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Introduction: End-stage renal disease (ESRD) patients with a paradoxical increase in blood pressure (BP)

during hemodialysis (HD), termed intradialytic hypertension (ID-HTN), are at significantly increased risk for

mortality and adverse cardiovascular events. ID-HTN affects up to 15% of all HD patients, and the path-

ophysiologic mechanisms remain unknown. We hypothesized that ESRD patients prone to ID-HTN have

heightened volume-sensitive cardiopulmonary baroreflex sensitivity (BRS) that leads to exaggerated in-

creases in sympathetic nervous system (SNS) activation during HD.

Methods: We studied ESRD patients on maintenance HD with ID-HTN (n ¼ 10) and without ID-HTN

(controls, n ¼ 12) on an interdialytic day, 24 to 30 hours after their last HD session. We measured

continuous muscle sympathetic nerve activity (MSNA), beat-to-beat arterial BP, and electrocardiography

(ECG) at baseline, and during graded lower body negative pressure (LBNP). Low-dose LBNP isolates

cardiopulmonary BRS, whereas higher doses allow assessment of physiologic responses to orthostatic

stress.

Results: The ID-HTN patients had significantly higher pre- and post-HD BP, and greater interdialytic fluid

weight gain compared to controls. There was a significantly greater increase in MSNA burst incidence

(P ¼ 0.044) during graded LBNP in the ID-HTN group, suggesting heightened cardiopulmonary BRS. The

ID-HTN group also had a trend toward increased diastolic BP response during LBNP, and had significantly

greater increases in BP during the cold pressor test.

Conclusion: Patients with ID-HTN have augmented cardiopulmonary BRS that may contribute to increased

SNS activation and BP response during HD.
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I
D-HTN, defined as paradoxical increases in BP dur-
ing HD, is a major clinical problem that significantly

increases morbidity and mortality and affects up to
15% of HD patients.1 ESRD patients with ID-HTN have
significantly poorer short-term and long-term outcomes
compared to ESRD patients with appropriate decreases
in BP during the dialysis procedure.2–4

The pathogenic mechanisms underlying ID-HTN
remain unclear, and thus the best therapeutic approach
remains unknown. Although SNS overactivity is pre-
sumed to play a role, prior evidence is scarce and con-
flicting. Some studies report greater increases in total
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peripheral resistance and reductions in heart rate vari-
ability (HRV) suggestive of sympathetic overactivation,5,6

whereas others report no changes in HRV or plasma
catecholamine levels, suggesting that SNS overactivation
does not contribute to the pathogenesis of ID-HTN.7

However, HRV and plasma catecholamines, which are
indirect markers for sympathetic activity, may not
accurately reflect sympathetic nerve activity, particularly
in ESRD.

The goal of the current study was to evaluate the
mechanistic role of SNS overactivation in the pathogen-
esis of ID-HTN using intraneural measures of sympa-
thetic nerve activity during orthostatic stress, which
simulates the volume shifts during HD.8,9 Reflex
activation of SNS during orthostasis is governed by
volume-sensitive cardiopulmonary barorereceptors (“low-
pressure” baroreceptors located in the atria, ventricles,
and lungs) in response to changes in volume or cardiac
Kidney International Reports (2018) 3, 1394–1402
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preload. Cardiopulmonary baroreceptors are afferent
stretch receptors that tonically inhibit central SNS
outflow. When cardiac preload is reduced, as during
volume loss from ultrafiltration, upright posture, or
experimentally via LBNP, the cardiopulmonary barore-
ceptors become unloaded; this results in a reflex increase
in SNS output, in a “feed-forward” mechanism designed
to prevent an impending fall in BP. If the cardiopul-
monary baroreceptors become sensitized, then the
cardiopulmonary baroreflex-mediated control of SNS
activity becomes exaggerated, resulting in augmented
increases in SNS activation and BP during orthostatic
stress. Augmented cardiopulmonary BRS has been
described in other patient populations characterized
by elevated BP and cardiovascular risk,10,11 but has
never previously been evaluated in ESRD. We hy-
pothesized that ESRD patients with ID-HTN would
have exaggerated increases in SNS activity during
orthostatic stress due to increased sensitization of the
cardiopulmonary baroreflex, resulting in paradoxical
increases in BP during volume removal.
METHODS

Study Population

A total of 22 patients with ESRD on maintenance HD
for $6 months were recruited and enrolled from 3
Emory University Dialysis Units. We defined ID-HTN
as a failure to reduce BP by at least 10 mm Hg by the
end of HD or post-HD, as previously described.1�3

The ID-HTN group met criteria for ID-HTN in $4
of 6 consecutive HD sessions. The control group had
a $10�mm Hg reduction in systolic BP in $4 of 6
consecutive HD sessions. Although no standard
definition of intradialytic hypertension exists, prior
studies have shown that compared to HD patients
whose BP fell by >10 mm Hg, those whose BP did not
change (�10 to 10 mm Hg) or rose with HD (>10
mm Hg) both had w 2-fold greater adjusted odds for
death or hospitalization at 6 months.2 Exclusion
criteria for both groups included drug or alcohol
abuse, neuropathy, acute illness, severe anemia with
hemoglobin level <8 g/dl, clinical evidence of overt
heart failure or volume overload, vascular event
within the past 6 months, symptomatic heart disease
determined by ECG stress test and/or history, treat-
ment with central a-agonists, autonomic dysfunction
or other neurological complaints, treatment with
gabapentin, pregnancy, surgery or hospitalization
within the past 3 months, and nonadherence to HD or
medication regimen. This study was approved by the
Emory University Institutional Review Board, and
written informed consent was obtained from all
participants.
Kidney International Reports (2018) 3, 1394–1402
Measurements and Procedures
Blood Pressure

Seated BP was measured in triplicate using standard
technique. Beat-to-beat arterial BP was measured contin-
uously and noninvasively using digital pulse photo-
plethysmography12,13 (NexFin, Edwards LifeSciences,
Irvine, CA).

Muscle Sympathetic Nerve Activity

Multifiber postganglionic MSNA was recorded via a
tungsten microelectrode (tip diameter 5�15 mm; Bioen-
gineering, University of Iowa, Iowa City, IA) inserted into
the peroneal nerve using microneurography.14,15 A
ground microelectrode was inserted subcutaneously, and
nerve activity signals were amplified (gain 50,000–
100,000�), filtered (700–2000 Hz), rectified, and inte-
grated (time constant 0.1 second) to obtain a mean voltage
display of MSNA (Nerve Traffic Analyzer, Model 662C-4,
University of Iowa Bioengineering, Iowa City, IA) that
was recorded in real time with beat-to-beat BP and ECG
into LabChart 7 (PowerLab 16sp, ADInstruments, Colo-
rado Springs, CO). All MSNA recordings were analyzed
by a single investigator (JP) who was blinded to the
participant’s group status and who met previously
established quality criteria.16�18 The MSNA was
expressed as burst frequency (bursts per minute), and
incidence (bursts/100 heart beats).

Lower Body Negative Pressure

Graded LBNP was used to test cardiopulmonary bar-
oreflex sensitivity during low doses, and physiologic
responses to increasing orthostatic stress at high doses.
The legs and lower abdomen of the participant were
sealed in a lower body negative pressure chamber (a
chamber that creates a vacuum and has an attached
rheostat to measure negative pressure). The LBNP was
sequentially applied at �5, �10, �15, �20, �30,
and �40 mm Hg for 3 minutes at each level. At
low doses (#�20 mm Hg), only the cardiopulmonary
baroreflexes are engaged, and there are no changes in
blood pressure. At higher doses ($�20 mm Hg), both
cardiopulmonary and arterial baroreflexes are engaged,
and there may be a small change (<10 mm Hg) in blood
pressure. Cardiopulmonary BRS is defined as the slope
of the linear regression between MSNA burst incidence
or burst frequency and dose of LBNP.

Cold Pressor Test

The participant’s hand was submerged in cold water
(w0–1 �C) up to the wrist for 1 minute.19 Pain expe-
rienced during the cold pressor test (CPT) was rated on
a scale of 0 to 4.

Experimental Protocol

Participants were studied in the morning on a non-
dialysis day, approximately 26 to 30 hours after their
1395



Table 1. Baseline characteristics of the study population

Characteristics
Control
n [ 12

ID-HTN
n [ 10 P value

Age, yr 47.0 � 2.8 47.1 � 4.3 0.980

Sex, male/female 5/7 6/4 0.392

Race, black/white 12/0 9/1 0.262

Weight, kg 90.5 � 6.3 89.6 � 8.4 0.930

Body mass index, kg/m2 30.4 � 1.7 29.2 � 2.0 0.651

Baseline muscle sympathetic nerve activity

Burst frequency, bursts/min 36.8 � 3.9 27.1 � 2.9 0.066

Burst incidence, bursts/100 heart beats 52.2 � 5.2 38.4 � 5.8 0.108

Hemodynamics

Systolic BP, mm Hg 130 � 8 141 � 10 0.356

Diastolic BP, mm Hg 76 � 3 78 � 5 0.813

Heart rate, bpm 79 � 3 75 � 4 0.813

Diabetes, n (%) 4 (33) 1 (10) 0.193

Hypertension, n (%) 9 (75) 10 (100) 0.089

Etiology of end-stage renal disease, n (%)

Hypertension 6 (50) 9 (90) 0.045

Diabetes 2 (17) 1 (10) 0.650

Glomerulonephritis 3 (25) 0 (0) 0.089

Unspecified 1 (8) 0 (0) 0.350

Antihypertensive medications, n (%)

Calcium channel blockers 3 (25) 7 (70) 0.035

ACEIs/ARBs 4 (33) 7 (70) 0.087

b-Blockers 7 (58) 7 (70) 0.571

ACEIs, angiotensin-converting enzyme inhibitors; ARBs, angiotensin receptor blockers;
BP, blood pressure.
Values with plus-or-minus sign are mean � SE. Bold indicates statistically significant
P values < 0.05.
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last dialysis session. All participants had abstained
from food, caffeine, and exercise for at least 12 hours
prior to study procedures, but had taken their
routinely scheduled medications with sips of water as
prescribed. A brief history and physical examination
was performed to ensure no history of orthopnea,
paroxysmal nocturnal dyspnea, increased dyspnea on
exertion, or findings of pulmonary crackles, S3 heart
sounds, or greater than trace edema. The study room
was quiet, semidark, and temperate (w21 � C). Partic-
ipants were placed in a supine position and were fitted
with finger cuffs for continuous BP monitoring and
patch electrodes for continuous ECG recordings. The
LBNP chamber was fitted and sealed over the lower body,
and the leg was accessed for microneurography using an
opening in the chamber. The tungsten microelectrode was
inserted into the peroneal nerve and manipulated to
obtain a satisfactory nerve recording as described above.
After 10 minutes of rest, continuous ECG, MSNA, and BP
data were measured and recorded in real-time at baseline
for 10 minutes and throughout the experimental protocol.
After baseline measurements, graded LBNP was applied
at the following doses: �5, �10, �15, �20, �30,
and�40 mm Hg,10 for 3 minutes at each dose, to simulate
orthostatic stress during HD. The LBNP at low doses
(#�20 mm Hg) selectively unloads cardiopulmonary
baroreceptors, and allows for assessment of cardiopul-
monary BRS. Heart rate, BP, and MSNA were continu-
ously measured throughout the 18 minutes of LBNP, and
for an additional 10 minutes of recovery time. After re-
turn to baseline conditions, a subset of participants un-
derwent 1 minute of CPT.

Data Analysis
Muscle Sympathetic Nerve Activity

The MSNA, BP, and ECG data were analyzed using
WinCPRS (Absolute Aliens, Turku, Finland). R-waves
were automatically marked from the continuous ECG
and then reviewed and edited manually as needed. The
MSNA bursts were detected using the following
criteria: 3:1 burst-to-noise ratio within a 0.5-second
search window, with an average latency of 1.2 to 1.4
seconds from the previous R-wave, and inspected for
accurate detection by a single investigator (JP). The
MSNA was expressed as burst frequency (bursts/min)
and burst incidence (bursts/100 heart beats).

Statistical Analysis

Statistical analysis was performed with the lme420 and
lmerTest21 packages in the R statistical programming
environment.22 Baseline measurements were compared
using 2-sided t tests and Fisher exact tests. Linear
mixed models were used to adjust for repeated mea-
surements on the same individuals during LBNP. These
models included not only random intercepts but also
1396
random slopes, because the variance increased with the
mean during the intervention. Outcome variables in
this study were changes in MSNA, SBP, DBP, MAP,
and HR. For each outcome variable, 2 separate linear
mixed models were run for within-group analysis and
between-group analysis respectively. In the within-
group analysis, we tested the association between the
change of outcome from baseline and the increase in
LBNP dose. In the between-group analysis, in addition
to comparing baseline between-group differences, we
tested for a discrepancy in the rate of change in
outcome variables between ID-HTN and control
groups. Statistical significance was reported by 2-sided
P values with the lmerTest21 package.

RESULTS

Baseline Characteristics

Baseline characteristics are summarized in Table 1.
There were no significant differences in age, race,
weight, and body mass index (BMI) between the
ID-HTN and control groups. Resting muscle sympa-
thetic nerve activity (MSNA) burst frequency tended
to be lower in ID-HTN versus controls (27.1 � 2.9 vs.
36.8 � 3.9 bursts/min, P ¼ 0.066). There were no
significant differences in baseline hemodynamics or in
the proportion of subjects with comorbid diabetes. The
ID-HTN group had a significantly greater proportion of
Kidney International Reports (2018) 3, 1394–1402



Table 2. Hemodialysis characteristics of the study population
Control
n [ 12

ID-HTN
n [ 10 P value

Dialysis vintage, yr 6.0 � 1.3 3.1 � 0.5 0.072

Access, n (%)

AV fistula 7 (58) 6 (60) 0.937

AV graft 4 (33) 4 (40) 0.746

Catheter 1 (8) 0 (0) 0.350

HD hemodynamicsa

Pre-HD SBP, mm Hg 148 � 3 178 � 3 <0.001

Post-HD SBP, mm Hg 130 � 2 154 � 3 <0.001

Nadir HD SBP, mm Hg 111 � 3 145 � 3 <0.001

Pre-HD DBP, mm Hg 81 � 2 97 � 3 <0.001

Post-HD DBP, mm Hg 72 � 2 98 � 14 <0.001

Nadir HD DBP, mm Hg 61 � 2 79 � 2 <0.001

Pre-HD HR, bpm 83 � 2 79 � 3 0.334

Post-HD HR, bpm 82 � 2 84 � 2 0.411

HD characteristicsa

Interdialytic weight gain, kg 2.2 � 0.2 2.8 � 0.2 0.039

Dialysis time, min 223 � 8 223 � 8 0.958

Ultrafiltration volume, L 2.6 � 0.1 2.9 � 0.2 0.096

Ultrafiltration rate, ml/kg per hr 8.1 � 0.4 8.5 � 0.5 0.594

Laboratory measures

Sodium, mEq/l 138.1 � 0.9 138.3 � 0.6 0.848

Potassium, mEq/l 4.5 � 0.1 4.8 � 0.3 0.346

Hemoglobin, g/dl 11.0 � 0.2 11.3 � 0.5 0.600

Phosphorus, mEq/l 6.2 � 0.4 6.3 � 0.8 0.905

Parathyroid hormone, pg/ml 810 � 186 598 � 126 0.359

Kt/V 1.63 � 0.08 1.41 � 0.11 0.110

Urea reduction ratio, % 75.1 � 1.7 69.2 � 3.4 0.133

AV, arteriovenous; DBP, diastolic blood pressure; HD, hemodialysis; HR, heart rate; Kt/V,
measure of dialysis adequacy (K ¼ dialyzer clearance of urea, t ¼ dialysis time, V ¼
volume of distribution of urea, which is roughly total body water), SBP, systolic blood
pressure.
Values with plus/minus sign are the mean � SE. Bold indicates statistically significant
P values < 0.05.
aMean values averaged across 6 consecutive HD treatments.
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participants with hypertension as the etiology of ESRD
(P ¼ 0.045), whereas the control group tended to have
a greater proportion with glomerulonephritis as the
etiology of ESRD (P ¼ 0.089). The ID-HTN group had a
significantly greater proportion treated with dihy-
dropyridine calcium channel blockers (P ¼ 0.035), and a
trend toward a greater proportion treated with
angiotensin-converting enzyme inhibitors (ACEIs)
and angiotensin receptor blockers (ARBs) (P ¼
0.087). There were no significant differences in
b-blocker use between the groups. None of the par-
ticipants in either group were treated with non-
dihyropyridine calcium channel blockers. Study
participants took their antihypertensive medications
after HD on dialysis days, and in the mornings on
nondialysis days, and this dosing schedule did not
differ between the groups. There were no significant
differences in the use of dialyzable antihypertensive
medications between the groups (data not shown).
Within the ID-HTN group, 4 of 10 were on lisinopril,
and 4 of 10 were on metoprolol. Within the control
group, 3 of 12 were on lisinopril, and 3 of 12 were on
metoprolol.

Hemodialysis Characteristics

Hemodialysis characteristics are summarized in
Table 2. The ID-HTN group tended to have shorter
dialysis vintage compared to controls (3.1 � 0.5 vs.
6.0 � 1.3 years, P ¼ 0.072). There were no significant
differences in HD access type between groups. The
ID-HTN group had significantly higher pre- and post-
HD systolic BP (SBP) and diastolic BP (DBP) compared
to the control group, whereas there were no signifi-
cant differences in pre- and post-HD heart rate (HR)
between groups. Although post-HD SBPs were
significantly lower in controls compared to partici-
pants in the ID-HTN group, 3 of 10 ID-HTN partici-
pants had 2 HD sessions in which SBP decreased by
>10 mm Hg, resulting in an overall lower mean post-
HD systolic BP compared to pre-HD systolic BP within
the ID-HTN group. The nadir intradialytic SBP (145 �
3 vs. 111 � 3 mm Hg, P < 0.001) and DBP (79 � 2 vs.
61 � 2 mm Hg, P < 0.001) were also significantly
higher in the ID-HTN group compared to the control
group, respectively. The ID-HTN group had signifi-
cantly higher interdialytic weight gain compared to
the control group (2.8 � 0.2 vs. 2.2 � 0.2 kg, P ¼
0.039), and a trend toward higher HD ultrafiltration
volume (P ¼ 0.096). There were no significant dif-
ferences in laboratory measures including serum so-
dium, potassium, phosphorus, and hemoglobin levels
between the groups. There was a trend toward lower
hemodialysis adequacy in ID-HTN participants
compared to controls assessed as Kt/V (1.41 � 0.11 vs.
Kidney International Reports (2018) 3, 1394–1402
1.63 � 0.08, P ¼ 0.110) and urea reduction ratio
(69.2% � 3.4% vs. 75.1% � 1.7%, P ¼ 0.133).
Hemodynamic and Neurocardiovascular

Response During Low-Dose LBNP

Low-dose LBNP (#�20 mm Hg) decreases venous
return to the heart without a change in BP, and thereby
isolates the volume-sensitive low-pressure cardiopul-
monary baroreflex.10,11 There was no significant dif-
ference in the SBP, DBP, mean arterial pressure (MAP),
or HR response during low-dose LBNP between the
ID-HTN and control groups (Figure 1). However, there
was a significant increase in DBP within the ID-HTN
group during low-dose LBNP (P ¼ 0.011). There was a
significantly greater increase in MSNA burst incidence
(P ¼ 0.008) and burst frequency (P ¼ 0.006) in ID-HTN
participants compared to controls during low-dose
LBNP, suggesting heightened cardiopulmonary BRS
(Figure 2). These results remained significant when the
3 ID-HTN participants with a >10�mm Hg reduction
in SBP during 2 of 6 HD sessions during the screening
period were excluded from the analyses.
1397
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Figure 1. Change in systolic blood pressure (SBP), diastolic blood
pressure (DBP), mean arterial pressure (MAP), and heart rate
(HR) during low-dose and high-dose graded lower body negative
pressure (LBNP) in end-stage renal disease patients prone
to intradialytic hypertension (ID-HTN, n ¼ 10) and controls
(n ¼ 12).
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Hemodynamic and Neurocardiovascular

Response During High-Dose LBNP

High-dose LBNP (#�20 mm Hg) engages both
volume-sensitive cardiopulmonary baroreflexes and
BP-responsive “high-pressure” arterial barore-
flexes.10,11 High-dose LBNP simulates acute volume
loss that occurs with volume removal during HD.8

There was no significant difference in the overall
change in SBP, DBP, MAP, or HR from baseline to
during high-dose LBNP ($�20 mm Hg) between the
ID-HTN and control groups (Figure 1). ID-HTN group
tended to have a greater increase in DBP during high-
dose LBNP compared to controls (P ¼ 0.101). There
was a significantly greater increase in MSNA burst
incidence (P ¼ 0.044), and a trend toward a signifi-
cantly greater increase in MSNA burst frequency (P ¼
0.064) in ID-HTN participants compared to controls
during high-dose LBNP, suggesting heightened sym-
pathetic response induced by orthostatic stress
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(Figure 2). These results remained significant when the
3 ID-HTN participants with a reduction of>10 mm Hg
in SBP during 2 of 6 HD sessions during the screening
period were excluded from the analyses.

BP Reactivity to Cold Pressor Test

CPT, a non�baroreflex-mediated stimulus, was per-
formed to determine whether ID-HTN was character-
ized by a generalized increase in BP reactivity, versus a
heightened responsiveness due to alterations in BRS
alone. There was a significantly greater increase in SBP
(þ31 � 7 vs. þ7 � 5 mm Hg, P ¼ 0.020), DBP (þ31 � 8
vs. þ10 � 5 mm Hg, P ¼ 0.040), and MAP (þ30 � 6
vs. þ8 � 4 mm Hg, P ¼ 0.020) during the CPT in ID-
HTN participants compared to controls (Figure 3),
suggesting that ID-HTN patients may have generalized
augmentation in neurohemodynamic reactivity. There
was no significant difference in HR responses between
the groups (P ¼ 0.576). The perception of pain was
similar between the groups (data not shown).

DISCUSSION

ID-HTN is an under-recognized, but relatively common
phenomenon, affecting up to 15% of all dialysis pro-
cedures.1 Moreover, patients with ID-HTN are at
significantly increased risk for short-term and long-
term morbidity and mortality. In a large analysis of
the United States Renal Data System (USRDS) database,
every 10�mm Hg increase in systolic BP during HD
was associated with a 6% increased hazard for death at
2 years3 compared to HD patients with a reduction in
BP during HD. Similarly, a secondary analysis of the
Crit-Line Intradialytic Monitoring Benefit (CLIMB)
study revealed that patients whose SBP remained un-
changed or rose by $10 mm Hg during HD had an
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Figure 3. Change in systolic blood pressure (SBP), diastolic blood
pressure (DBP), mean arterial pressure (MAP), and heart rate (HR)
during the cold pressor test in a subset of participants from the
intradialytic hypertension (ID-HTN) group (n ¼ 5) and controls (n ¼
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85% greater risk of hospitalization or death at 6 months
of follow-up.2 In addition, more frequent episodes of
ID-HTN were associated with incremental increases in
30-day mortality and hospitalizations.4 Although no
standard definition of ID-HTN exists, criteria that have
been used in the literature and correlate with
morbidity and interdialytic ambulatory BP include the
following: (i) an increase in systolic BP of $10 mm Hg
from pre- to post-HD, or an increase in MAP $15
mm Hg during or immediately after HD; (ii) BP that
increases during or immediately after HD and results in
a postdialysis BP$130/80 mm Hg; (iii) failure to reduce
BP by the end of dialysis or postdialysis; and (iv) hy-
pertension during the latter part of HD after significant
ultrafiltration has taken place.1,23,24

The pathophysiologic mechanisms underlying ID-
HTN remain unclear. Some purported hypotheses
include volume overload,6,25�27 vascular stiffness,28

endothelial dysfunction,29,30 increased endothelin-1
levels,7,31 removal of antihypertensive medica-
tions,1,23,24 hypernatric dialysate1,23,32 activation of the
renin�angiotensin system,1,23,24 and SNS over-
activity.1,5,6,23,24 Of these, SNS overactivation is pre-
sumed to play a major pathogenic role in ID-HTN;
however, previous evidence was scarce and conflicting.
Chou et al. showed that the exaggerated increases in
total peripheral vascular resistance during HD in pa-
tients with ID-HTN were not accompanied by changes
in plasma levels of catecholamines, or the low fre-
quency�to�high frequency ratios of HRV, suggesting
that SNS overactivation did not contribute to the
pathogenesis of ID-HTN.7 Conversely, in another
study, the majority of intradialytic hypertensive epi-
sodes were associated with increased BP variability,
increased heart rate, and low-frequency interbeat in-
terval variability, suggestive of SNS activation.5 How-
ever, HRV and plasma catecholamines are indirect
markers for SNS activity and not ideal measures of
sympathetic function, especially in patients with
impaired renal function.

To our knowledge, the current study is the first to
use direct, intraneural recordings of MSNA, the gold-
standard method for assessing sympathetic nerve
traffic in humans, to demonstrate a significantly
augmented SNS response during orthostatic stress in
ESRD patients prone to ID-HTN. MSNA correlates with
renal, cardiac, and total central sympathetic outflow,33

and is the superior method for quantifying baseline, as
well as beat-to-beat changes in SNS activity in humans.
Concomitant with exaggerated MSNA reactivity, we
observed a trend toward differences in the hemody-
namic response to both low-dose and high-dose graded
LBNP. Whereas SBP tended to decrease in controls, the
ID-HTN group tended to have a lack of fall in SBP, and
1399
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an increase in DBP and MAP with increasing doses of
LBNP. This hemodynamic pattern mirrors the clinical
characteristics of ID-HTN in which a lack of fall in BP
or a paradoxical increase in BP occurs with volume
removal during HD. The finding that MSNA is signif-
icantly higher in individuals with ID-HTN during
high-dose LBNP suggests that exaggerated increases in
SNS activity in response to orthostatic stress may drive
this phenomenon.

Our finding that BP and MSNA responses are
increased specifically with low-dose LBNP (�20
mm Hg or less) during which cardiopulmonary baro-
receptors are selectively unloaded without engagement
of arterial baroreceptors, suggests that ID-HTN patients
have heightened cardiopulmonary BRS. Augmented
cardiopulmonary BRS has been described in other pa-
tient populations. including prehypertension,11 ag-
ing,10 and salt-sensitive hypertension.34 The
mechanisms underlying heightened cardiopulmonary
BRS in ID-HTN are unknown, but could be related to
volume overload, electrolyte shifts, and the uremic
milieu. In the current study, we observed that ID-HTN
patients had significantly higher interdialytic fluid
weight gain compared to controls. One prior study
showed no differences in interdialytic weight gain
between patients with ID-HTN versus those with
normal reductions in BP during HD,35 whereas another
study showed that increased interdialytic weight gain
was associated with a significant reduction in the
change in systolic BP with HD.36 Greater fluid weight
gain, as observed in the current study, with subse-
quent volume-mediated hypertension and volume
overload, may explain the tendency toward lower
resting MSNA observed in the ID-HTN group, via
suppression by arterial and cardiopulmonary barore-
flexes. ID-HTN is known to be linked to volume
overload6,25�27 and could cause chronic changes to the
cardiopulmonary baroreceptors (afferent nerve endings
located in the atria), or to altered activation of the
receptive field of these stretch receptors in response to
volume removal during HD. In salt-sensitive hyper-
tension, high-salt intake changes the ionic environment
and sensitizes the cardiopulmonary baroreceptors.34

Similarly, the dialysate sodium concentration is often
hypernatric compared to predialysis serum sodium
levels,32 resulting in an initial influx of sodium and
rapid changes in osmolality that could lead to sensiti-
zation of cardiopulmonary BRS. Finally, the Naþ-Kþ

ATPase inhibitor digoxin is known to sensitize cardio-
pulmonary baroreceptors,37,38 and digoxin-like immu-
noreactive substances are uremic toxins that are known
to accumulate in ESRD patients.39,40 Our finding that the
ID-HTN group had a trend toward lower Kt/V, although
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it is unclear whether this association is a consequence or
causative factor in intradialytic hypertension, may
implicate that differences in the accumulation of uremic
toxins may play a role in sensitization of the cardiopul-
monary baroreflex. These and other mechanisms un-
derlying heightened cardiopulmonary BRS in ID-HTN
should be further investigated to inform the treatment
approach to ID-HTN.

Interestingly, we observed that the ID-HTN group
had a significantly greater BP response during CPT, a
sympathoexcitatory stimulus that is not regulated by
baroreflexes.41,42 This finding suggests that HD pa-
tients prone to ID-HTN may have generalized increased
neurocardiovascular reactivity, independent of baror-
eflex control. Although the current study is limited
to investigation of cardiopulmonary BRS and SNS
activation, the pathogenesis of ID-HTN is likely
multifactorial, including baroreflex-mediated, non-
�baroreflex-mediated, and nonneural factors. In
addition, the potential role of abnormal para-
sympathetic adjustments during orthostasis, as well
as impaired “high-pressure” arterial BRS, were not
evaluated in this study. Prior studies have shown that
when both cardiopulmonary baroreceptors and arterial
baroreceptors are concomitantly engaged as during HD
ultrafiltration, the 2 afferent inputs are integrated in the
same sympathetic control centers in the brainstem,
resulting in an augmentation of arterial baroreflex control
of SNS output.43 Whereas low-dose LBNP isolates the
cardiopulmonary baroreflex, higher-dose LBNP (greater
than�20 mm Hg) engages both the cardiopulmonary and
arterial baroreflexes and has been used in prior studies to
simulate orthostatic stress during hemodialysis.8,9 Our
finding that MSNA and BP reactivity were increased
during high-dose LBNP ($20 mm Hg) when both car-
diopulmonary and arterial baroreflexes were engaged
suggests that ID-HTN may have a relative blunting of
arterial BRS during volume removal in HD, resulting in a
failure to diminish the exaggerated pressor and SNS re-
sponses during orthostatic stress.

We recognize several limitations. First, ID-HTN was
defined in this study as a lack of fall in BP with HD.2

The reference group had a fall in systolic BP by at least
10 mm Hg from pre- to post-HD, whereas the ID-HTN
group did not have a fall in systolic BP by at least 10
mm Hg in 4 of 6 consecutive HD sessions. Given the
small sample size, a limitation of the current study is a
lack of sensitivity analyses to determine whether
subgroups with BP increases of >10 mm Hg versus
those with increases of >0 mm Hg had greater MSNA
reactivity or cardiopulmonary BRS. In addition, using
different definitions of ID-HTN, such as a definition
requiring an increase in BP by the end of HD $10
Kidney International Reports (2018) 3, 1394–1402
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mm Hg, may have demonstrated greater physiologic
differences between the groups. Second, experiments
were conducted on an interdialytic day and may not
reflect the same physiologic adjustments that occur
just before HD when intravascular volume is at its
highest. Third, �40 mm Hg was the maximum LBNP
dose used in this study. Higher doses of LBNP may
have been required to observe greater differences be-
tween the groups, particularly in BP responses, given
that both ID-HTN and control groups likely had some
degree of volume overload. Fourth, there was a trend
toward greater use of ACEIs and ARBs within the ID-
HTN group that have been shown to decrease MSNA
in CKD patients. However, despite the sym-
pathoinhibitory effects of ACEIs and ARBs, there was a
significantly greater sympathetic response during car-
diopulmonary baroreflex engagement in ID-HTN patients
compared to controls. Fifth, although there were no
significant differences in the ultrafiltration rate or volume
between the groups, we cannot exclude the possibility
that there were differences in intradialytic fluid boluses
that may have driven increases in the final post-HD BP
within the ID-HTN group. Finally, the study population
comprised primarily African Americans and may not be
generalizable to other racial groups.

In conclusion, ESRD patients prone to ID-HTN had a
significant increase in MSNA reactivity during low-dose
LBNP, suggesting heightened cardiopulmonary BRS. The
ID-HTN patients also had a significantly greater MSNA
response and trend toward higher BP response during
high-dose LBNP. Together, these findings suggest that
augmented reflex SNS activation may drive abnormal BP
responses during orthostatic stress induced during HD in
patients with ID-HTN. Further studies are needed to
elucidate the mechanisms underlying heightened car-
diopulmonary BRS to inform the therapeutic approach to
this high-risk patient population.
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