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HLA-B57 micropolymorphism defines the
sequence and conformational breadth of the
immunopeptidome
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Immunophenotypic differences between closely related human leukocyte antigen (HLA)
alleles have been associated with divergent clinical outcomes in infection, autoimmunity,
transplantation and drug hypersensitivity. Here we explore the impact of micropolymorphism
on peptide antigen presentation by three closely related HLA molecules, HLA-B*57:01, HLA-
B*57:03 and HLA-B*58:01, that are differentially associated with the HIV elite controller
phenotype and adverse drug reactions. For each allotype, we mine HLA ligand data sets
derived from the same parental cell proteome to define qualitative differences in peptide
presentation using classical peptide binding motifs and an unbiased statistical approach. The
peptide repertoires show marked qualitative overlap, with 982 peptides presented by all
allomorphs. However, differences in peptide abundance, HLA-peptide stability, and HLA-
bound conformation demonstrate that HLA micropolymorphism impacts more than simply
the range of peptide ligands. These differences provide grounds for distinct immune reactivity
and insights into the capacity of micropolymorphism to diversify immune outcomes.
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ARTICLE

he human leucocyte antigen (HLA) molecules, encoded by
the major histocompatibility complex (MHC) region of the
genome, are cell surface glycoproteins responsible for the
presentation of both endogenous and exogenously derived pep-
tide antigens for immune surveillance. The introduction of novel
complexes into this array, such as those containing peptides
derived from invading pathogens, stimulates immune responses
against infected cells. The genes encoding the HLA molecules
(HLA-A, -B and -C for the classical HLA class I molecules, and
HLA-DP, -DQ and -DR for the HLA class II molecules) are the
most polymorphic of the human genome, with HLA-B alone
possessing over 3000 functional allomorphs!. Sequence diversity
in HLA class I molecules ranges from micropolymorphisms,
which comprise just a few amino acids, to differences of more
than 30 amino acids in more distantly related allomorphs. Pep-
tides bind to HLA molecules via interactions between the side
chains of anchor residues of the peptide and pockets within the
antigen-binding cleft. In the HLA class I molecules, these pockets
are denoted A-F, and a large part of their landscape is determined
by polymorphic amino acid residues. These polymorphisms alter
the stereo- and electrochemical environment of the pockets,
dictating their ability to accommodate different peptide side
chains thereby influencing the nature and quantity of peptides
that are bound by a given HLA allomorph?~*. The nature of the
peptide anchor residues accommodated by a particular HLA
molecule is often referred to as the peptide-binding motif. Poly-
morphism further shapes the peptide array via impacting inter-
actions with chaperones such as tapasin, which modulates peptide
selection during peptide loading in the endoplasmic reticulum,
biasing the peptide repertoire towards more stable ligands>®.
Strikingly, polymorphism at a single amino acid in the antigen-
binding cleft can cause divergent immune reactivity in many
clinical scenarios. For example, ankylosing spondylitis is asso-
ciated with some, but not all, HLA-B27 family members; for
instance, HLA-B*27:02, -B*27:03, -B*27:04 and -B*27:05 confer
risk, whilst micropolymorphic family members HLA-B*27:06 and
-B*27:09 do not (reviewed”). Although the differential association
of HLA-B27 allomorphs with ankylosing spondylitis has long
been thought to be directly related to differences in ligand-
binding characteristics, our recent studies have challenged this
hypothesis, and show a more quantitative impact of micro-
polymorphism on the immunopeptidome rather than merely
effects on ligand binding®®. Similarly, abacavir hypersensitivity
syndrome (AHS), a severe systemic hypersensitivity reaction to
the antiretroviral drug abacavir and drug-induced liver injury
mediated by the antibiotic flucloxacillin, are associated with HLA-
B*57:011011, whilst the closely related HLA-B*57:03, containing
two amino acid substitutions in the antigen-binding cleft shows
no association. Similarly, HLA-B*58:01, possessing four sub-
stitutions in the antigen-binding cleft, shows no association with
AHS!?, but is instead strongly associated with allopurinol
hypersensitivity!3. It has been proposed that associations with
adverse drug reactions are due to the unique ability of the asso-
ciated HLA class I allomorph to present antigenic ligands, whe-
ther they be self-peptides, drug-modified peptides, or directly
presented small-molecule drugs/metabolites'4. However, whilst
this view stands true for abacavir, which is uniquely accom-
modated within the antigen-binding cleft of HLA-B*57:01 in the
vicinity of residues that are polymorphic between HLA-B*57:03
and HLA-B*58:011>16, it may be too simplistic in the context of
peptide presentation. For example, altered presentation of the
same peptides by micropolymorphic allomorphs has been
reported to impact immunogenicity and immunodominance
hierarchies in the HLA-B35 family through altered plasticity and
binding kinetics!”>18, whilst distinct conformations of identical
ligands presented by members of the HLA-B7 family are

proposed to favour distinct escape mutations in human immu-
nodeficiency virus (HIV)!°. Equally, a single residue can delineate
tapasin dependence for peptide loading and define the suscept-
ibility of an HLA molecule to viral interference with the peptide
loading pathway>20.

HLA-B57 family members are renowned for their association
with the elite controller phenotype of HIV-infected
individuals®!22, The protective effect of HLA-B57 is hypothe-
sised to be due to more efficient presentation of immunogenic
HIV peptides to antiviral cytotoxic T lymphocytes than by non-
protective HLA variants (possessing disparate peptide-binding
properties). However, despite the near-identical nature of the
previously described HLA-ligand-binding motif within this
family, a protective hierarchy is still evident and distinctions in T-
cell response to HIV epitopes are manifest?>. Moreover, despite
similar modes of presentation by HLA-B*57:01 and HLA-
B*57:03, the immunodominant HIV-Gag-derived peptide KAF-
SPEVIPMF stimulates divergent T-cell responses in the context of
these two allomorphs, with HLA-B*57:01 presentation generating
a T-cell response able to recognise escape variants?42>,

These examples show the capacity for minor changes of the
antigen-binding cleft to have marked effects on immune response
and generate an impetus to understand more broadly the com-
plexities of antigen presentation within the HLA-B57 family.
HLA-B*57:01, HLA-B*57:03 and HLA-B*58:01 are micro-
polymorphic HLA allotypes of the HLA-B17 serotype. Poly-
morphism within these allotypes is focussed on regions of the
antigen-binding cleft (cleft polymorphisms in comparison to
HLA-B*57:01: Asp114Asn and Ser116Tyr in HLA-B*57:03, and
Met45Thr, Ala46Glu, Val97Arg and Val103Leu in HLA-B*58:01).
Notably, residues 97, 114 and 116 contribute to the E pocket of
the antigen-binding cleft, whilst residue 116 also contributes to
the F pocket. These are key locations of interaction between
peptide ligands and the HLA heavy chain, with the F pocket
accommodating the C-terminal anchor residue (PQ)), and the E
pocket interacting with PQ-2. The use of mass spectrometry to
resolve binding preferences of single HLA allotypes is well
established, and allows comparison of both micropolymorphic
and distantly related molecules®26.

Here we utilised a large database of constitutive peptide ligands
isolated from HLA-B*57:01, HLA-B*57:03 and HLA-B*58:01'5,
to map micropolymorphism-dependent changes in the HLA
peptide repertoire. Although speculated upon in many
studies?”>?8, our study formally shows that subtle differences in
primary and secondary anchor preferences of each allomorph
correlate with altered stability of the respective HLA-peptide
(pHLA) complexes and altered conformation of common pep-
tides within the antigen-binding cleft. The ability to resolve these
key differences is crucial to understanding altered disease out-
comes between individuals having closely related HLA molecules

that can represent ‘taboo  mismatches’ in clinical
transplantation®8-2%,
Results

Qualitative resolution of the HLA peptide-binding motifs. To
measure the impact of micropolymorphism on peptide pre-
sentation by HLA-B*57:01, HLA-B*57:03 and HLA-B*58:01 (cleft
polymorphism locations depicted in Fig. 1a, b, described as
changes in comparison to HLA-B*57:01 for B*57:03/B*58:01
throughout the manuscript) we interrogated large monoallelic
ligand data sets (>2500 non-redundant peptide sequences) gen-
erated by isolation of naturally processed and presented HLA
class I-bound peptides from individually transfected class I
reduced (CIR) cells!>. Of note, derivation from the same parental
cell line ensured differences in peptide repertoire were
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Fig. 1 HLA-B*57:01, HLA-B*57:03 and HLA-B*58:01 sample peptides with similar physicochemical properties, but with different biases at the C terminus. a,
b Ribbon diagrams depicting the peptide-binding grooves of HLA-B*57:03 and HLA-B*58:01 compared to HLA-B*57:01 (polymorphic residues are shown
as space-filled models). a1 and a2 helices and the positions of peptide-binding pockets A-F are shown. ¢ Length distributions of HLA-B*57:01 (clear bars),
HLA-B*57:03 (grey bars) and HLA-B*58:01 (black bars) ligands across 8-18mers. d-f Sequence motifs of 9mers for each allomorph with accompanying co-
variation heat maps, highlighting pairs of positions that are coupled. Amino acids are represented by single-letter code with height scaled to prevalence and
colour representing small (orange), hydrophobic (green), polar (magenta), negatively charged (red) and positively charged (blue) residues. Only amino
acids present with 10% or greater prevalence are depicted. n is the number of 9mer peptides within the data set. For the heat maps, square colour reflects
the relative co-variation at, or between, each position in the peptide (aqua indicates weak co-variation and yellow indicates strong co-variation). g-i

Principal component analysis (PCA) density plots showing the distribution of 9mer peptides across PC1 and PC2 for HLA-B*57:01 (g), HLA-B*57:03 (h)
and HLA-B*58:01 (i). Coloured lines represent the named allomorph (HLA-B*57:01—blue, HLA-B*57:03—red and HLA-B*58:01—green) overlaid on the

distribution of the remaining two allomorphs (grey lines). Two major clusters (c; and c,) were defined using k-means clustering (k = 2) with percentage of
9mers within each cluster shown. Variation of PC1 and PC2 is shown in parentheses
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attributable to differences in determinant selection by the HLA
allotypes and not the source proteome or polymorphisms within
antigen-processing machinery.

Consistent with previously reported HLA class I ligands,
peptides bound to the three HLA-B allotypes were predominantly
9-11 residues in length with a preference for nonamers (Fig. Ic,
Supplementary Data 1). Sequence motifs, generated from non-
redundant lists of all 9-1lmers depict specific amino acid
preferences at each position of the peptide ligand. These
preferences are very similar for the three allotypes, which display
bias for Ser (S), Thr (T), Ala (A) and to a lesser extent Val (V) at
P2, and aromatic residues at the C terminus (PQ) (Fig. 1d-f,
Supplementary Fig. la-c and 2a-c). Notably, whilst Trp (W) was
the most prevalent PQ residue for HLA-B*57:01 and HLA-
B*58:01 ligands (62-80% of 9-1lmers), HLA-B*57:03-bound
peptides showed a higher prevalence of Phe (F) (43-50% Phe
compared to 22-34% Trp across 9-11mers) (Supplementary
Table 1, Fig. 1d-f, Supplementary Fig. 1a—c and 2a-c). In addition
to traditional motif analysis, we also performed an unbiased
statistical analysis of the allomorph-specific peptidomes using co-
variation analysis (Fig. 1d-f). The P2 and PQ preferences were
observed to exist as conserved pairings within peptides with Ser at
P2 strongly paired with PQ Trp (HLA-B*57:01 and HLA-
B*58:01) or Phe (HLA-B*57:03) in 9mers consistent with their
nature as primary anchors (Supplementary Fig. 3).

In order to more deeply probe differences in ligand-binding
characteristics, the physicochemical properties of each amino acid
residue were used to independently compare the source of
variation between the peptide repertoires. Each bound peptide
was defined by a set of four parameters (in addition to 20
amino acid identity parameters) at each amino acid position:
molecular weight, surface area, hydropathy index and isoelectric
point. Consideration of broader physicochemical properties can
capture similarities among amino acids that may be missed using
traditional motif analysis’®. Peptides of 9-11 residues in length
that formed ligands of the three allotypes were then indepen-
dently subjected to principal component analysis (PCA). For the
three peptide lengths, the HLA ligands of each allotype were
distributed asymmetrically across two distinct clusters defined by
PC1 and PC2 (although further substructure was also observed
for 9 and 11mers [Supplementary Fig. 4 and 5]). Although ligands
mapped to both clusters for all variants, suggesting the potential
to sample peptides of similar physicochemical properties, the bias
of peptides between the clusters was inverted for HLA-B*57:03
relative to HLA-B*57:01 and -B*58:01 (Fig. 1g-i, Supplementary
Fig. 1d-f and 2d-f). Parameters distinguishing these clusters
include features of P(), reflected by the enrichment of Phe in
cluster 1 (c;) and Trp in cluster 2 (c;) of the 9mer PCA plots,
demonstrating this location is the main point of difference among
the repertoires (Supplementary Fig. 6 and 7). Features of P1 were
major contributors to PC2 (and PCl1 for 10 and 1lmers), and
distributed peptides within these major clusters in a similar
fashion for all allotypes. In addition to the amino acid identity,
the PCA provides additional insights into ligand selection by the
different allomorphs. Importantly, a major driver of the PCA was
the amino acid surface area at PQ), which was not the case at P2
where hydropathy index was the most important property. This
pattern was true for each of the three allotypes and was
independent of peptide length.

In addition to the main anchor residues, HLA-B*57:01 ligands
showed a higher Arg (R), and to a lesser extent Lys (K),
prevalence at PQ-2 (i.e. P7, P8 and P9 of 9mer, 10mer and 11mer
peptides, respectively), whilst HLA-B*58:01 ligands displayed
greater PQ-2 Glu (E) (Fig. 1d-f, Supplementary Fig. la-c and
2a-c, Supplementary Table 2). We therefore hypothesised that
PQ-2 is a secondary anchor site, shaped by polymorphic residues
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Fig. 2 Enrichment/diminution of residues at P2, PQ-2 and PQ of HLA-B57
family ligands distinguish primary and secondary anchor sites. The
enrichment of specific residues at P2 (a), PQ-2 (b) and PQ (c¢) of all 9
residue peptide binders of HLA-B*57:01 (clear bars, 912 peptides), HLA-
B*57:03 (grey bars, 1155 peptides) and HLA-B*58:01 (black bars, 960
peptides) identified by LC-MS/MS relative to amino acid frequencies in the
human proteome. Deviations in prevalence from the human proteome are
depicted as either a fold change (FC, for amino acids at higher prevalence
than in the human proteome) or a converted FC (FC.,, = —1/FC, for amino
acids present at lower prevalence than in the human proteome), as
determined using iceLogo v1.2 stand-alone software3' using the static
reference method (reference set Homo sapiens Swiss-Prot means, p < 0.05).
FC >1 indicates enrichment, FC.., < —1 indicates disfavoured residues,
—100 indicates absence. In b the unique enrichment of Arg(R) at PQ-2 by
HLA-B*57:01 is highlighted by the red box

of the E pocket (Fig. 1a, b). Consequently, to probe the nature of
the anchor sites more stringently we assessed enrichment of
amino acid use at a particular location relative to global
prevalence in the human proteome using iceLogo software3!
(iceLogo v1.2, static reference method, Homo sapiens Swiss-prot
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Fig. 3 MRM analysis reveals quantitative differences in peptide presentation and suggests greater overlap in peptide repertoire. Relative abundance of
peptide ligands bound to HLA-B*57:01 (blue triangles), HLA-B*57:03 (open purple diamonds) or HLA-B*58:01 (red circles) as detected by LC-MRM-MS.
Peptides are categorised based on previous detection by LC-MS/MS as either binding a single HLA allotype (unique), two HLA allotypes (overlap) or all
three HLA allotypes (common). On peptide detection the combined peak area for all MRM transitions, normalised against co-immunoprecipitated p,m,
was used to calculate relative abundance. Abundances are shown as a proportion of the maximum normalised peak area detected for the peptide across all
experiments. Data are shown for three biological replicate experiments per allotype

means, p < 0.05). Enrichment was depicted as a fold change (FC)
in prevalence at primary anchor locations P2 and P(, and the
potential secondary anchor site PQ-2, for 9mer peptides (Fig. 2).
At both P2 and PQ), strong enrichment of a small subset of amino
acids (Ala, Ser, Thr and Val for P2 and Phe, Trp and Tyr for PQ))
was displayed whilst other amino acids were disfavoured (i.e. less
prevalent than in the human proteome, depicted as converted FC
[FCeonl). This was particularly evident at PQ, although HLA-
B*57:03 showed some enrichment of Leu, Ile and Met in addition
to aromatic residues (Fig. 2c). In contrast with the primary
anchor sites, no amino acids were strongly disfavoured at PQ-2.
However, enrichment of Arg was a distinct feature of HLA-
B*57:01 (FC 1.73), compared to HLA-B*57:03 (FC,,, —4.65) and
HLA-B*58:01 (FC., —4.92) (Fig. 2b, red box). Lys at PQ-2,
though not significantly enriched for HLA-B*57:01 (FC 1.07, p >
0.05), was disfavoured by HLA-B*57:03 (FC., —2.55) and
B*58:01 (FC,on, —2.20). Although most prevalent in the repertoire
of HLA-B*58:01, Glu was enriched at PQ-2 for all allotypes (FC
1.36-1.65). Pro showed enrichment at PQ-2 for HLA-B*57:03
alone (FC 1.71), and was present in >10% of 9mer ligands of this
allomorph, however this was not the case for 10 and 1lmer
peptides (Figs. 1d-f and 2b, Supplementary Fig. 1, 2). Collectively,
these data resolve three distinct peptide-binding motifs based on
the physicochemical properties and amino acid occupancy at
different positions of the bound peptide ligand.

Quantitative differences in presentation of common peptides.
As anticipated there is a large overlap in peptide ligands pre-
sented with 982 peptides (by sequence alone) common to all three
HLA-B allotypes (26-33% of the allotypic repertoire), increasing
to 1361-1546 (38-51%) between allotype pairs (Supplementary
Data 2). During tandem mass spectrometry (MS/MS) analysis,
high quality of sequencing data was achieved by limiting frag-
mentation to the 30 most abundant species observed
per second!®. This selection resulted in the potential to miss less-
abundant ions, especially in chromatographic regions of high
complexity. Thus, it is likely that some of the peptides identified
as unique to a particular allotype by liquid chromatography (LC)-
MS/MS-based peptide identification were present at low con-
centrations in eluates from the other allotypes and as such failed
to be selected for MS/MS.

Targeted LC-MS techniques such as multiple reaction
monitoring (MRM) have been used to detect both high and low
abundance ligands in highly complex samples eluted from the
MHC and allow comparison of abundance3?33. Therefore, we
designed an LC-MRM-MS approach to assess whether peptides
were identified as unique to a particular allotype due to sampling
issues rather than binding specificity. To this purpose, we
generated a representative list containing 60 native peptides from
those identified by MS/MS in biological replicate experiments for
a given allotype and could be identified in eluates from 108 cells of
at least one allotype. These peptides were selected from each of
the following categories: unique to an allotype, common to all
allotypes or common to two of the three allotypes. Three new
independent biological replicates were analysed per allotype by
LC-MRM-MS and individual peptide relative abundance deter-
mined across samples.

Using this sampling independent approach 5/17, 7/28 and 6/25
(3/17, 7/28 and 5/25 in multiple replicates) of the peptides not
previously identified in eluates from HLA-B*57:01, HLA-B*57:03
and HLA-B*58:01 respectively were detected, generally at
considerably lower relative abundance than for the allotypes for
which they were initially described as ligands (Fig. 3), supporting
the rationale for this targeted approach. Indeed, although only
identified with a deaminated Arg at P9 in the immunopeptidome
of HLA-B*57:01 by LC-MS/MS (confidence 95, >5% false
discovery rate (FDR), Supplementary Data 2), native SAAA-
DETLRLW contributed most to the immunopeptidome of this
allotype. Quantitative differences across the allotypes were
observed for all peptides, even those that were consistently
isolated from all three allotypes in the original non-targeted LC-
MS/MS experiments, implying quantitative, as much as qualita-
tive, differences distinguish the immunopeptidomes of these
closely related allotypes.

PQ and PQ-2 preferences correlate with pHLA stability. Given
the differences in PQ) and PQ-2 anchor preferences, we examined
the impact of these residues on pHLA complex stability. To do so
we chose two 9mers containing Arg/Lys at P7 (PQ-2) that formed
a natural part of the HLA-B*57:01 peptide repertoire,
LSSPVTKSF and LTVQVARVY, and designed P7/9 variants, to
utilise in thermal stability experiments. LSSPVTKSF was also
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Table 1 The impact of PQ-2 and PQ peptide residue substitutions on HLA-peptide complex thermal stability

Peptide sequence HLA-B*57:01 PQ-2Q PQW X HLA-B*57:03 PQ-2 PQW X HLA-B*58:01 PQ-2 PQW X
T (°C) Tm (°C) Q Tm (°C) Q

LSSPVTKSF (wt) 70.6 (0.74) -0.2 2.0 69.2 (0.35) 0.4 18 69.3 (0.52) 0.9 25
LSSPVTQSF 70.4 (0.26) - 2.7 69.6 (0.11)2 - 15 70.2 (0.7) - 2.8
LSSPVTKSW 72.6 (0.47) 0.5 - X 71.0 (0) 0.1 - X 718 (0.61) 12 - X
LSSPVTQSW 73.1(0.18)2 - - 711 (0.1 - - 73.0 (0.32) - -
LTVQVARVY (wt) 69.4 (0.18)2 =23 2.8 X 60.6 (0.67) 25 8.6 X N.D. - -
LTVQVAQVY 67.1 (0.18)2 - 3.9 63.1 (0.14) - 7.8 N.D. - -
LTVQVARVW 72.2 (0.46) =12 - X 69.2 (0.09) 17 - X 67.8(112) 4.6 - X
LTVQVAQVW 71.0 (0.48)b - - 70.9 (0.19) - - 72.4 (0.61)¢ - -
SAAADETLRLW (wt)  67.5 (0.99) - - 61.3 (0.17) - - 64.4 (0.67) - -

ND not determined due to poor HLA-peptide refold

2Values calculated from duplicates at 0.5 mg mL~" protein alone
bValues calculated from duplicates at 0.8 and 0.5 mg mL~" protein
Values calculated from quadruplicates at 1 and 0.5 mg mL~" protein

Thermal stability is reported as mean temperature for 50% unfold (T,,), standard deviation is shown in parentheses. Values are calculated from duplicates at 1mg mL~" protein and 0.5 mg mL~" protein
(4 total) unless indicated otherwise. The impact of the PQ-2 to Q and PQ to W on T,, are shown where applicable ("' is placed where not applicable), changes of magnitude >1°C are underlined
(decreased stability) or in bold (increased stability). Column X denotes complexes for which structures were solved using X-ray crystallography

identified in the repertoires of HLA-B*57:03 and HLA-B*58:01 by
LC-MS/MS, and the structure of LSSPVTKSF in complex with
HLA-B*57:01 has been published previously, showing a salt-
bridge between P7Lys and Aspll4 of the HLA-B*57:01 heavy
chain (PDB 2RFX)*%. LTVQVARVY was not detected in the
repertoire of HLA-B*57:03 or HLA-B*58:01 (Fig. 3).

LTVQVARVY complexes were markedly more stable in the
context of HLA-B*57:01 than HLA-B*57:03 (~9 °C difference in
temperature for 50% unfold [T,,], Table 1). Consistent with the
enrichment of P7Arg by HLA-B*57:01 alone, the P7GIn mutation
(chosen due to similar enrichment of this residue at P7 by all
allotypes, Fig. 2b) reduced this difference to ~4 °C by increasing
the stability of HLA-B*57:03 complexes and reducing the stability
of HLA-B*57:01 complexes. In contrast, the substitution of the
P9Tyr for Trp, which is more enriched at this location in ligands
of both allotypes, improved the stability of both HLA-B*57:01
(+2.8°C) and HLA-B*57:03 (48.6°C) complexes. The P7GIn
mutation had less impact in the context of P9Trp (<2 °C) for both
HLA-B*57:01 and HLA-B*57:03 but increased the stability of
HLA-B*58:01 complexes (+4.6 °C), consistent with disfavoured
P7Arg by HLA-B*58:01 (Fig. 2b).

For pHLA containing LSSPVTKSF, the impacts of P7/
P9 substitutions were less pronounced. For all allotypes mutation
of the P7Lys to Gln had marginal impact on the T, (<1°C),
although the P9Phe to Trp mutation showed a trend towards
stabilising all complexes (+1.8-2.5 °C). Introduction of the P7GIn
mutation also had minimal impact in the context of P9Trp
mutation. The reduced influence of the P7Lys to Gln mutation is
consistent with the weaker enrichment/diminution of P7Lys as
compared to P7Arg displayed by each allotype (Fig. 2b). Similarly,
all allotypes show less selective discrimination between Phe and
Trp at P9 than between Tyr and Trp (Fig. 2¢), consistent with a
smaller impact of mutation of P9 to Trp in the context of
LSSPVTKSF compared to LTVQVARVY.

SAAADETLRLW, detected in the repertoire of HLA-B*58:01
(MS/MS and MRM) and HLA-B*57:01 (MRM only) as described
above, was also subject to thermal stability assays. The trend in
thermal stability across the allomorphs (HLA-B*57:01 [67.5 °C] >
HLA-B*58:01 [64.4 °C] > HLA-B*57:03 [61.3 °C], Table 1) corre-
lated with the relative abundance detected in their repertoires by
MRM (HLA-B*57:01 > HLA-B*58:01 > HLA-B*57:03, Fig. 3).

Conformations of common ligands differ between allomorphs.
To understand the structural effects of micropolymorphism
between HLA-B*57:01, HLA-B*57:03 and HLA-B*58:01 and its
relationship to peptide association, crystal structures in complex

with the peptides LTVQVARVW, LTVQVARVY and
LSSPVTKSW were determined to resolutions of 1.6-2.0 A (data
collection and refinement statistics summarised in Table 2). The
high quality of the resultant models allowed for direct and reliable
comparison of the structures (Supplementary Fig. 8). The three
HLA molecules had similar overall tertiary structures for each
peptide complex (root mean square deviation values ranging from
0.16 to 0.51 A over Ca positions for residues 1-175) and there
were no significant deviations in the secondary structure elements
of the peptide-binding cleft (Supplementary Fig. 9). As such, the
differential peptide-binding preferences were not due to any gross
structural differences but rather to subtle differences in the
architecture of the peptide-binding pockets.

The three HLA molecules are differentiated by polymorphisms
distributed across the length of the peptide-binding groove
(Fig. 1a, b). As a consequence of these substitutions the C, D, E
and F pockets of HLA-B*57:01 were the deepest and most
negatively charged of the three allomorphs (Fig. 4a). HLA-
B*58:01 had the most shallow C and D pockets and B*57:03 the
shallowest E and F pockets (Fig. 4b, c). Peripheral to the peptide-
binding groove are further substitutions at positions Ala46Glu
and Vall03Leu (Fig. 1b) that subtly affect the structure of the 3-
B4 and B5-B6 loops respectively (Supplementary Fig. 9). However,
it should be noted that the location of these peripheral
polymorphisms suggests that they are unlikely to directly
influence T-cell receptor (TCR) recognition. These observations
are consistent with the shared P2 anchor preference across the
allomorphs, whilst the shallower F pocket of HLA-B*57:03
correlates with greater permissiveness for Phe and smaller non-
aromatic anchors at PQ (Fig. 2¢) and the reduction in preference
for high amino acid surface area at PQ in the PCA. Whilst
differences in F pocket architecture did not impact upon the
conformation of Phe and Trp residues at PQ), Tyr116 of HLA-
B*57:03 restricted the accommodation of the hydroxyl group of
PQ Tyr, illustrated by a 1.4 A shift of this group observed between
HLA-B*57:01-LTVQVARVY and HLA-B*57:03-LTVQVARVY
structures (Fig. 4f).

Notwithstanding the differences at the F pocket, the more
striking differences in peptide conformation appear to be
engendered by the respective D and E pocket environments.
The depth and negative charge of the D and E pockets of HLA-
B*57:01 accommodated the Arg and Lys residues at the PQ-2
position of LTVQVARVW and LSSPVIKSW with the
guanidino-head group of the Arg bound deeply within the E
pocket, interacting with Asp114 (Fig. 4d, e, g). HLA-B*58:01 was
similarly able to accommodate Arg and Lys residues within the E
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Table 2 Data collection and refinement statistics
HLA-B*57:01- HLA-B*57:01- HLA-B*57:01- HLA-B*57:03- HLA-B*57:03- HLA-B*57:03- HLA-B*58:01- HLA-B*58:01-
LTVQVARVY LTVQVARVW LSSPVTKSW LTVQVARVY LTVQVARVW LSSPVTKSW LTVQVARVW LSSPVTKSW
Data collection statistics
Temperature (K) 100 100 100 100 100 100 100 100
X-ray source MX2 Australian ~ MX2 Australian ~ MX2 Australian ~ MX2 Australian ~ MX2 Australian MX2 Australian ~ MX2 Australian MX2 Australian
synchrotron synchrotron synchrotron synchrotron synchrotron synchrotron synchrotron synchrotron
Space group P2,2:24 P2,2:2, P212:2, P2,2:2, P212:2, P2,2:24 P212:2, P2:2:2,
Cell dimensions a=504,b= a=507 b= a=506, b= a=50.8 b= a=50.9, b= a=50.6b= a=50.0b= a=507 b=
81.5, c=109.0 81.8, c=109.3 81.6, c=110.3 81.8, c=109.5 81.9, c=109.8 81.8, c=110.0 81.9, c=110.1 81.8, c=109.7
Resolution (A) 50-1.90 50-1.80 50-2.00 50-1.80 50-1.80 50-2.00 50-2.00 50-1.60
(2.00-1.90) (1.90-1.80) (211-2.00) (1.90-1.80) (1.90-1.80) (211-2.00) (211-2.00) (1.69-1.60)
Total no. of observations 240990 (34 234376 (34 231704 (33 234123 (33 283895 (40 170623 (24 170326 (24582) 438590 (60
763) 33D 624) 600) 374) 847) 847)
No. of unique observations 36221 (5213) 42942 (6172) 31727 (4561) 42970 (6161) 43277 (6224) 31614 (4559) 31297 (4468) 60 877 (8687)
Muiltiplicity 6.7 (6.7) 5.5 (5.6) 7.3 (7.4) 5.4 (5.5) 6.6 (6.5) 5.4 (5.5) 5.4 (5.5) 7.2 (71.0)
Data completeness (%) 100 (100) 100 (100) 100 (100) 99.9 (99.7) 99.8 (99.4) 99.9 (100) 99.9 (100) 99.7 (98.7)
/o 9.7 31 12.4 (3.7) 126 3.2) 9.5 (3.4) 10.1 2.7) 10.2 (3.7) 83(2.8) 22.7 (43)
Remerge? 0.16 (0.61) 0.10 (0.51) 0.16 (0.70) 0.14 (0.71) 0.14 (0.74) 0.14 (0.49) 0.18 (0.61) 0.058 (0.467)
Refinement statistics
Non-hydrogen atoms
Protein 3110 3110 3109 3119 3164 312 3135 3165
Water 568 533 454 611 669 559 458 644
Reactor (%P 17.5 16.5 17.4 15.7 16.7 16.9 17.3 17.3
Riree (%)P 215 20.7 20.9 19.6 20.4 20.2 214 19.9
r.m.s.d. from ideality
Bond lengths (A) 0.005 0.010 0.005 0.019 0.007 0.004 0.007 0.007
Bond angles (°) 0.858 1336 0.882 1.85 1.060 0.833 1100 1.048
Dihedrals (°) 13.8 13.8 13.9 145 135 131 13.6 14.0
Ramachandran plot
Favoured regions (%) 98.7 98.7 98.4 98.4 98.7 98.4 98.7 98.2
Allowed regions (%) 13 13 1.6 1.6 13 1.6 13 1.8
B-factors (A2)
Average main chain n.2 14.2 15.2 n4 133 124 171 15.0
Average side chain 15.4 18.6 19.6 16.2 18.7 17.0 21.0 20.7
Average water 27.4 29.8 28.4 29.2 311 27.4 30.0 33.6
Rmerge = Lkl 2 i — <Ih > 1 7 it 2 i
PReactor = DkillFol — IFell/ Zhuil Fol for all data excluding the 5% that comprised the Ryee used for cross-validation

pocket, although the manner in which the Arg at PQ-2 interacted
with Aspl14 differed. That is, in HLA-B*57:01-LTVQVARVW
the PQ-2 Arg formed a bi-dentate salt-bridge interaction with
Aspl14 (Fig. 4g), whilst in HLA-B*58:01-LTVQVARVW the PQ-
2 Arg side chain was twisted by 60° and the Aspl14 side chain
rotated 90° to accommodate the Val97Arg micropolymorphism
(Fig. 4h). This altered the salt-bridge between the PQ-2 Arg and
Aspll4 to a less favourable conformation in HLA-B*58:01,
consistent with the reduced thermal stability of the complex
(Fig. 4h, Table 1). In contrast, Arg and Lys were unable to be
accommodated in the E pocket of HLA-B*57:03. Instead, due to
the reduced E pocket volume caused by the Serl16Tyr
substitution, these residues deviated by 9.7 A and pointed out
of the groove (Fig. 4d-f, i). The deviation at PQ-2 was
concomitant with a 5.3 A shift and 180° rotation of the PQ-3
residue to fill the C-pocket of HLA-B*57:03 (Fig. 4d-f). Overall,
these structures showed that the buried polymorphisms generated
minimal differences to the surface of the HLA molecule available
to TCRs whilst engendering marked differences in the peptide
surface landscape available for T-cell interaction.

Reciprocal T-cell alloreactivity occurs between allotypes. Vig-
orous T-cell alloresponses can be generated by a high degree of
HLA class I mismatching between allogeneic individuals or as
little as a single amino acid mismatch (e.g. across HLA-B44
allotypes)?33>=37. Here we examined whether the closely related
alleles HLA-B*57:01 and HLA-B*58:01 are capable of eliciting
either anti-HLA-B*58:01 (B*57:01 responder Vs
B*58:01 stimulator) or anti-HLA-B*57:01 (B*58:01 responder vs
B*57:01 stimulator) CD8" T-cell alloreactivity, which would
support distinct presentation of the immunopeptidome. Experi-
ments did not include HLA-B*57:03 due to a lack of availability of
HLA-B*57:03% donors who are rare in Caucasian
populations$3. A total of 16 unidirectional mixed lymphocyte
reactions (MLRs) were performed utilising a combinatorial
matrix incorporating six healthy individuals (Fig. 5a, d,

Supplementary Table 3). Alloreactive T cells were expanded for
13 days, after which these bulk T-cell cultures were restimulated
with a panel of B-lymphoblastoid cell lines (B-LCLs) expressing
the mismatched stimulator HLA-A and -B alloantigens (Supple-
mentary Table 3) to dissect their individual contribution (mea-
sured by interferon-gamma (IFNy) production) to the overall
alloresponse.

The first set of MLRs (1-4, 11, 12, 15 and 16; Fig. 5a,
Supplementary Table 3) were designed to evaluate anti-HLA-
B*58:01 T-cell alloreactivity between responders expressing HLA-
B57 (DHS011), HLA-B*57:01 (DHS006 and DHS009) or both
HLA-B*57:01 and HLA-B*58:01 (heterozygote, AP012), and
stimulators expressing HLA-B*58:01 (AP013 and AP015). All
HLA-A and -B mismatched alloantigens expressed by the
stimulators, including HLA-B*58:01, generated alloreactive CD8
T T-cell responses. In contrast, no allo-specific CD8' T cells were
directed against HLA-B*58:01 in the heterozygote responder
(Fig. 5b, c). The second set of MLRs (5-10, 13 and 14; Fig. 5d,
Supplementary Table 3) were designed to evaluate anti-HLA-
B*57:01 T-cell alloreactivity between responders expressing HLA-
B*58:01 (AP013 and APO015), HLA-B*57:01 (matched, DHS006)
or both HLA-B*57:01 and HLA-B*58:01 (heterozygote, AP012)
and stimulators expressing HLA-B57 (DHS011) or HLA-B*57:01
(DHS009). Similar to the first set of MLRs, all HLA-A and -B
mismatched alloantigens expressed by the stimulators generated
alloreactive CD87F T-cell responses, whilst no allo-specific CD8"
T cells were directed against HLA-B*57:01 by either the HLA-
B*57:01/B*58:01 heterozygote or the HLA-B*57:01 matched
responder (Fig. 5e, ). Thus, differences in self-peptide presenta-
tion by HLA-B*57:01 and HLA-B*58:01, not background
proteome, generate alloreactivity between these related molecules.

Discussion

In order to resolve the impacts of micropolymorphism on the
peptide repertoire, we comprehensively analysed data sets com-
prising 2673 HLA-B*57:01-bound peptides, 3168 HLA-B*57:03-
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Fig. 4 HLA-B*57:01, HLA-B*57:03 and HLA-B*58:01 present peptides in distinct conformations. a-c The electrostatic potential mapped to the surface of
the structures of HLA-B*57:01, HLA-B*57:03 and HLA-B*58:01 respectively (red—electronegative, blue—electropositive). The al and a2 helices and the
positions of peptide-binding pockets A-F are shown. d-f Superposition of the crystal structures of the LTVQVARVW, LSSPVTKSW and LTVQVARVY
peptides (respectively) in complex with HLA-B*57:01 (grey), B*57:03 (cyan) and B*58:01 (orange). The a2 helix has been removed for clarity. g The
interaction between the P7Arg (from the peptide LTVQVARVW) and Asp114 in HLA-B*57:01. h The interaction between the P7Arg (from the peptide
LTVQVARVW) and Asp114 in HLA-B*58:01. i Superposition of the LTVQVARVW peptides in complex with HLA-B*57:01 (grey) and B*57:03 (cyan). The
presence of the Ser116Tyr micropolymorphism (HLA-B*57:01->HLA-B*57:03) prevents the binding of the P7Arg in the E pocket of HLA-B*57:03

bound peptides and 2526 HLA-B*58:01-bound peptides isolated
from monoallelic CIR transfectants!. Due to differences in the
ionisation efficiencies of individual peptides, which precludes
absolute peptide quantitation without the introduction of
sequence-matched isotope-labelled standards, distribution of
specific sequence features across the population of peptides was
used to define and compare the peptide-binding motif of each
allotype. The analysis was performed at three levels; first, at the
level of amino acid preference individually for 9, 10 or 1lmer
peptide ligands; second, at the level of amino acid physical
chemistry using a recently established PCA-based statistical
analysis of the data; and finally, at the level of proteome enrich-
ment. The majority of peptide ligands identified were 9-11 resi-
dues in length and possessed Ser, Thr or Ala at P2, and aromatic
residues at their C terminus, consistent with investigations of
HLA-B*57:01 and HLA-B*58:01 from other groups?®4041, Of the

three allotypes, the previously underexplored HLA-B*57:03 had
the most distinctive binding preferences. Although length and P2
preferences were equivalent to the other allomorphs, preferences
at PQ differed, showing greater enrichment of Phe and greater
sampling of ligands with smaller PQ) residues. Despite this, HLA-
B*57:03, like HLA-B*57:01 and HLA-B*58:01, was more stable
when in complex with peptides containing the bulky PQTrp
(compared to PQTyr or Phe). The incongruity between the sta-
bilisation effects conferred by Trp vs Phe at P9 and their pre-
valence in the repertoire of HLA-B*57:03 suggests an interplay
between ligand availability (Trp and Phe constitute approximately
1 and 4% of the human proteome respectively) and complex
stability in shaping the resultant peptide repertoire, which may be
further influenced by interactions with the peptide-loading
complex. Indeed, evidence of a hierarchy of tapasin dependence
between these allomorphs (HLA-B*57:01 > HLA-B*58:01 > HLA-
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Fig. 5 Reciprocal T-cell alloreactivity is observed between HLA-B*57:01 and HLA-B*58:01. Allogeneic MLRs were performed to measure the alloresponse to
either HLA-B*57:01 or HLA-B*58:01 in healthy donors. Schematics show the responder/stimulator combinations utilised to stimulate outgrowth of anti-
HLA-B*58:01 (a) and anti-HLA-B*57:01 (d) allo-specific T cells. Numbers correspond to the full details of each responder/stimulator combination provided
in Supplementary Table 3. b, ¢, e, f IFNy responses by CD8* T cells of outgrown responders in a secondary stimulation utilising APCs expressing single
HLA molecules of the primary stimulator as noted. Mean IFNy response (+SEM) by all responders is shown for each HLA (calculated as IFNy response
minus background as indicated in Supplementary Table 3). Anti-HLA-B*58:01 alloreactivity was generated following stimulation with either APO13 (b) or
APO15 (c) for allogenic mismatched responders (solid circles) but not for the HLA-B*57:01/B*58:01 heterozygote responder (crossed circle). Anti-HLA-
B*57:01 alloreactivity was generated following stimulation with either DHSOQ9 (e) or DHSO11 (f) for allogenic mismatched responders (solid circles). Anti-
HLA-B*57:01 alloreactivity was not observed with either HLA-B*57:01 matched (open circle) or a HLA-B*57:01/B*58:01 heterozygote responder (crossed
circle). Note that absent responses to HLA-A*02:01 in b correspond to MLR 11, where responders/stimulators were matched for HLA-A*02:01

B*57:03)*2 may indicate that HLA-B*57:03 can more readily
escape the benefits of peptide editing within the peptide-loading
complex, as suggested for other alleles*.

We further defined a secondary anchor site that modulated
peptide affinity for the HLA molecule and distinguished the
HLA-B*57:01 peptide-binding motif. Arg appeared at P7 of
9mers (and PQ-2 of longer peptides) almost exclusively in the
HLA-B*57:01 data set and correlated with stabilisation of HLA-
B*57:01 complexes by PQ-2 Arg. In contrast, PQ-2 Arg negatively
impacted the stability of HLA-B*57:03 and HLA-B*58:01 com-
plexes. Structural analysis of bound peptide conformation showed
a pronounced change in orientation of PQ-2 Arg/Lys conferred
by the Ser116Tyr polymorphism of HLA-B*57:03 that would
markedly change the surface presented to T cells. More subtle
changes were induced by the Val97Arg polymorphism in HLA-
B*58:01. These observations strongly parallel differences in pep-
tide presentation between micropolymorphic allotypes HLA-
B*35:01 and HLA-B*35:08, in which a Leul56Arg substitution
generates a secondary anchor site that improves the binding
kinetics of peptides containing a negatively charged residue at P5.
Of note, this results in distinct immunodominance hierarchies for
human cytomegalovirus pp65 T-cell epitopes in HLA-B*35:01F
and HLA-B*35:08% individuals!8. In addition, the Leul56Arg
polymorphism can alter peptide conformation and the plasticity
of bound ligands, resulting in divergent T-cell responses to several

Epstein Barr virus epitopes. Changes in T-cell responses were
attributed to the adoption of different conformations within the
antigen-binding cleft and/or the ability of the HLA-peptide
complex to accommodate conformational change on TCR
engagement!7444>  Although HLA-B*57:01, HLA-B*57:03 and
HLA-B*58:01 all associate with long-term non-progression of
HIV-1 infection to acquired immunodeficiency syndrome?!-2,
differences in viral load between patients possessing different
HLA-B57/58 alleles correlate with differential immunogenicity of
identical peptide ligands?3. The differences in peptide presenta-
tion described here provide grounds for this differential T-cell
recognition of B57/B58-bound ligands. Indeed, HLA-B*57:01 and
HLA-B*57:03 restricted presentation of the 1lmer KAFSPE-
VIPMF HIV-Gagl62-172 epitope induce distinct T-cell respon-
ses?4. Although presented in similar conformations by both
molecules, Tyr116 of HLA-B*57:03 reduces the space available to
accommodate changes in KAFSPEVIPMF conformation on TCR
ligation, requiring re-orientation of Tyr116, and impacting TCR
selection through altered TCR-pHLA affinity2°. In contrast, our
structural analyses encompass peptides of optimal length to
be contained within the antigen-binding cleft (9mers). These
peptides occupy the cleft without marked bulging or
overhang?>#>-48 however polymorphic residues of the cleft cause
distinct amino acid residue orientations. Our data suggest that 9-
10mer HLA-B57/58 HIV-1 epitopes possessing Arg or Lys at PQ)-
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2 such as QATQDVKNW (Gag308-316), and its escape variants,
and AVRHFPRIW (Vpr30-38)21:23 may adopt distinct con-
formations across the B57 family and generate structurally dis-
tinct targets for T-cell responses, which, in conjunction with
quantitative differences in contribution to the immunopepti-
dome, may in turn explain the clinical differences in patients with
these allotypes.

The observed alloreactivity between HLA-B*57:01 and HLA-
B*58:01 further indicates that the differences in presentation of
the self-proteome described are sufficient to alter recognition
reminiscent of alloresponses between HLA-B*44:02 and HLA-
B*44:03 molecules, which differ by a single residue buried within
the antigen-binding cleft (Aspl156Leu) and induce alloreactivity
when mismatched in transplant scenarios*®?0. Although the
residue 156 polymorphism does not impact the primary anchor
pockets of these allotypes, resulting in highly similar peptide-
binding motifs and immunopeptidomes, differences are sufficient
to stimulate alloresponses and are augmented by the ability of
these allotypes to present identical peptides in structurally distinct
conformations®®. Thus, caution may be necessary when
embarking on transplants between individuals bearing HLA-B57/
58 mismatches.

In summary, we present the first comprehensive investigation
of the impact of micropolymorphism on the immunopeptidome
of HLA class I molecules. This has involved detailed analysis of
ligand-binding specificity, qualitative and quantitative analysis of
the immunopeptidomes of three clinically important HLA-B57
family members, and structural and functional characterisation of
these differences. We show that micropolymorphism influences
the immunopeptidome at several interlinked levels: (i) the
repertoire of displayed peptides; (ii) quantity of displayed pep-
tides; (iii) stability of pHLA, which will impact on the dynamics
of the immunopeptidome; and (iv) conformation of pHLA.
Importantly, such differences may amplify the responding T-cell
repertoire against pathogens in heterozygous individuals but
restrict transplantation options when considering micro-
polymorphic mismatches between donor-recipient pairings.
Moreover, these findings suggest a need to look beyond qualita-
tive analysis of the peptide repertoire when trying to unravel the
nature of HLA-peptide presentation that dictates susceptibility to
viral infection, autoimmunity, transplant rejection and drug
hypersensitivity.

Methods

Ethics. Healthy individuals (n = 6) expressing either HLA-B*57:01, HLA-B*58:01
or both were recruited for the study. Ethics was granted from both Monash
University (DHS numbers) and the Australian Bone Marrow Donor Registry (AP
numbers) human ethics committees. Informed consent was obtained from all
participants and research was performed in compliance with ethical regulations for
the use of human samples.

Peripheral blood mononuclear cell isolation. Peripheral blood samples were
collected in heparinised vacutainer tubes and peripheral blood mononuclear cells
(PBMCs) were isolated by Ficoll-Paque (GE Healthcare, Sweden) and density
gradient centrifugation and cryopreserved until required.

Cell lines and culture. C1IR.B*57:01, C1R.B*57:03 and C1R.B*58:01 are B-LCLs,
derived from the CIR cell line that expresses reduced amounts of HLA class I
(reduced HLA-A2, reduced HLA-B35 and normal HLA-Cw4°152), and transfected
with HLA-B*57:01, HLA-B*57:03 or HLA-B*58:01 cDNA cloned into the
pcDNA3.1(—) vector (Invitrogen, USA)'°.

T-cell alloreactivity assays included the following B-LCLs (9053°3: A*33:03,
B*44:03 and C*14:03; T241: A*23:01, B*07:02, B*41:01, C*07:02 and C*08:02; A21:
A2 and B40) and transfected cell lines (C1R.parental/A*01:01/A*02:01/A*03:01/
B*07:02/B*08:01/B*15:01/B*44:02/B*44:03/B*57:01/B*58:01). CIR transfectants
were produced within the McCluskey laboratory (Peter Doherty Institute,
University of Melbourne, Victoria); T241 and A21 were provided by the Victorian
Transplantation and Immunogenetics Service (West Melbourne, Victoria).

All cell lines were cultured in RF10 [RPMI 1640 (Life Technologies, USA)
supplemented with 10% foetal calf serum (Sigma, St Louis, USA), 7.5 mM HEPES

(MP Biomedicals, Germany), 100 UmL~! Pen-Strep (benzyl-penicillin/
streptomycin, Life Technologies, USA), 2 mM L-glutamine (MP Biomedicals,
Germany), 76 uM B-mercaptoethanolamine (Sigma-Aldrich, USA) and 150 uM
non-essential amino acids (Life Technologies, USA)] at 37 °C, 5% CO,.
Maintenance of transfected HLA expression during long-term culture was
facilitated by addition of Geneticin, 0.4-0.5 mg mL~! (G418; Life Technologies,
USA), or Hygromycin B, 0.2-0.3 mg mL~! (Life Technologies, USA). Increased
HLA class I expression (as compared to CIR parental) was confirmed via flow
cytometry after staining with the HLA class I pan-specific monoclonal antibody
We6/32%4 (produced in house from the W6/32 hybridoma) and Goat F(ab’)2 Anti-
Mouse IgG(H + L), Human ads-PE (1:500, catalogue number 1032-09, Southern
Biotech, USA). All cell lines were tested for mycoplasma contamination.

Motif characterisation and data set comparisons. We had previously isolated
and sequenced peptide ligands from HLA class I of 10° C1R-B*57:01, C1R-B*57:03
and C1R-B*58:01 cells by LC-MS/MS using an information-dependent acquisition
(IDA) strategy!®. Spectra were assigned with ProteinPilot™ software version 5.0
(SCIEX, USA) searching against the reviewed Swiss-Prot human proteome
(accessed November 2017) and peptide identities determined subject to strict
bioinformatic criteria, assigning confidence values to each peptide and including
the use of a decoy database to calculate the FDR. Peptides known to bind the
endogenous HLA class I of CIR cells (HLA-C*04:01 and HLA-B*35:03)%5 were
removed before subsequent analysis. A further list of peptide contaminants, gen-
erated by comparison of a large number of similar elution experiments for MHC I
and MHCII were also disregarded, in addition to peptides of the HLA proteins
(Supplementary Data 3). To characterise the peptide-binding motif of each HLA
allotype, distinct peptides identified within three biological replicate experiments
were filtered using a confidence cut-off for a 5% local FDR (95.2-97) and pooled to
generate a single data set for analysis. The frequency of peptides (non-redundant
by sequence) of specific lengths and/or possessing a particular amino acid at a
specified position within the peptide was then calculated and sequence motifs
generated for 9-11 residue peptides. Heat maps of the inter-position coupling
matrices were generated for each of the 9mer, 10mer and 11mer peptides. Statistical
coupling of two sites in the peptide was defined as the degree to which amino acid
frequencies at one site change in response to a perturbation of frequencies at a
second site®®. Coupling matrices were processed and analysed with custom Perl
and MATLAB (The MathWorks Inc., Natick, MA) scripts®’. Scripts are available
(https://github.com/jlmendozabio/covariation_stats).

For PCA based on amino acid physicochemical properties, 4 quantitative
biophysical properties (molecular weight, hydropathy index, surface area and
isoelectric point) were determined for each position of the peptide. We also
incorporated 20 additional parameters at each amino acid position describing the
identity of the amino acid present. From the points generated by the PCA, a two-
dimensional kernel density plot was used to more clearly display large numbers of
peptides. These variables were processed for peptides of 9-11 amino acids in length
from each HLA allotype. For each different combination of PC scores, we
performed clustering by k-means clustering. Silhouette analysis was used to provide
a quantitative assessment of cluster similarity. On the basis of peaks in silhouette
coefficient across the number of clusters, peptides were assigned into one of the two
distinctive clusters present in all allotypes and for all peptide lengths by using k-
means clustering (k= 2) on the first two principal components. To visualise the
sequence motifs present in each cluster, peptide sequences were extracted from
each cluster and their motifs generated based on residue frequency as described
above. These analyses were performed using a custom R script®$-0! (available at
https://github.com/ParhamLab/PeptidePCA/tree/master/R).

Amino acid enrichment/regulation over prevalence in the human proteome was
determined using the icelogo v1.2 stand-alone software via the static reference
method (reference Homo sapiens Swiss-Prot means), and is depicted as FC (FC =
prevalence in data set/prevalence in human proteome) for enriched amino acids,
and converted FC (FC,,, = —1/FC) for negatively regulated residues’!. FC or
FCcon was only depicted where the Z-score fell outside the confidence interval for a
p-value of 0.05. Post-translational modifications of peptides were not considered
during motif analysis.

To perform sequence-based comparison of data sets for overlap within the
peptide repertoire, all peptides in a data set identified with a confidence > 95 were
included. Peptides identified with a confidence > 20 were also included if, and only
if, they appeared in a compared data set with a confidence > 95. Modifications were
considered in overlap analysis.

Purification of HLA-peptide complexes. C1R transfectants were grown to high
density in 100 mL RF10 containing 0.5 mg mL~! G418 in T175 tissue culture flasks
(Greiner Bio-One International AG, Austria). Cells were harvested in batches of
108 cells by centrifugation (1200 x g, 20 min, 4 °C), washed twice in chilled
phosphate-buffered saline and frozen on dry ice for 15 min or by submersion in
liquid nitrogen. Pelleted cells were stored at —80 °C until time of use. Detergent-
based lysis was performed by resuspending cell pellets in 5mL lysis buffer [0.5%
IGEPAL (Sigma-Aldrich, USA), 50 mM Tris, pH 8, 150 mM NaCl (Merck-Milli-
pore, Germany) and protease inhibitors (Complete Protease Inhibitor Cocktail
Tablet [1 tablet per 50 mL solution]; Roche Molecular Biochemicals, Switzerland)]

10 | (2018)9:4693 | DOI: 10.1038/541467-018-07109-w | www.nature.com/naturecommunications


https://github.com/jlmendozabio/covariation_stats
https://github.com/ParhamLab/PeptidePCA/tree/master/R
www.nature.com/naturecommunications

ARTICLE

and incubating for 45 min at 4 °C with slow end-over-end mixing. Lysates were
cleared by centrifugation at 16 000 x g for 20 min at 4 °C.

HLA-peptide complexes were immunoaffinity purified from cell lysates using 1
mg W6/32 monoclonal antibody crosslinked to protein A sepharose®. Bound
complexes were eluted with 2 mL 10% acetic acid. The eluted mixture of peptides,
class I heavy chain and f,-microglobulin (,m) was fractionated on a 4.6 mm
internal diameter x 50 mm long monolithic reversed-phase (RP) C;3s high-
performance liquid chromatography (HPLC) column (Chromolith Speed Rod,
Merck-Millipore, Germany) utilising an AKTAmicro™ HPLC system (GE
Healthcare, UK; Unicorn v5.11 software) and using a mobile phase consisting of
buffer A (0.1% trifluoroacetic acid (TFA) [Thermo Scientific, USA]) and buffer B
(80% acetonitrile (ACN) [Fisher Scientific, USA] and 0.1 % TFA), running at 1 mL
min~! with a gradient of B of 2-40% over 4 min, 40-45% over 4 min and 45-99%
over 2 min, collecting 500 pL fractions. Three fraction pools were generated and
vacuum concentrated for MS analysis. Ultraviolet absorbance of eluted material
was monitored at 215 nm. The relative amount of HLA purified was measured as
the area under the curve for the f,m.

MRM quantification of HLA-bound peptides. Fraction pools from the RP-HPLC
purification were concentrated using a speed vacuum concentration system
(LABCONCO, USA). MRM detection was performed using an AB SCIEX QTRAP
5500 mass spectrometer, equipped with a Tempo nanoLC (Eksigent) autosampler
and cHiPLC nanoflex (Eksigent) and utilising Analyst 1.6 (SCIEX) software.
Samples were injected and loaded onto a trap column (200 um x 0.5 mm ChromXP
C15-CL packed with 3 um particles, nominal pore size 120 A) at a flow rate of 5 pL
min—! in 98% buffer A (0.1% formic acid in water), 2% buffer B (95% ACN and
0.1% formic acid in water) for 10 min. Samples were eluted from the trap column
and over a cHiPLC column (75 pm x 15 cm ChromXP C;s- packed with 3 um
particles, nominal pore size 120 A) at 300 nL min—! using the following gradient
conditions: 0-3 min 2-10% B, 3-62 min 10-50% B, 62-65 min 40-80% B, 65-70
min hold at 80% B, 70-73 min 80-2% B, followed by equilibration at 2% B for 7
min. The QTRAP 5500 was operated in MRM mode in unit resolution for Q1 and
Q3, coupled to an IDA criterion set to trigger an EPI scan (10 000 Da s~} rolling
CE; unit resolution) following any MRM transition exceeding 600 counts. Trig-
gering MRM transitions were ignored for the subsequent 6s.

The detection of all three to four transitions overlapping at a particular
retention time, accompanied by MRM triggered-MS/MS fragmentation in at
least one experiment, was used as an indicator of peptide presence. Fragment ion
intensity rankings were compared to those in initial IDA-based discovery
experiments using a spectral library generated from data for the three HLA
allotypes using Skyline 64 bit 3.5.0.9319 (MacCoss Laboratory®?) and calculated
as a dot product value. Peptides detected in a sample without MS/MS validation
were considered valid if the retention time (RT) was +1.5 min of the average RT
for MS/MS validated appearances of that peptide and the dot product value was
>0.7. Relative peptide abundance was calculated as the total area under the curve
for the detected transitions using Skyline software, normalised to the amount of
purified HLA from which the sample was derived, allowing comparison between
samples in the absence of absolute quantitation.

Allogeneic T-cell stimulation. T-cell cultures were generated from 5 x 106
responder PBMCs stimulated with 2.5 x 10 irradiated allogeneic PBMCs. Cul-
ture medium was supplemented with 20 U mL~! recombinant human IL-2
(Cetus) and changed every 2-3 days to maintain saturating levels of nutrients
and growth factors. On day 13, 2 x 10° responders from the T-cell culture were
restimulated with 10° B-LCLs expressing allo-HLA. After 2 h of coincubation
(37 °C, 5% CO,), 10 pg mL~! Brefeldin A (Sigma-Aldrich, USA) was added for a
further 4 h. Responder CD8* T cells were stained with anti-CD8 PerCP-Cy5.5
(1:20, clone SK1, catalogue number 341051, Becton Dickinson [BD] Biosciences,
USA), anti-CD4 PE (1:20, clone RPA-T4, catalogue number 555347, BD Bios-
ciences) and a viability dye (1:750, LIVE/DEAD"™ Fixable Aqua Dead Cell Stain,
405 nm excitation, catalogue number L34957, Thermo Fisher), fixed with 1%
paraformaldehyde (ProSciTech, Australia) and permeabilised with 0.3% Saponin
(Sigma-Aldrich, USA) containing anti-IFNy PE-Cy7 (1:250, clone B27, catalogue
number 557643, BD Biosciences, USA) and acquired on a LSRII flow cytometer
(BD, USA) utilising BD FACSDIVA™ software. The percentage of allo-specific
CD8* T cells producing IFNy was analysed using FlowJo software (Tree Star
Inc., USA)3C, utilising the gating strategy shown in Supplementary Fig. 10.
Sample numbers were dictated by availability of HLA-B*57:01/HLA-B*58:01
PBMC.

Recombinant HLA-peptide complex generation. The HLA-B*57:01, HLA-
B*57:03, HLA-B*58:01 and 3,m genes were sub-cloned into the pET-30 expression
vector and were expressed into inclusion bodies separately in Escherichia coli. The
HLA complexes were refolded in the presence of the peptides listed in Table 1 and
purified as described previously®®. Briefly, 90 mg HLA heavy chain was refolded by
rapid dilution in a solution containing 3 M urea (Sigma-Aldrich, USA), 100 mM
Tris-HCI, pH 8.0 (Sigma-Aldrich, USA), 400 mM L-arginine-HCI, 5 mM reduced
glutathione (Sigma-Aldrich, USA) and 0.5 mM oxidised glutathione (Sigma-
Aldrich, USA) in the presence of 30 mg $,m and 10 mg of the appropriate peptide

for 48 h. The refolded HLA-peptide complexes were dialysed into 10 mM Tris, pH
8.0, and purified by size-exclusion chromatography using HiLoad 16/60 Superdex
200 pg (GE Healthcare, USA) columns on an AKTA Purifier (GE Healthcare, USA)
FPLC chromatography systems in 10 mM Tris, pH 8.0, and 150 mM NaCl buffer.
Final purification was by anion exchange using a HiTrap Q Fast Flow column (GE
Healthcare, USA) on the same AKTA system in 10 mM Tris pH 8.0 buffer with a
NaCl gradient from 0 to 500 mM over 45 min.

Thermal melt experiments. Thermal stability assays were performed at 0.5 and 1
mg mL~! HLA-peptide complex in 10 mM Tris and 150 mM NaCl, pH 8.0 in a
reaction volume of 25 pL in duplicate except where otherwise indicated. Protein
unfolding was monitored by the addition of the fluorescent dye SYPRO® Orange
(Sigma-Aldrich, USA) at 10x concentration. Refolded complexes were heated from
35 to 90 °C at a heating rate of 1°Cmin~! in the Real Time Detection system
(Rotor-Gene® Q, QIAGEN) and fluorescence intensity was measured using an
excitation wavelength of 530 nm and emission at 555 nm.

X-ray crystallography. The peptide sequences crystallised in complex with HLA-
B*57:01, HLA-B*57:03 and HLA-B*58:01 are noted in Table 1. HLA-peptide
complexes were concentrated to ~10 mgmL~! and crystallised at 294 K by the
hanging-drop vapour-diffusion method from a solution comprising 12-20% PEG
4000, 0.2 M ammonium acetate and 0.1 M tri-sodium citrate pH 5.4-5.6. Prior to
data collection, crystals were equilibrated in reservoir solution with 10% glycerol
added as a cryoprotectant and then flash-cooled in a stream of liquid nitrogen at
100 K. Data sets were collected at the MX2 beamline (Australian Synchrotron,
Victoria). The data were recorded on a Quantum-315 CCD detector and were
integrated and scaled using MOSFLM and SCALA from the CCP4 programme
suite®-%, Details of the data processing statistics are summarised in Table 2.
Phases for the structures were determined by molecular replacement as imple-
mented in PHASER®” with HLA-B*57:01-LF9 used as the search model (Protein
Data Bank accession number: 2RFX34). Refinement of the models proceeded with
iterative rounds of manual building in COOT®S, refinement in PHENIX®® and
validation with MOLPROBITY®. Refinement statistics are summarised in Table 2.

Code availability. Scripts for co-variation analysis and PCA are available at https://
github.com/jlmendozabio/covariation_stats and https://github.com/ParhamLab/
PeptidePCA/tree/master/R.

Data availability

Proteomics data sets analysed during this study have been deposited to the Pro-
teomeXchange Consortium via the PRIDE”? partner repository with the data set
identifiers PXD008570 (C1R.B*57:01 LC-MS/MS), PXD008571 (C1R.B*57:03 LC-
MS/MS), PXD008572 (C1R-B*58:01 LC-MS/MS) and PXD009850 (LC-MRM).
Coordinates and structure factors were deposited in the PDB with the following
codes: B5701-LSSPVTKSW 5VUD; B5701-LTVQVARVW 5VUE; B5701-
LTVQVARVY 5VUF; B5703-LSSPVTKSW 5VVP; B5703-LTVQVARVW 5VWD;
B5703-LTVQVARVY 5VWE; B5801-LSSPVTKSW 5VWH; and B5801-
LTVQVARVW 5VW]. All other data are available from the corresponding author
on reasonable request.
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