduction in intra-tumoral hypoxic stress; 3) modulation of tumor cell membrane 

protein localization to enhance immunogenicity; 4) modulation of the local cytokine milieu toward 

a Th1-type inflammatory profile; 5) up-regulation of local chemoattractants; 6) remodeling the 

tumor stroma; 7) localized delivery of exogenously packaged immune-stimulating antigens, genes 

and therapeutic drugs. While not all of these results have been studied in experimental PDA 

models to date, the principles garnered from other solid tumor and disease models have direct 

relevance to the design of optimal FUS protocols for PDA. In this review, we address the pertinent 

limitations in current and emergent immune therapies that can be improved with FUS therapy for 

PDA.
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Introduction

Pancreatic cancer responds poorly to many conventional and emergent immune therapies

Pancreatic ductal adenocarcinoma (PDA), commonly known as pancreatic cancer, typically 

presents as metastatic or unresectable disease and has an overall 5-year survival rate of less 

than 8% [1]. It has recently been estimated that by 2030, PDA will be the second most 

common cause of cancer-related mortality – indicating the limited impact of cancer therapy 

research to date on the clinical course of the disease [2]. The poor response of PDA to 

conventional therapies is thought to be in part due to a dense matrix of tumor stromal cells 

that fosters: 1) high interstitial fluid pressure (~99mmHg, versus 10mmHg in normal 

pancreas), that results in collapsed vasculature and hypoxia, and 2) an immunosuppressive 

microenvironment, impeding the endogenous immune system from eradicating the tumor 

[3–9]. Exogenous immune-modulating immunotherapies have garnered significant attention 

in recent years due to early successes in clinical trials for treatment of hematologic cancers 

and a limited number of solid tumors (e.g. melanoma, non-small-lung cancer, clear cell renal 

cell carcinoma, head and neck squamous cell carcinoma, urothelial cancer), but have unique 

obstacles to overcome in treatment of many other solid tumors, including PDA [10]. Clinical 

trials of many emergent immune strategies, such as immune checkpoint inhibitors and 

treatments targeting macrophages and myeloid-derived suppressor cells, have yielded few 

objective responses in PDA patients [11–16].

The importance of immune infiltrate, hypoxia, and the PDA stroma

Tumor-antigen specific, endogenous CD8+ T cells are often present in the circulation and 

bone marrow of PDA patients, and CD8+ T cells capable of T helper (Th)-1, anti-tumor 

functional response (e.g. IFN-gamma) dominate the immune cell infiltrate of resected tumor 

specimens [8, 16–20]. These latter findings contrast with those observed in genetically 

engineered mouse models of PDA, where CD8+ T cells remain relatively scarce within the 

tumor compared to immunosuppressive cells [9, 21–24]. This discrepant picture of the 

immune response may be due to the relatively rapid tumor development after oncogene 
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activation in genetically engineered animals versus the prolonged genetic evolution of 

human PDA [25]. Regardless, despite the presence of an effector T-cell-rich infiltrate in 

human tumors, meaningful anti-tumor activity is most commonly not observed. For a 

graphical overview of the categorization of immune therapies employed in the treatment of 

PDA, please see Figure 1.

Notable barriers to effective cytotoxic T-cell activity in PDA tumors include: 1) the poorly 

vascularized, profoundly hypoxic and acidic tumor microenvironment and advanced 

desmoplastic stroma that correlate with more aggressive tumor phenotypes [26–32]; 2) the 

immunosuppressive activity of FOXP3+ regulatory T cells (Treg), CD11b+ myeloid-derived 

suppressor cell (MDSC), and tumor-associated macrophages (TAM) within the PDA stromal 

matrix [33]. Increased hypoxia [34–36], and increased ratio of immunosuppressive versus 

effector memory CD8+ T cells [17, 33] are poor prognostic indicators in PDA, and are 

closely inter-related. Hypoxic zones within tumors have been shown to: 1) foster localized 

accumulation and differentiation of immune inhibitory cell lines (e.g. Treg, TAM, MDSC) 

[37]; 2) promote immunosuppressive activity such as selective upregulation of PD-L1 

expression on MDSCs and tumor cells [38, 39]; 3) decrease production of IFN-gamma and 

IL-2 [40, 41]; 4) diminish cytotoxic T-cell performance with tumor microenvironments in 
vivo [42–46]. Indeed, accumulation of intracellular hypoxia-inducible factors (e.g. HIF-1α) 

are correlated with poor tumor differentiation and fibrotic foci in PDA [47, 48] and have 

been shown to promote pancreatic cancer stem cell (CSC) expansion, including CD133+ 

CSCs that are known to determine the metastatic phenotype of individual tumors through 

HIF-1α-dependent activation of the Notch signaling pathway [34, 49–53]. Treatments that 

decrease the hypoxic stress of the PDA microenvironment could significantly improve 

endogenous immune responses and immunotherapy efficacy, and have also been shown to 

improve response to radiotherapy and chemotherapy [53–55].

Tregs play a particularly important role in modulating the immune activity in the PDA 

microenvironment. There is debate and ongoing research regarding the most important 

features of Tregs and their interactions that help to enable tumor evasion of immune 

eradication; however expansion of Tregs in peripheral blood and tumor tissue has been 

shown to correlate with poor prognosis [56–58]. Th1 (T-bet+), Th2 (GATA-3+), and Th17 

(ROR-gamma-t+) have recently been shown to be not only T helper subtypes, but also 

dynamic phenotypes of Treg cells [59, 60]. GATA3 expression has been shown to be critical 

to Treg functions during inflammation, and PDA is associated with chronic inflammation 

[61, 62]. The ratio of GATA3+/T-Bet+ infiltrating-lymphoid cells in human PDAs has been 

shown to correlate inversely with survival, implying an association between Th2 dominance 

(increased IL-5 and IL-13 levels) and disease progression [63–65]. In addition, patients with 

PDA have expanded peripheral ROR-gamma-t+ Tregs that induce both Th17 (e.g. IL-17, 

IL-6) and Th2 (e.g. IL-4, IL-13, IL-33) responses – effectively suppressing anti-tumor T cell 

activity while promoting chronic inflammation [60]. This finding correlates with resected 

human PDA specimens demonstrating expanded intra-tumoral Tregs and Th17 cells [17]. 

Thus the hybrid, dynamic, Th17/Th2-response-inducing Treg phenotype appears to be an 

important pro-carcinogenic driver of the PDA immuno-microenvironment [66].
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PDA stromal remodeling strategies, such as selective depletion of specific subsets of 

immune-suppressor cells within the tumor stroma, have promoted endogenous T cell activity 

against PDA in genetically engineered pre-clinical models, and unmasked the benefit of 

complimentary checkpoint-inhibitor therapy [21, 22, 67]. These results are distinctly 

different from efforts to selectively ablate stromal fibroblasts, which appeared to evoke a 

more aggressive disease [68, 69], but similar to those achieved with targeted depletion of 

hyaluronic acid (HA; a naturally occurring glycosaminoglycan that is produced by PDA 

cells and is highly concentrated in the tumor extracellular space). Decreasing intra-tumoral 

HA concentration via intravenous recombinant enzyme administration lowered interstitial 

fluid pressure, increased intra-tumoral vessel diameter, improved chemotherapy delivery, 

and significantly prolonged survival in KrasLSL-G12D/+;Trp53LSL-R172H/+;p48Cre/+ (KPC) 

mice (a genetically engineered model of PDA known to closely mimic the human disease) 

[5, 70]. In a recent phase 1B clinical trial, enzymatic HA depletion doubled overall survival 

when combined with chemotherapy in patients with high HA, stage IV PDA [4]. In addition, 

as described in greater detail below, a recent phase 1 clinical trial of relatively low-intensity 

focused ultrasound (FUS) therapy designed to minimize thermal effects, directed at the 

tumor and stroma in combination with chemotherapy, doubled median overall survival in 

patients with inoperable PDA versus chemotherapy alone [71]. Thus, stromal-targeted 

therapies appear to be an important component of evolving multi-modal PDA treatment 

regimens. The mechanisms underlying the efficacy of adjuvant stromal-targeted treatments 

are incompletely understood, but may be driven by reduction of intra-tumoral interstitial 

fluid pressure (e.g. targeted HA reduction), anti-tumor immune effects (e.g. selective 

immune- suppressor cell depletion), or a combination of these two (e.g. FUS therapy).

Passive Specific Immune Therapies

“Passive specific” immune therapies are exogenously engineered or expanded with tumor-

specificity, and passively infused to mediate immediate anti-tumor immune activity. These 

include engineered or expanded tumor-specific T cells and antibodies. Ex-vivo expansion of 

endogenous anti-tumor T cells for adoptive transfer is discussed in greater detail below. 

Adoptive transfer of genetically engineered T cells, incorporating either a cloned T cell 

receptor (TCR) or synthetic chimeric antigen receptor (CAR), can improve anti-tumor 

immune function, and (with careful selection of target antigens) cause minimal off-target or 

on-target-off-tumor toxicity. Recent advances in high-throughput patient lymphocyte testing 

as well as sequencing of tumor transcriptomes and whole-exomes have enabled wide survey 

of tumor-specific antigens recognized by autologous T cells and facilitated a surge in clinical 

implementation of adoptive cell transfer [72]. CAR T cells directed against the B cell surface 

receptor CD19 have been effective in treating leukemia and lymphoma in early clinical trials 

[73–78], and research to translate this success to solid tumor models, including PDA, is 

gaining momentum.

MUC1 and mesothelin are two PDA-associated antigens that have been targeted with 

adoptive therapies. An early clinical trial in Japan employed adoptive transfer of 

peripherally-derived MUC1 targeted cytotoxic T cells for post-operative treatment of 20 

patients with resectable PDA. They observed a 19.4% 3 year median overall survival, 

increased peripherally circulating cytotoxic T cells, and decreased peripherally circulating 

Maloney et al. Page 4

Int Rev Immunol. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tregs (p<0.05) [79]. Similarly targeted CAR T cells have now been developed in the United 

States and were successfully employed in subcutaneous PDA mouse models [80]. 

Endogenous CD8+ T cell titers with activity specific to mesothelin have been correlated with 

longer overall survival times in patients with advanced PDA [81, 82]. Engineered T cells 

with an affinity-enhanced TCR for mesothelin have been employed pre-clinically in KPC 

mice. Despite relatively transient anti-tumor activity, with bi-weekly, serial infusions, 

adoptive transfer of these cells in a blinded, placebo-controlled study in the KPC model led 

to: 1) stromal involution (including death of fibroblasts), 2) improved vessel patency, and 3) 

doubled overall survival time, without evidence of significant off-tumor tissue injury [23]. 

Results such as these have laid the foundation for multiple phase I/II clinical trials. 

Additional trials are currently recruiting patients to study the effect of tumor infiltrating 

lymphocytes in advanced cases of solid tumor-based malignancies that include pancreatic 

cancer [83, 84].

Active Specific Immune Therapies

“Active specific” immune therapies include vaccines and immunomodulatory agents 

designed to eventually lead to expansion of endogenous tumor-specific T cells. Numerous 

“cancer vaccines” have been employed for treatment of PDA – modest successes have been 

seen in early trials of whole-cell, dendritic cell and telomerase peptide vaccines (see two 

recent excellent reviews on this subject for more comprehensive discussion) [85, 86]. The 

most relevant example to the topic of this review is “whole cell” vaccine, designed to bolster 

the endogenous immune response by recruiting the host’s antigen presenting cells (APCs) to 

the site of vaccination for T cell cross-priming / MHC class I presentation of a broad array 

of tumor antigens. For PDA treatment, these agents have had modest successes. In phase I/II 

clinical trials, intra-dermal vaccination of advanced-PDA patients with two irradiated, 

allogeneic pancreatic tumor cell lines, genetically engineered to secrete granulocyte-

macrophage colony-stimulating factor to induce chemotaxis of APCs to the injection site 

has: 1) “Primed” T cells against a broad array of PDA antigens, including mesothelin [81, 

82, 87, 88]; 2) significantly prolonged patient survival (from 4.6 to 9.7 months) when 

combined with low-dose cyclophosphamide and a “booster” of recombinant bacterial-vector 

for mesothelin expression in the cytosol of infected APC’s [81]. A proposed mechanism for 

this latter study result from Le et al is induction of T cell trafficking from the periphery to 

central tissues by stimulatory cytokines released in response to the bacterial vector [81, 89]. 

A recent Phase 2b trial examining this same mesothelin “boosted” vaccine, however, 

revealed no significant difference in overall survival versus standard of care, and an ongoing 

trial is now examining its benefit in combination with a checkpoint inhibitor [90, 91]. While 

most human PDAs express mesothelin, and this is often used as a marker of tumor specific 

immune response, the degree of overexpression remains highly individualized. PDAs have 

relatively few coding mutations compared to more immunogenic cancers, and a recent study 

of genome-wide mutations from 99 informative PDA tumors revealed substantial 

heterogeneity [92, 93]. These factors provide significant challenge to the formulation of a 

single effective exogenous “vaccine” to bolster anti-tumor endogenous immune activity for 

PDA patients.
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Non-Specific Immune Therapies and Immunomodulation

As early as the 1990’s, clinical trials in Japan employed non-specific, activated peripheral 

lymphocytes for adoptive therapy in patients with advanced cancer, including PDA [94]. 

This practice has evolved with technologic advances enabling more tumor-specific adoptive 

therapies (as described above) but other non-specific immunomodulatory therapies, such as 

checkpoint inhibitors, have gained favor. As previously discussed, Th2/Th17 Treg activity 

represents a significant barrier to effective anti-tumor immune response and 

immunotherapies for PDA. Agents that promote Th1-type anti-tumor inflammatory activity 

(e.g. IFN-gamma) versus Th2-type immunosuppressive activity within the tumor 

microenvironment may greatly expand the therapeutic potential of PDA specific 

immunotherapies [16, 95–98]. By modulating the background CD4+ T cell population 

response, “immune priming” strategies might allow for rescue of CD8+ T cell anti-tumor 

activity, greater anti-tumor effect of passive specific therapies, and more durable immune 

response toward tumor eradication. For example, combining agonist CD40 monoclonal 

antibodies (designed to foster APC maturation and up-regulate Th1 chemokine expression) 

with chemotherapy and checkpoint inhibitors has improved endogenous CD8+ T cell-

mediated tumor rejection and long-term tumor free survival in both subcutaneous, and 

genetically engineered PDA murine models [67, 99].

Beyond direct cytotoxicity, both passive and active specific immune therapies can also elicit 

anti-tumor systemic immunomodulation. A recent meta-analysis of specific immunotherapy 

trials employed in treatment of pancreatic cancer revealed that circulating IFN-gamma levels 

were significantly higher post-treatment versus pre-treatment (4 trials with 81 patients; 

pooled mean difference of 3.75 IU/mL; p=0.01), and circulating IL-4 levels were 

significantly lower (2 trials with 55 patients; pooled mean difference of −1.85 IU/mL; 

p<0.0001) [100]. Anti-tumor immunomodulatory effects are most likely maximized with 

multi-modal non-specific and specific immune therapies. Indeed, many of the shortcomings 

of tumor specific immunotherapies (e.g. poor or heterogeneous expression of immunogenic 

antigens, local immunosuppressive mechanisms) may be overcome by appropriate 

combination with non-specfic therapies [101], or therapies that demonstrate both specific 

and non-specific effects, such as focused ultrasound.

Focused Ultrasound Treatment for Pancreatic Cancer

Thermal ablation—Please see Figure 2 for a schematic overview of the mechanisms that 

focused ultrasound (FUS) therapy employs to achieve anti-tumor effects. Thermally-ablative 

(coagulative-necrosis inducing) FUS has long been used clinically outside the United States 

as both primary and palliative therapy for pancreatic cancer. The majority of reported 

treatments have taken place in China since the late 1990’s, and more recent case series have 

emerged from Korea, Japan, and European groups [103]. Typical study endpoints have 

included safety and feasibility confirmation, tumor volume reduction, and pain relief [104–

110]. A comprehensive review of all clinical treatment series employing palliative FUS 

therapy for pancreatic cancer treatment is beyond the scope of this paper; but we direct the 

reader to an excellent recent meta-analysis by Dababou et al that examined 23 studies on this 

topic and showed an overall pain reduction in 81% of treated patients (95% CI: 76–86) 

[111]. A recent, moderately powered (n=689) retrospective analysis from China revealed an 
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independent median overall survival benefit from ablative FUS treatment for patients with 

unresectable PDA who also received a variety of multi-modal treatment regimens, without 

severe adverse events (7.1 versus 5 months; p=0.005) [112]. A smaller retrospective series 

(n=38) from China found that an ablative FUS protocol with prolonged lower-power heat 

deposition had a greater median overall survival benefit versus a rapid heating protocol (10.3 

versus 6.0 months; p=0.018) [113]. A small number of randomized clinical trials have 

examined the survival benefit of ablative FUS therapy. Li et al recently reported significant 

improvement in median overall survival time and progression-free survival (10.3 versus 6.6 

months; n=120; p<0.001) in patients with unresectable PDA randomized to receive ablative 

FUS treatment and chemotherapy, versus chemotherapy alone [114]. A smaller randomized 

clinical trial by Lv et al found similar survival benefit (8.9 versus 5.5 months median overall 

survival; n=45; p<0.05) [115]. While these results are encouraging, multiple recent 

systematic reviews have found a relative paucity of randomized clinical trials evaluating the 

clinical survival benefit achieved with FUS ablative therapy for pancreatic cancer. Further 

studies are needed to improve the quality of evidence for its appropriate inclusion in 

multimodal treatment regimens [116–118].

In addition to the locally destructive thermal effects of FUS, recent data suggests potential 

immunomodulatory effects of FUS for PDA. Specifically, in a small series (n=15) of patients 

with advanced PDA by Wang et al, post-FUS-treatment blood samples showed increased 

percentages of circulating CD3+, and CD4 T cells (in 66% of patients), a higher CD4+/CD8+ 

T cell ratio, and enhanced NK cell activity [119]. These findings were confirmed in a recent 

meta-analysis of 3022 clinical cases of FUS-thermally-ablated PDA [120]. One possible 

mechanism to explain these findings it that thermal ablation delivers sub-lethal heat 

exposure to peripheral, surviving tumor cells and can thus cause upregulation and surface 

expression of heat shock proteins (HSPs). HSPs are intracellular molecular chaperones that 

can bind tumor peptide antigens and have long been recognized as potent stimulators of 

tumor immunogenicity via antigen-presenting cells of the endogenous immune system 

(dendritic cells, macrophages, CD4+ T cells) [121–127]. Although studies of HSP 

expression specific to pancreatic cancer cell lines have not yet been published, preliminary 

results have been presented, and this topic is being actively pursued [128].

The abscopal effect—Orsi et al recently presented preliminary results from a small 

clinical series where they observed diminished size in tumor metastases (the abscopal effect) 

following local thermally-ablative, palliative FUS treatment of patients with advanced PDA 

(4/46 patients) [129]. Similar effects have been observed by others [114, 130–132]. In all 

cases, patients received systemic chemotherapy concurrently with FUS treatments, but 

chemotherapy had been ineffective prior to initiation of FUS therapy. In theory, such 

systemic responses could be due to the above described favorable, local and systemic 

immunomodulatory effects observed following FUS therapy, however strong and durable 

immune responses have not been observed following tumor ablation as monotherapy in 

clinical trials.

Beyond thermal ablation—FUS treatment settings (e.g. pulse duration and repetition 

frequency, acoustic power, focal pressure, transducer frequency) can be customized to 
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achieve a variety of effects in target tissues. Indeed, the versatility of FUS is what sets it 

apart from alternative methods for targeted coagulative necrosis (e.g. radiofrequency, 

microwave, laser). Predominantly pre-clinical study of FUS treatment for pancreatic cancer 

has advanced beyond thermal ablation. Modern FUS transducers can precisely (at ~1mm 

focus), non-invasively generate targeted, sub-ablative hyperthermia, as well as mechanical 

and pressure-related effects (such as cavitation of gas and vapor bubbles, acoustic radiation 

force, and microstreaming) to achieve several desirable results in the treatment of PDA, 

including those summarized in Figure 2 and Table 1. Of note, not all of these results (facets 

of immunomodulation, mechanical tumor homogenization, exogenous antigen delivery) 

have been specifically studied in PDA models to date. However, assuming some degree of 

independence of FUS effects from tissues targeted, the general principles garnered from 

other tumor and disease models have direct relevance to the design of optimal FUS protocols 

for PDA treatment. See Figure 3 for a graphical depiction of these mechanisms in 

compliment to other PDA therapies.

Pulsed focused ultrasound—Pulsed FUS protocols have been used in early clinical 

trials [71] and pre-clinical studies [133–136] for PDA treatment to augment tumor drug 

delivery, and recently presented pre-clinical results show favorable immunomodulatory 

effects from similar treatments [128]. “Pulsed” protocols typically include a relatively short 

pulse duration (e.g. ~1ms) and low pulse repetition frequency (e.g. 1 Hz; duty cycle 0.1%) to 

minimize temperature effects while harnessing the mechanical effects of FUS. Specifically, 

pulses often employ spatial-average pulse-average acoustic intensities sufficient to generate 

peak focal pressure levels to achieve cavitation, or utilize lower intensities combined with 

microbubble contrast agents. Pulsed FUS treatments in combination with doxorubicin 

chemotherapy in the KPC model have: 1) disrupted the stromal collagen architecture of 

treated PDA; 2) increased intra-tumoral doxorubicin concentrations up to 4.5-fold versus 

intravenous chemotherapy alone [135]. An early phase I clinical trial from Norway by 

Dimcevski et al examined 10 patients with inoperable PDA who were treated with a pulsed 

FUS protocol at low intensity, with exogenously administered microbubbles, designed to 

minimize thermal deposition while facilitating stable cavitation. This treatment, in 

combination with gemcitabine infusion, doubled the median overall survival compared to 

gemcitabine treatment alone (17.6 months versus 8.9 months) [71]. Preliminary results from 

pre-clinical studies in PDA models, as well as studies applying pulsed or low-intensity FUS 

treatment protocols to non-PDA tumors and tissues support an acute post-treatment 

immunomodulatory effect toward Th1-type inflammation, upregulation of localized cell 

recruitment factors and tumor-cell-surface immunogenic proteins, and increase in local 

CD8+/T regulatory ratio [128, 137–143]. Anti-tumor effects achieved with pulsed FUS 

protocols in pre-clinical studies are summarized in Table 1.

Boiling and cavitation-cloud histotripsy—“Histotripsy” is a specific type of non-

thermal, pulsed FUS method designed to non-invasively, mechanically homogenize target 

tissue into subcellular debris without thermal denaturation of proteins through gas or vapor 

bubble activity – a mechanism distinct from thermally-induced coagulative necrosis [144, 

145]. Targeted histotripsy treatments of tumors could thus uncover large quantities of 

undenatured tumor antigen in situ. Histotripsy can be accomplished through application of: 
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1) repetitive, short duration pulses of FUS with shock fronts to targeted tissues, generating 

transient, millimeter-sized vapor bubbles that mechanically disrupt tissues (a.k.a. “boiling” 

histotripsy – a misnomer of sorts, as thermal contribution to the tissue effect is negligible) 

[146, 147]; 2) application of extremely high magnitude peak negative pressures to induce 

abundant cavitation events (a.k.a. “cavitation cloud” histotripsy) [148, 149]. To our 

knowledge, the use of histotripsy FUS methods on pancreatic tumors has not previously 

been reported. However, our group has recently successfully employed this technique in 

feasibility tests in the KPC model (unpublished work). In addition, preliminary work from 

our institution has suggested Th1-type immunomodulatory effects in a rat model of renal 

cell carcinoma with boiling histotripsy treatment associated with release of the damage-

associated molecular pattern (DAMP) HMGB1 into the plasma in vivo (an important factor 

in inciting the acute inflammatory response in the context of acute tissue trauma) and 

increased CD8+ T cells in both the treated and contralateral kidneys [150–152]. Pre-clinical 

studies exploring the anti-tumor effects of histotripsy treatments are summarized in Table 1.

Endogenous T-cell therapy and focused ultrasound—“Endogenous T-cell therapy” 

relies on isolation and expansion of often low-frequency endogenous T cells that are reactive 

to tumor antigens from patient’s peripheral blood for ex-vivo expansion and adoptive 

transfer back into the patient. This method of adoptive cell transfer therapy is appealing 

given: 1) its flexible, personalized tumor-antigen result (particularly appealing for PDA 

patients, who are more likely to need rare, personalized peptide targets due to the relatively 

sparse and heterogeneous coding mutations described above); 2) minimally invasive method 

of cell acquisition; 3) ability to generate both effector T cells and central memory type T 

cells; 4) lack of regulatory hurdles and logistical barriers associated with clinical application 

of T cell receptor engineering [153]. FUS has already been employed pre-clinically as an in 
situ method of priming the endogenous immune system to generate more effective, tumor-

specific cytotoxic T cells for ex-vivo expansion and adoptive transfer. Two recent studies 

employed a thermally ablative FUS method to generate endogenous tumor-antigen-primed 

cytotoxic T cells in a subcutaneous murine model of hepatocellular carcinoma and observed: 

1) increased Th1-type inflammatory response (e.g. increased levels of TNF-alpha and IFN-

gamma) and cytotoxicity (e.g. percentage of LDH release above baseline from co-culture of 

effector and target tumor cells, greater frequency of MHC class I tetramer/CD8+ cells) from 

lymphocytes collected 14 days post-treatment from the spleens of ablative-FUS treated 

animals versus sham and control groups); 2) significantly prolonged overall survival rate at 

60 days in subsequent HCC-animals infused with T cells derived from the randomly 

assigned FUS-treated animals versus sham or control (86% versus 33% and 16%, 

respectively; log-rank p<0.0001) [154, 155].

Predominantly mechanical FUS methods may be more effective than thermal in promoting 

systemic anti-tumor endogenous immune response. Xing et al found that melanoma 

metastasis rates were decreased and overall survival increased in both thermally and 

mechanically FUS-treated animals versus control, when allowing 2 days between treatment 

and amputation of the limb bearing the primary tumor (sufficient time for dendritic cell 

infiltration and migration), but found greater benefit in the mechanical-FUS treatment group 

versus the thermal-FUS group [156]. Similar results were reported by Hu et al in a murine 
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colon adenocarcinoma model – where mechanical FUS treatment resulted in significantly 

greater dendritic cell activation versus thermal treatments [157]. In combination with the 

above-described endogenous T cell activation, these results demonstrate: 1) the importance 

of the APC-to-cytotoxic-T-cell mechanism in FUS-induced anti-tumor endogenous immune 

effects; 2) that mechanical FUS methods may have greater immune benefit – either for use 

in generation of effective endogenous T cell subsets for subsequent ex vivo expansion and 

adoptive transfer, or for complimentary systemic endogenous immune activity to other 

therapies. The relatively recently developed histotripsy FUS methods may prove to be an 

integral component of optimized PDA FUS treatment protocols in this regard.

Concluding Remarks—Clinical cancer immunotherapy has rapidly progressed over the 

past decade, with several new agents approved by the FDA (including immune checkpoint 

therapy to promote cytotoxic T cell-mediated anti-tumor activity) and the first and most 

promising CAR T cells for treatment of hematologic malignancy pending FDA review. Even 

so, efficacy in treatment of PDA has been marginal, likely based on the elaborate 

immunosuppressive barriers encountered in the tumor microenvironment. Non-invasive FUS 

treatment methods designed to maximize non-thermal effects have shown promising early 

results at improving drug delivery to PDA and prolonging overall clinical survival in 

combination with chemotherapy. In addition, FUS treatment has the potential among 

similarly effective PDA stromal-directed therapies to directly and favorably modulate the 

endogenous immune response to the tumor. Thus, FUS methods may provide both beneficial 

changes to the treated PDA microenvironment and systemic endogenous immune effects that 

improve response to metastatic lesions and recurrent disease. Future research will help to 

precisely define optimal FUS protocols for augmentation of multi-modal PDA treatment 

regimens, including immune checkpoint inhibitors and adoptive cell transfer.
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Figure 1. 
Classification systemof immunotherapies for pancreatic ductal adenocarcinoma (PDA). The 

tumor stroma impedes these therapies withmultiple immunosuppressive mechanisms 

described in the text. Stromal-directed treatments, such as focused ultrasound, have shown 

promising results in early clinical trials and may provide substantial clinical benefit as 

immuno-adjuvant therapy.
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Figure 2. 
Schematic depiction of selected mechanisms underlying the anti-tumor effects of non-

invasive energy deposition via focused ultrasound (FUS). These mechanisms are not 

mutually exclusive, and indeed, co-exist on a continuum; however, FUS treatment protocols 

can be adjusted to maximize some mechanisms and minimize others. Most commonly, this 

involves minimizing heat generation relative to cavitation and radiation forces. This figure is 

adapted with significant revision froma review by Victor Frenkel, [102], where the reader 

will find a more comprehensive discussion of these mechanisms as they relate to localized 

delivery of therapeutics to solid tumors, beyond the immuno-adjuvant effects reviewed here. 

*Immunogenic cellular membrane protein modulation has also been observed with 

lowintensity/minimal-thermal protocols. †Acute T-helper (Th)1-type inflammatory 

responses have also been observed with thermal-emphasis protocols. ‡Disruption of the 

extracellularmatrix (ECM) / tumor stroma is likely the sequela of both radiative forces and 

acoustic cavitation activity. See text and Table 1 for details.
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Figure 3. 
Conceptual diagram of focused ultrasound effects for augmentation of pancreatic ductal 

adenocarcinoma (PDA) treatment. See text for details. CSC = Cancer stem cell; DC = 

dendritic cell; HIF = hypoxia-inducible factor; O2 MB = Oxygen-gas-loaded microbubble.
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Table 1 –

Summary of selected pre-clinical focused ultrasound effects relevant to immuno-adjuvant PDA treatment

Focused Ultrasound Effect FUS Protocol(s) Tissue(s) Targeted References

• Increase penetration and diffusion of drugs into 
tumor

Pulsed PDA [134–136]

• Disrupt tumor stroma Pulsed PDA [135]

• Reduce intra-tumoral hypoxic stress via 
augmented oxygen delivery (e.g. oxygen-gas-
loaded microbubbles)

Pulsed PDA [54, 55]

• Modulate tumor cell membrane protein 
localization to enhance immunogenicity (e.g. 
immediate downregulation of CD47, a suppressor 
of phagocytic activity; upregulation of HSP70, 
calreticulin, CD40, CD80 and CD86)

Thermal (CD47), low-intensity PDA (CD47), lung / 
breast / prostate cancer

[128, 140]

•Modulate local and systemic cytokine milieu 
toward a Th1-type inflammatory profile (e.g. 
increase in IFN-gamma, TNF-alpha)

Pulsed, thermal, low-intensity RCC, prostate cancer, 
dystrophic muscle, HCC

[137–139, 154, 155]

• Up-regulate local chemoattractants (cytokines, 
chemokines, trophic factors, VCAM and ICAM) Pulsed

†
, low -intensity

Normal, ischemic and 
dystrophic muscle

[137, 141–143]

• Mechanically homogenate / liquefy targeted 
tissue into cellular debris – releasing large 
quantities of undenatured tumor antigen in situ

Histotripsy, pulsed Muscle, liver, prostate 
cancer, colon 
adenocarcinoma, 
melanoma

[144–148, 150, 158–160]

• Increase local dendritic cell maturation Pulsed, thermal HCC, prostate cancer, 
colon cancer

[157, 161, 162]

• Increase intra-tumoral CD8+/ T regulatory cell 
ratio and CD8+ T cell activity

Histotripsy, pulsed, thermal RCC, prostate cancer, 
colon cancer, HCC

[139, 152, 154, 155, 161]

• Facilitate delivery of exogenously packaged 
immune-stimulating antigen or genes (e.g. via 
microbubbles, liposomes, sonoporation)

Pulsed, low-intensity Colon cancer, HCC, 
prostate cancer, ovarian 
cancer, melanoma, 
lymphoma

[163–170]

*
FUS = focused ultrasound; PDA = pancreatic ductal adenocarcinoma; RCC = Renal cell carcinoma; HCC = hepatocellular carcinoma; VCAM = 

vascular cell adhesion protein; ICAM = intercellular adhesion molecule.

†
Aicher et al. [142] applied targeted ultrasound to muscle via a shockwave lithotripter device using a low duty cycle, similar in some regard to 

pulsed protocols used with FUS transducers.
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