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Summary.

We propose a curve-based Riemannian geometric approach for general shape-based statistical 

analyses of tumours obtained from radiologic images. A key component of the framework is a 

suitable metric that enables comparisons of tumour shapes, provides tools for computing 

descriptive statistics and implementing principal component analysis on the space of tumour 

shapes and allows for a rich class of continuous deformations of a tumour shape. The utility of the 

framework is illustrated through specific statistical tasks on a data set of radiologic images of 

patients diagnosed with glioblastoma multiforme, a malignant brain tumour with poor prognosis. 

In particular, our analysis discovers two patient clusters with very different survival, subtype and 

genomic characteristics. Furthermore, it is demonstrated that adding tumour shape information to 

survival models containing clinical and genomic variables results in a significant increase in 

predictive power.
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1. Introduction

There is intensive worldwide interest in preventing, detecting and treating cancer. Radiologic 

tools for detecting and treating cancer play central roles in disease management and 

surveillance. Technological advances in imaging equipment and techniques, and 
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development of stage-specific methods for cancer, make medical imaging an indispensable 

tool for clinicians to monitor various cancers (Gutman et al., 2013). Clinical decision 

making, particularly for the brain, is routinely made on the basis of radiological image-based 

features in a magnetic resonance image (MRI). The three main analytical tasks in such 

settings, each with its own set of challenges, are

a. segmentation of the tumour region from the MRI,

b. characterization of the tumour via its shape, volume or other features and

c. development of prognostic models that link MRI features with genomic and 

clinical variables.

In this paper, we focus primarily on tasks (b) and (c). Brain tumour characterization is not 

straightforward because the tissue surrounding the tumour is often heterogeneous in spatial 

and imaging profiles (Krabbe et al., 1997) and sometimes overlaps with normal tissues 

(Provenzale et al., 2006). For example, it is extremely difficult to distinguish between 

primary central nervous system lymphoma and high grade glioma by using MRIs (Liu et al., 
2011). Integrating volumetric and morphological features of tumours that are obtained from 

MRIs with clinical and genomic variables is usually based on non-objective numerical 

summaries of the features generated by experts. Thus, it is difficult to ascertain the reliability 

and reproducibility of such studies, and to generalize to different clinical settings.

The biological process governing tumour growth generates artefacts that can assist in the 

above-described tasks. A tumour normally originates from a single cell, and, as it 

proliferates in size, it exhibits heterogeneity in physiological and shape-related features 

(Marusyk et al., 2012). Both intertumour and intratumour heterogeneity are critical for 

characterizing tumours (De Sousa et al., 2013). Interpatient tumour heterogeneity can be 

quantified by morphological characteristics such as the shape and size of the tumour 

(McLendon et al., 2008), in addition to the genomic and clinical characteristics of a patient.

The relevance of tumour shape in characterizing tumour heterogeneity is linked to its growth 

process. Intrinsic brain tumours tend to evolve along tracts of white matter, altering the tracts 

in complex ways that include infiltration, displacement and disruption (Goldberg-Zimring et 
al., 2005). It is conceivable that new insight into patterns of tumour growth and invasion in 

the brain can be obtained through a better understanding of the shape and evolution of the 

tumour. Tumour shape is significantly influenced by the location in the brain and other 

anatomical constraints—in some places it might infiltrate and in others displace the fibre 

tracts. Irregular or spiculated shapes suggest an anisotropic structure of the underlying white 

matter; spherical or regular shapes imply a lack of structural or anatomical restrictions. The 

size of the tumour evidently affects its shape, especially in the presence of anatomical 

restrictions. It is reasonable to theorize that a better understanding of the relationship 

between the tumour’s shape and size, and histopathological factors related to the brain 

tumour would enhance the understanding of the tumour’s biological growth process; this 

would not only enable better prognosis but also potentially predict the likelihood of 

therapeutic success. For example, Fig. 1 shows two semiautomated segmentations of T2-

weighted fluid-attenuated inversion recovery brain axial MRIs of patients diagnosed with 

glioblastoma multiforme (GBM), which is also known as grade IV glioma, with survival 
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times of longer than 50 months (Fig. 1(a)) and shorter than 1 month (Fig. 1(b)). The tumour 

shape for the patient with longer survival appears to be more regular or spherical than the 

irregular shape corresponding to the patient with a short survival; the tumour sizes appear to 

be quite different as well. Evidently, the tumour locations for the two patients are different, 

which influences both size and shape.

Although the potential importance of tumour shape as a prognostic biomarker has been 

recognized (Goldberg-Zimring et al., 2005; McLendon et al., 2008), there is a striking 

paucity of progress in this direction. This is primarily due to the difficulty of representing 

and integrating tumour shape into existing statistical models. Current approaches that 

incorporate the information of a segmented brain tumour’s shape and size in models for 

tumour characterization and classification are based on subjective features provided by 

experts such as tumour circularity or sphericity and irregularity, and numerical summaries 

such as surface-to-volume ratio, total tumour area and entropy of the radial distribution of 

boundary pixels (Krabbe et al., 1997). Such radiological features are only indicative of 

tumour shape and do not fully characterize the shape. Furthermore, the subjective nature of 

the features ensures that statistical inference that is founded on them will suffer from a lack 

of reproducibility and reliability. In a recent paper exploring the predictive power of MRI 

features in the context of GBM, Gutman et al. (2013) stated that (page 568):

‘…it is often challenging to extract objective information for scientific analysis 

from prose statements of imaging features by neuroradiologists who typically use 

idiosyncratic vocabulary’.

Gutman et al. (2013) used various measures of agreement of ordinal and numerical values of 

neuroimaging features such as size and percentage of necrosis suggested by three expert 

radiologists, and they noted that volumetric and morphological information of the GBM 

tumour is informative for characterizing its biological growth process.

1.1. Statistical challenges and contributions

We can circumvent issues that are associated with qualitative and quantitative summaries of 

tumour shape by quantifying and utilizing information about the entire tumour shape. This 

extension, however, is not straightforward. Viewed statistically, tumour shape is a non-

Euclidean object residing on (a quotient space of) some non-linear manifold. Thus, 

appropriate representation of a tumour shape should naturally employ statistical methods for 

non-Euclidean data objects. Motivated by this need, we focus on examining the utility of the 

two-dimensional shape of GBM tumours obtained from a single brain axial imaging slice 

with the largest tumour area in two contexts:

a. for detection of intertumour heterogeneity and

b. for evaluation of its association with molecular (genomic) profiles and survival 

times of patients who are diagnosed with GBM.

The methods that we employ are broadly applicable to various tumour types. Recent studies 

of scalar-on-image regression models in neuroimaging data applications incorporated the 

entire image (see, for example, Reiss and Ogden (2010), Li et al. (2015) and Goldsmith et al. 
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(2013)); such methods are not applicable in the current setting since MRIs of GBM tumours 

cannot even be coregistered.

We model the two-dimensional tumour shapes as properties of parametric curves in ℝ2, 

which provides the flexibility to accommodate uncertainty regarding landmarks and other 

curve features. In particular, we adapt the geometric framework for statistical shape analysis 

of closed curves that was proposed by Srivastava et al. (2011). In summary, our main 

contributions are as follows.

a. We define a suitable shape space that captures relevant information pertaining to 

tumour shapes represented as closed curves given by their outlines in two-

dimensional MRIs.

b. We define notions of a geodesic path and distance between tumour shapes, and 

an average tumour shape; we also perform shape-based principal component 

analysis (SPCA) to identify and visualize principal directions of variation in a 

sample of tumour shapes.

c. We illustrate the utility of the developed tools in clustering GBM tumour shapes, 

and other inferential tasks such as two-sample testing and survival time 

modelling.

We develop a coherent statistical representation of the tumour shape and use a geometric 

framework to implement tasks such as clustering and integrating tumour shape as a potential 

prognostic factor in statistical models that are commonly used in oncology studies. We find 

the motivation in the GBM data set (Section 2), for which issues about the use of MRI 

features have been recognized but not satisfactorily addressed. We examine statistical 

methods to integrate the tumour shape with genomic and clinical features of GBM and 

investigate associations between them; this can subsequently accelerate effective 

personalized therapeutic strategies for cancer development and progression. Note that the 

method presented is more general and can be applied to other cancers and imaging 

modalities as well.

The rest of this paper is organized as follows. First, in Section 2, we introduce the GBM data 

set. In Section 3, we provide statistical tools for analysing tumour shapes under an elastic 

framework. In particular, we focus on comparing and averaging tumour shapes, and 

summarizing shape variability in a sample of tumours. Section 4 considers specific statistical 

tasks on the GBM data set including clustering, hypothesis testing and survival modelling. 

Section 5 provides a short discussion and directions for future work.

2. Description of glioblastoma multiforme data set

GBM, which is the most common malignant brain tumour that is found in adults, is a 

morphologically heterogeneous disease. Despite recent medical advancements, the prognosis 

for most patients with GBM is extremely poor. In the USA alone, 12 000 new cases are 

being diagnosed every year (http://www.abta.org/about-us/news/brain-tumour-statistics/), 

among which less than 10% survive 5 years after diagnosis (Tutt, 2011). The median 

survival time for GBM patients is about 12 months (McLendon et al., 2008). Biological 
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features that differentiate GBM from any other grade of tumour include hypoxia and 

pseudopalisading necrosis, and proliferation of blood vessels near the tumour.

For our study, we collated MRIs with linked genomic and clinical data from 63 patients who 

consented under the Cancer Genome Atlas protocols (http://cancergenome.nih.gov/). The 

data from presurgical T1-weighted post-contrast (T1) and T2-weighted fluid-attenuated 

inversion recovery (T2) MRIs for these patients were obtained from the Cancer Imaging 

Archive (http://www.cancerimagingarchive.net/). The data set comprising survival times and 

clinical and genomic variables was obtained from cBioPortal (http://www.cbioportal.org/).

The imaging data set is a subset of a larger patient cohort that contains information on the 

linked clinical and genomic variables. For clinical variables, we used the survival times of 

the patients and Karnofsky performance scores KPS (Karnofsky and Burchenal, 1949). KPS 

indicates the ability of cancer patients to perform simple tasks (Crooks et al., 1991) and is 

widely used to assess quality of life during disease diagnosis and treatment. Recent 

investigations have identified four different subtypes of GBM: classical, mesenchymal, 

neural and proneural, each of which is characterized by different molecular alterations 

(Verhaak et al., 2010). We also curated the information about these subtypes of GBM and 

some well-characterized GBM driver genes (Frattini et al., 2013): DDIT3, EGFR, KIT, 

MDM4, PDGFRA, PIK3CA and PTEN. Biologically, a gene is known as a driver gene when 

there is a mutation along with DNA level changes (amplifications or deletions). The full 

tumour volumes from T1 and T2 MRIs were also recorded for each patient. Preprocessing of 

images including details of segmentation, a more detailed description of the clinical and 

genomic covariates, and the demographics corresponding to the clinical covariates are 

presented in Section 1 of the on-line supplementary material.

3. Quantifying variability in tumour shapes: a geometric approach

Some issues that are associated with characterizing tumours in MRIs can be alleviated 

through a suitable representation, which should be sufficiently versatile to accommodate 

various subjective evaluations by neuroradiologists and, at the same time, be mathematically 

and statistically well defined to facilitate various inferential tasks. Shape analysis based on 

landmarks (finite collections of ordered points) (Dryden and Mardia, 1998) is not 

sufficiently flexible in this context since the tumours rarely have landmark features as such. 

Even if present, identifying tumour landmarks is difficult and may require subjective 

assessment. A natural way to represent a tumour is to use a two-dimensional curve that 

corresponds to its boundary, which allows for uncertainty in all landmark locations.

We adopt the shape definition of Srivastava et al. (2011) that is particularly attractive in the 

current context (see Joshi et al. (2007), Srivastava et al. (2011) and Kurtek et al. (2012) for 

details). While describing the tools, we concurrently illustrate their usage on the GBM data 

set. To obtain an idea of this problem’s complexity, we display a few examples of tumour 

contours overlaid on the corresponding T1 and T2 MRI slices in Fig. 2 (each row represents 

a different patient). The tumour shapes are heterogeneous, and at first glance it is difficult to 

ascertain any relationship between tumour shapes and survival times. To obtain insight into 

possible relationships between tumour shapes and outcomes, more sophisticated approaches 
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are required. Throughout this section, we use the word metric to refer to a Riemannian 

metric (i.e. an inner product in tangent spaces) and distance to refer to the measure of 

differences between objects.

3.1. Representation of tumour shape and elastic metric

The tumour shapes should be invariant to translation and rotation. Scaling might be 

considered important and can easily be incorporated in our framework. Denote a 

parameterized, planar, closed curve representing the outline of a tumour by a function 

β:𝕊1 ℝ2. Since the tumour outline is a closed curve, it is natural to parameterize it by 

using the unit circle domain 𝕊1, instead of an interval. There are several possibilities for 

representing β for shape analysis. One can simply use the x- and y-co-ordinate functions of 

β; another possibility is to parameterize β by using the arc length and to compute the angle 

that β
.

= dβ dt makes with the x-axis (here, t is the curve parameter) (Klassen and 

Srivastava, 2006). For an overview of the various possible representations, and associated 

properties of shape spaces, see Bauer et al. (2014).

The choice of a metric on the tumour shape space is vital for comparing two shapes. Unlike 

typical problems in shape analysis, no template shape is available when considering 

tumours. In this context, it is imperative that the metric capture all possible deformations 
that match one tumour shape to another. One candidate metric is the elastic metric, which is 

defined as follows. Suppose that p(t) = ∣ β
.
(t) ∣ is the speed function and θ(t) = β

.
(t) ∣ β

.
(t) ∣ is 

the angle function. Consider two tangent vectors (small perturbations) (δpi, δθi), i = 1, 2, in 

the tangent space of (p, θ). The elastic metric (Mio et al., 2007) is defined as

(δp1, δθ1), (δp2, δθ2) (p, θ) = a∫
𝕊1δp1(t)δp2(t){1 ∕ p(t)}dt + b∫

𝕊1 δθ1(t), δθ2(t) p(t)dt, (1)

for constants a, b > 0. The first term in equation (1) measures variations in the speed 

function (i.e. how fast the tumour outline is traversed), whereas the second term measures 

the variation in the direction of the unit tangent vectors via the standard Euclidean inner 

product between δθ1 and δθ2 (denoted by ⟨·, ·⟩); a and b provide the relative weights for the 

two terms. In other words, the first term captures the amount of stretching and the second 

term captures the amount of bending that are required to deform one tumour shape into 

another. Both terms are needed to generate natural deformations between tumour shapes. 

However, choosing a and b is difficult and problem dependent.

An important source of variation is the choice of parameterization of the tumour contours. 

This is a nuisance parameter when comparing tumour shapes, since the choice of 

parameterization is arbitrary and shape preserving, i.e. the tumour contour can be 

reparameterized in many different ways, but its shape remains unchanged. A common 

approach in the shape analysis literature is to normalize curve parameterizations to arc 

length to ensure that traversal along the curve is at unit speed. Under this scenario, only 

bending deformations are allowed, which often results in suboptimal point correspondences 

across shapes (Mio et al., 2007). We describe how it is possible not only to employ the 
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elastic metric efficiently, but also to ensure that the resulting geodesic distance is invariant to 

the choice of parameterization. Unless otherwise stated, all curves are parameterized via arc 

length.

3.1.1. Square-root velocity function—Let Γ = {γ :𝕊1 𝕊1 ∣ γ is an orientation 

preserving diffeomorphism} be the group of reparameterization functions and orientation 

imply clockwise or counterclockwise traversal of the contour (i.e. γ is an invertible function 

that maps the unit circle to itself and preserves direction). The reparameterization of a 

tumour curve β, termed the action of Γ on the space of curves, is given by composition: (β, 

γ) = β ο γ. The chief issue with using the popular 𝕃2-metric is that the distance between 

two tumour contours β1 and β2 is not preserved under the action of Γ: ∥β1 – β2 ≠ ∥β1 ο γ – 

β2 ο γ∥ for a general γ ∈ Γ. In other words, the action of Γ on the space of tumour curves is 

not isometric, which means that a comparison of two tumour shapes depends on their 

parameterizations.

A proposed solution (Joshi et al., 2007; Srivastava et al., 2011; Kurtek et al., 2012) is to use 

a different representation of curves called the square-root velocity function (SRVF), which is 

given by q(t) = β
.
(t) ∣ β

.
(t) ∣, where ∣·∣ is the standard Euclidean norm in ℝ2. This 

representation is convenient because it is automatically translation invariant. Conversely, β 
can be reconstructed from q up to a translation. If a tumour curve β is reparameterized to β ο 
γ, then its SRVF changes from q to (q, γ) = (q ∘ γ) γ..

The main reasons for using the SRVF for tumour shape analysis are that

a. the complicated but desirable elastic metric reduces to the standard 𝕃2-metric 

with a = 1
4  and b = 1, allowing for both bending and stretching of tumour shapes 

and

b. ∥q1 – q2∥=∥(q1, γ)–(q2, γ)∥, for all γ ∈ Γ, allowing for parameterization invariant 

analysis of tumour shapes.

If invariance to scale is required, each tumour shape can be rescaled to unit length. After 

rescaling, q 2 = ∫
𝕊1 ∣ q(t) ∣2dt = ∫

𝕊1 ∣ β
.
(t) ∣ dt = 1, i.e. the representation space of all SRVFs 

is a Hilbert sphere. For tumour shapes, the size of the tumour is often important, and the 

variability in tumour shape due to scale differences is considered to be important as well. In 

the GBM data example, we decouple tumour shape and size and consider them individually 

as covariates in the survival models. For a closed curve, which characterizes the tumour 

contours that we are studying, the corresponding SRVF satisfies the additional closure 

condition ∫
𝕊1q(t) ∣ q(t) ∣ dt = 0. Thus, the space of all unit length, planar, closed tumour 

curves, represented by their SRVFs, is given by 𝒞 = {q:𝕊1 ℝ2 ∣ ∫
𝕊1 ∣ q(t) ∣2dt = 1, 

∫
𝕊1q(t) ∣ q(t) ∣ dt = 0}, and is called the preshape space.

3.1.2. Geodesic paths and distances in the elastic shape space—In the 

absence of a template tumour shape, it is critical to visualize deformations or changes in 
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tumour shape. The choice of the elastic metric and the SRVF of two tumour shapes make it 

possible to compute natural geodesic paths and distances between them; as a consequence, 

we can visually examine the meaningful deformations of one tumour shape that transforms it 

into the other by traversing the geodesic path. This is potentially useful to radiologists for 

assessing possible changes in tumour morphology, thereby facilitating targeted interventions.

3.1.2.1. Preshape space 𝒞 with parameterization and rotation variability.: The 

preshape space 𝒞 is a non-linear submanifold of the Hilbert sphere due to the closure 

condition. It becomes a Riemannian manifold with the standard 𝕃2-metric, 

v1, v2 = ∫
𝕊1 v1(t), v2(t) dt, where v1, v2 ∈ Tq(𝒞) (i.e. v1 and v2 are elements of the tangent 

space to 𝒞 at q; they are often referred to as shooting vectors) and the inner product in the 

integrand is the standard Euclidean inner product in ℝ2. The task of computing geodesic 

paths between any two elements q1, q2 ∈ 𝒞 is accomplished numerically, using an algorithm 

called path straightening that was introduced by Klassen and Srivastava (2006) and adapted 

to the SRVF representation by Srivastava et al. (2011). This algorithm initializes a path in 𝒞
connecting q1 and q2, and iteratively ‘straightens’ it until it becomes a geodesic. The 

geodesic distance d𝒞 is then simply the length of the geodesic path. Section 4 of the on-line 

supplementary material provides a list of algorithms that were used in this work along with 

relevant references. The issue with d𝒞 is that it contains contributions from two nuisance 

sources of variation. The distance between two tumour outlines is non-zero when they are 

within

a. a rotation and/or

b. a reparameterization of each other.

3.1.2.2. Shape space 𝒮 accounting for parameterization and rotation variability.: To 

remedy the issues with the preshape geodesic distance d𝒞 between two tumour shapes, it 

needs to be computed while accounting for all possible

a. rotations and

b. reparameterizations of one tumour shape to register it optimally to the other.

This is achieved as follows.

Let the special orthogonal group SO(2) be the set of 2 × 2 rotation matrices. For a tumour 

contour β and a rotation O ∈ SO(2), the SRVF of the rotated curve Oβ is given by Oq. Thus, 

to unify all elements in 𝒞 that denote the same tumour shape, we define equivalence classes 

of the type [q] = {O(q ∘ γ) γ. ∣ O ∈ SO(2), γ ∈ Γ}. Each such equivalence class [q] is 

associated with a unique tumour shape and vice versa. The set of all equivalence classes is 

called the shape space 𝒮 and is the quotient space 𝒮. The distance 𝒞 {SO(2) × Γ} can be 

used to define a distance between tumour shapes on d𝒞 according to
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d𝒮([q1], [q2]) = inf
O ∈ SO(2), γ ∈ Γ

d𝒞{q1, (Oq2, γ)} . (2)

The geodesic distance d𝒮 is now the elastic distance on the space of tumour shapes and is 

invariant to rotation and reparameterization; as a consequence, all possible deformations 

pertaining to stretching and bending of tumour shapes are captured. Moreover, d𝒮 is 

bounded above by π/2, thereby offering a natural scale for comparing tumour shapes. In 

practice, the minimization in the definition of d𝒮 is performed by sampling each curve with 

a large number of points, and then recursively applying singular value decomposition to find 

the optimal rotation and the dynamic programming algorithm with an additional seed search 

to find the optimal reparameterization.

3.1.2.3. Illustrative examples.: We present multiple simulated and real data examples 

comparing non-elastic geodesic paths and distances (we optimize only over rotations and the 

seed placement but not the full reparameterization group) to the proposed elastic versions 

computed in the shape space. The points along the geodesic path between two tumour 

shapes should be viewed as the possible deformations transforming one tumour shape into 

the other. Since, in contrast with elastic shape analysis, the non-elastic framework does not 

allow stretching and compression deformations, we observe some unnatural shapes 

appearing along the geodesic paths in that case.

We first illustrate our approach on two simulated curves that are ‘toy’ tumour shapes. The 

curves were generated to reflect the protrusion-type behaviour of real GBM tumours, and 

were both initially parameterized with respect to their arc lengths. This example is shown in 

Fig. 3. First, with the given arc length parameterizations, the geometric features on the two 

curves do not match. This can be seen from the four coloured points. Fig. 3(a) shows the 

first simulated tumour outline where the green, black and cyan points correspond to three 

peaks. Fig. 3(b) shows the second tumour shape, where the green point corresponds to a 

peak whereas the other two do not. This results in an unnatural non-elastic geodesic 

deformation between these two shapes, where two of the peaks on the first shape are 

distorted to form the second peak on the second shape; the resulting distance is dNE = 

0.9249. Under the elastic framework on the shape space 𝒮, the optimal reparameterization 

can match the first two peaks across the two curves very well (the green and black points). 

Of course, there is no counterpart to the third peak on the second curve (the cyan point). 

This results in a natural deformation where the two matched peaks are preserved along the 

geodesic path whereas the third simply grows; the resulting distance is d𝒮 = 0.4709 (nearly a 

50% decrease). We hypothesize that improvements such as that in this simulated example 

are extremely important in capturing natural variability in GBM tumour shapes. On visual 

inspection, the observed tumour contours have many geometric structures such as the peaks 

in this example. This motivates the use of the elastic shape analysis framework for studying 

GBM tumours.
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Next, we illustrate the elastic representation, alignment and computation of geodesic paths 

and distances between GBM tumour shapes corresponding to patients with different survival 

times; Fig. 4 presents two examples for the T1-modality, whereas Fig. 5 considers the T2-

modality. In all examples, we have marked four corresponding points in red, green, black 

and cyan, and show the stretching and compression of points along the tumour curve due to 

optimization over Γ. The benefit of using the elastic framework becomes apparent when 

computing and visualizing geodesic paths between the tumour shapes: the points along the 

path represent tumour shapes that are elastically deformed in a natural way and preserve 

important shape features of the tumours. Indeed, when we allow non-uniform spacing of 

points along the curves, the geodesic deformation is improved because of an improved 

matching of geometric features across the tumour shapes. For example, for the T1-example 

in Figs 4(a)–4(c), the deformations along the geodesic path defined through the distance d𝒮
are natural in the following sense: the highly concave geometric feature of both tumours is 

nicely preserved along the geodesic path; this is not true in the non-elastic case. At the same 

time, other local geometric features in the form of concave and convex curve segments are 

preserved along the elastic shape geodesic. This is also clearly evident in the two examples 

that are shown for the T2-modality in Fig. 5. These geodesic path improvements are 

accompanied by significant distance reductions between the non-elastic (dNE) and elastic 

(d𝒮) frameworks; such improvements are even more drastic when we consider statistical 

modelling of tumour shapes. The examples presented thus support our proposal for the use 

of elastic shape analysis of GBM tumours for association with patient survival and genomic 

variables.

3.2. Statistical summaries of tumour shapes—Hereafter, our analyses focus on the 

shape space 𝒮 and the distance d𝒮. However, we illustrate the resulting differences in the 

statistical summaries under non-elastic and elastic shape analysis. We define and illustrate 

computations of a mean tumour shape and covariance of a sample of tumour shapes, both 

defined with respect to d𝒮. Consequently, we demonstrate how SPCA can be applied to 

explore and visualize the directions of variation in tumour shape based on patient level 

information. Identifying such directions can be useful in understanding the most likely 

deformations of the tumour shapes and can be potentially used to monitor the disease and for 

targeted therapeutic interventions.

3.2.1. Mean and covariance: Under the SRVF framework, the shape space 𝒮 is a 

(quotient space of a) non-linear submanifold of the Hilbert sphere, which is equipped with a 

Riemannian structure under the 𝕃2-metric. We first introduce some notation. Let q1, q2 ∈ 𝒞

be the SRVFs of two tumour preshapes and v ∈ Tq1 (𝒞). Then, the maps 

q2 v = expq1
−1(q2) ∈ Tq1

(𝒞) and v q2 = expq1
(v) ∈ 𝒞 are the exponential and inverse 

exponential maps respectively (Srivastava et al., 2011).

Let {β1,…, βη} denote a sample of given tumour contours and {q1,…, qn} be their 

corresponding SRVFs. Then, the Karcher (Frechet) mean tumour shape is defined as
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[q‒] = arg min
[q] ∈ 𝒮

∑
i = 1

n
d𝒮([q], [qi])

2 . (3)

A general gradient-based approach for finding this mean is provided in Le (2001) and 

Dryden and Mardia (1998). The Karcher mean is actually an entire equivalence class of 

curves. For the remainder of our analysis, we select one element of this class q‒ ∈ [q‒]. One 

could also use the more robust geometric median as an alternative representative shape 

(Fletcher et al., 2009); for simplicity, we do not consider this case in the current work.

The general computation of the covariance around the estimated shape mean is as follows. 

Let vi = expq‒
−1(qi

∗), i = 1,…, n, denote the shooting vectors from the mean shape to each of 

the shapes in the given data. This first involves an optimal rotation O* and optimal 

reparameterization γ* of each qi, resulting in qi
∗ = (O∗qi, γ∗), to register it to the mean shape 

q‒. Then, the covariance kernel can be defined as a function Kq:𝕊1 × 𝕊1 ℝ given by

Kq(ω, τ) = 1
n − 1 ∑

i = 1

n
vi(ω), vi(τ) .

In practice, since the curves must be sampled with a finite number of points, say m, the 

resulting covariance matrices are finite dimensional. Often, the observation size n is much 

less than m and, consequently, n controls the degree of variability in the stochastic model.

Fig. 6 displays a comparison of elastic and non-elastic shape averages for the T1 and T2 

tumour shapes in our data set. In both cases, the elastic approach provides averages that have 

sharper geometric features than those provided by the non-elastic method. Thus, elastic 

shape analysis better summarizes the data, as most of the tumour shapes have multiple 

convex and concave characteristics. In other words, when we ignore the registration of 

points across curves (as in non-elastic analysis), shape features tend to average out, and the 

resulting shape means appear to be ‘oversmoothed’.

3.2.2. Shape-based principal component analysis: We explore dominant directions of 

variation in a sample of tumour shapes with an efficient basis for T[q](𝒮) by using traditional 

PCA (which is also referred to as tangent PCA). Although we could also use the principal 

geodesic analysis that was developed in Fletcher et al. (2003) for the same purpose, we 

choose the simpler tangent PCA method for data analysis in this work. Let V ∈ ℝ2m × n be 

the observed tangent data matrix with n observations and m sample points in ℝ2 on each 

tangent, i.e. each column of V is vi = expq‒
−1(qi

∗), i = 1,…, n, stacked into a long vector. Let 

K ∈ ℝ2m × 2m be the resulting covariance matrix and let K = UΣUT be its singular value 

decomposition. The submatrix that is formed by the first r columns of U, which is called U, 

spans the r-dimensional principal subspace of the observed shapes and provides the 

Bharath et al. Page 11

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observations of the principal coefficients as C = UTV ∈ ℝr × n. Thus, each original tumour 

shape can be represented by using a finite set of principal coefficients acting as Euclidean 

co-ordinates. These coefficients can then be used in a survival model for prediction as shown 

later.

Fig. 7 displays the first principal direction of variation for T1 and T2 GBM tumour shapes; 

visualization of principal directions of shape variability in anatomical structures is an 

effective and common qualitative assessment (Shen et al., 2009; Epifanio and Ventura-

Campos, 2014). For each case, we compare the elastic and non-elastic methods. The elastic 

principal paths capture more geometric features and are better at representing the overall 

variability in the tumour shapes. We compute the overall variance for each SPCA model as 

7.86 (elastic) and 12.74 (non-elastic) for T1 tumours, and 13.43 (elastic) and 27.68 (non-

elastic) for T2 tumours. The elastic models are more compact and provide a more efficient 

Euclidean representation of the tumour shapes in terms of the principal coefficients. Note 

that, because of a high level of heterogeneity of the tumour shapes, over 30 elastic SPCA 

components are needed to explain more than 95% of the variance. In section 2 of the on-line 

supplementary material, we additionally show that the elastic approach provides more 

natural results in the context of SPCA-based shape modelling and reconstruction.

4. Shape-based clustering, testing and survival analysis in glioblastoma 

multiforme

The elastic framework for analysing tumour shapes enables us to perform a variety of 

estimation and inferential statistical tasks. In particular, SPCA of tumours provides the 

possibility of devising methods based on principal coefficients, which can be profitably 

viewed as Euclidean features or summaries of the tumour shape for inclusion in regression 

models. Using a data set of MRIs of GBM brain tumours, we applied clustering, two-sample 

testing and survival modelling to illustrate the advantages that are associated with the elastic 

representation of tumour shapes and the related geometric framework in the context of 

assessing patient survival and association with genomic or clinical variables. From here on, 

we perform statistical analysis via the elastic framework only.

4.1. Clustering of glioblastoma multiforme tumour shapes

As a first unsupervised task, we performed hierarchical clustering of T1 and T2 tumour 

shapes by using the elastic shape distance. We first calculated the pairwise distance matrix 

and then used complete linkage to separate the shapes into two clusters for each modality 

(motivated by short versus long survival and supported by cluster visualization; see Figs 8(e) 

and 8(f)). To visualize the variability in each cluster better, we performed clusterwise SPCA 

and plotted the three principal directions of variation in each cluster for the T1- and T2-

modalities in Fig. 8. We also report the cumulative variance in each cluster in Table 1. For 

both modalities, the variance in cluster 1 is much smaller than the variance in cluster 2. This 

can also be seen in the principal directions of variation; the shapes that are shown along 

cluster 1 directions (including the mean shape) are smoother and more circular.
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We present a multi-dimensional scaling plot of the data in Figs 8(e) and 8(f), which confirm 

that cluster 2 is much more variable than cluster 1. Furthermore, the separability of the 

clusters is very good for both modalities, suggesting that the choice of two clusters is 

appropriate in this setting. In Table 2, we provide the mean and median survival times that 

are associated with the clusters, computed by using tumour shape data in each modality. 

First, the T1-modality provides better discrimination between survival times than does the 

T2-modality. Furthermore, for both modalities, we see that the mean and median survival 

times are higher in cluster 1, which contains much lower cumulative variance. This suggests 

that cluster 1 is more homogeneous, which is associated with longer survival times; cluster 2 

is more heterogeneous and is associated with shorter survival times. This can also be 

attributed to the general morphological structure of tumours in the two clusters. The tumours 

in cluster 1 are often smoother and more circular than those in cluster 2, which are more 

irregular. It is this irregularity that is indicative of a more severe and infiltrative tumour with 

blurred margins and, as a result, shorter survival times. Note that the mean difference in 

survival times between cluster 1 and cluster 2 computed by using T1 tumour shapes is 6.8 

months, which is large compared with the 12-month median survival time in GBM.

4.1.1. Cluster validation via enrichment—We use the concept of Bayesian cluster 

enrichment to study the association between the computed clusters, the tumour subtypes and 

other genomic covariates. In this approach, we want to compare the relative occurrence of a 

specific dichotomous covariate (with label 0 for no occurrence and 1 for occurrence) across 

the two clusters. To develop a Bayesian model for this, let θ1 ∈ [0,1] and θ2 ∈ [0,1] denote 

respectively the true proportion of 1s and 0s in cluster 1; let y1 and y2 denote respectively 

the observed number of 1s and 0s in cluster 1. Then, y1 ~ binomial (n1, θ1) and y2 ~ 

binomial(n2, θ2), where n1 is the total number of 1s and n2 is the total number of 0s. 

Consider a beta(1,1) prior on the true proportions θ1 and θ2. Since the beta distribution is 

conjugate for the binomial distribution, the posterior distribution is of the same family as the 

prior; the resulting posterior distributions for θ1 and θ2 are given by πθ1 (θ1 ∣y1, n1) ~ 

beta(y1 +1, n1 – y1 + 1) and πθ2(θ2∣y2, n2) ~ beta(y2 + 1, n2 – y2 + 1). We generate a large 

number of samples from the two posteriors πθ1 and πθ2, and approximate the true 

probability P(θ1 > θ2) by using Monte Carlo methods. We refer to this approximate quantity 

as the enrichment probability. The intuition behind this approach is as follows. If the 

computed clusters are not associated with the dichotomous covariate of interest, the resulting 

posteriors for θ1 and θ2 should be very similar. This in turn results in a Monte Carlo 

estimate of P(θ1 > θ2) that is close to 0.5, or no enrichment. In contrast, when the two 

posteriors are drastically different, the Monte Carlo estimate of P(θ1 > θ2) would be either 

very close to 1 (if y1 is much larger than y2) or 0 (if y1 is much smaller than y2). These two 

scenarios constitute high enrichment of the covariate in one of the two computed clusters (a 

given covariate can be enriched in only one cluster at a time).

We present enrichment plots in Fig. 9. Each plot shows the enrichment probabilities as a line 

plot with high and low cut-offs in the form of horizontal lines at 0.75 and 0.25. We note the 

following trends from the enrichment plots. The classical and mesenchymal tumour subtypes 

are enriched in cluster 1 for both modalities. The proneural tumour subtype is enriched in 

cluster 2 for the T2-modality. Interestingly, the mesenchymal subtype, which is a very 
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aggressive form of GBM, was enriched in the cluster with higher survival. However, on 

closer examination, there was an equal number of mesenchymal and non-mesenchymal 

subtypes in cluster 1 for both modalities (the enrichment probability was mostly driven by 

the arrangement in cluster 2). Furthermore, the patients in cluster 1 with the mesenchymal 

subtype had lower survival than their non-mesenchymal counterparts (by about 1.5 months).

The enrichment plots for both imaging modalities display results that are consistent with 

some of the well-characterized genomic signatures in GBM. We note the following strong 

associations between tumour subtypes and driver gene mutations that have also been found 

in other studies (McNamara et al., 2013; Verhaak et al., 2010):

a. proneural subtype and PDGFRA gene mutation (in T2) and

b. classical and mesenchymal subtypes and EGFR gene mutation (in T2).

EGFR mutation is a common molecular signature of GBM. It promotes proliferation of the 

tumour, which is associated with classical and mesenchymal subtypes (Fischer and Aldape, 

2010). PDGFRA also plays an important role in cell proliferation and migration, and 

angiogenesis. Unlike EGFR, this gene was found to be mutated in high amounts in the 

proneural subtype of GBM tumours only (Verhaak et al., 2010).

4.2. Permutation test for difference in tumour shape means

The distance d𝒮 between two tumour shapes opens up the possibility of a distance-based 

non-parametric two-sample test for differences in mean tumour shapes. To ascertain the 

association between tumour shapes and survival times of GBM patients, we dichotomize the 

data on the basis of four different survival cut-offs that have been examined in the literature 

(Nebert, 2000; Affronti et al., 2009; Mazurowski et al., 2013): 12, 13, 14 and 15 months. 

Under the null hypothesis that the two groups have equal mean shapes, a permutation test 

analogous to the case of landmark-based shape analysis (Dryden and Mardia, 1998) can be 

constructed under no assumptions on the distributions of the two groups. For each cut-off, 

we calculate the test statistic, which is the shape distance d𝒮 between the Karcher mean 

estimates for the two groups based on the given data. The distribution of this test statistic 

under the null hypothesis is not easily determined. Thus, we employ a permutation test by 

combining shapes from both samples (survival labels are exchangeable under the null 

hypothesis). We use 1000 random permutations of the labels to generate the distribution of 

the test statistic.

The resulting p-values for the T1- and T2-modalities, and all the cut-offs, are presented in 

Table 3. Based on our test statistic, there is a significant difference between T1 mean tumour 

shapes at the 0.05-level only at the 13-month cut-off. For the T2 tumour shapes, there is a 

highly significant shape mean difference for the 14- and 15-month cut-offs. The results 

clearly depend on the choice of the cut-off; nevertheless, this result provides support for our 

hypothesis that tumour shape features can be useful in survival analysis in GBM studies. We 

use only the mean shape information in this hypothesis test, although we expect that the 

covariance information is also useful. We demonstrate how that can be achieved by using a 

principal coefficient representation of tumour shapes in subsequent survival modelling.
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4.3. Survival model adjusted for tumour shape

Next, we ascertain the utility of augmenting clinical and genetic information with imaging 

information when modelling survival probabilities of GBM patients. In particular, we 

investigate the association between the shape of a tumour and survival times (with 

censoring), in the presence of genetic and clinical covariates, using the geometry-based 

elastic shape method. On performing SPCA in the shape space 𝒮, each tumour shape is 

represented in the principal directions of variation basis via its principal coefficients, which 

can be used as predictors in a survival model. Geodesic paths that are constructed by using 

principal shooting vectors allow for the possibility of traversing the principal directions of 

shape variation and monitoring changes in the shape of a tumour. It is customary to choose a 

handful of principal directions that explain most of the shape variability; however, since 𝒮 is 

infinite dimensional, and it is unclear how one can interpret the directions in the context of 

tumour shapes, we propose to use all available directions to capture maximal information 

from the data. Indeed, it may be that a direction corresponding to a small (in magnitude) 

eigenvalue represents a physiologically important tumour shape deformation. To incorporate 

all information from the images, we perform separate SPCA on tumours that were obtained 

from both T1- and T2-MRIs, and collate the principal coefficients from each imaging 

modality. Employing all available shape principal coefficients translates to a large number of 

imaging-based shape predictors in a potential survival model, necessitating dimension 

reduction through variable selection.

To assess whether incorporating imaging covariates, through principal tumour shape 

coefficients, improves discriminatory power of the survival model, we compare three nested 

models:

a. M1, a model with a set of clinical covariates C;

b. M2, a model with clinical and a set of genetic covariates G;

c. M3, a model with clinical, genetic and a set of imaging covariates I in the form 

of shape principal coefficients;

note that M1 ⊂ M2 ⊂ M3 where A ⊂ B denotes that model A is nested within model B.

The clinical covariate KPS contains a few missing values; we impute a value of 80 for those 

cases as advised by Gutman et al. (2013). A proportional hazards model (Cox, 1972), 

hereafter referred to as the Cox model, is used as the de facto model underlying models M1, 

M2 and M3, modelling the survival times of the patients in the presence of clinical, genetic 

and imaging predictors. Note that M1 is defined as the Cox model with C, M2 is defined as 

the Cox model with C ∪ G, and M3 is defined as the Cox model with C ∪ G ∪ I. 
Importantly, model M3, with a large number of tumour shape principal coefficients as 

predictors (62 each for T1 and T2), is fitted to the data by penalizing the negative log-

likelihood by using a lasso penalty. Furthermore, we use leave-one-out cross-validation to 

determine the value of the penalty parameter. Specifically, if η is the vector of coefficients, 

then model M3 is fitted by solving the optimization problem minη[−log-partial likelihood of 

M3] + λ∣η∣1, where ∣η∣1 is the 𝕃1-norm of η. We use the R package glmnet by Friedman et 

al. (2011) for our implementation of model M3 with leave-one-out cross-validation. The set 
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I is then redefined to contain only the principal coefficients with non-zero regression 

coefficients obtained from this lasso regression.

4.3.1. Significant directions of shape variation and other results—Next, we 

focus on the results of fitting the threemodels. Using the lasso penalty formodel M3, we first 

identify the principal tumour shape coefficients with non-zero regression coefficients, owing 

to the lack of a generally accepted way of testing for significance within the lasso framework 

(see recent work by Lockhart et al. (2014)). We uncover six principal directions of variation 

from T1 tumour shapes and five from T2 tumour shapes, when adjusted for the presence of 

predictors in C and G. The 11 coefficients comprise the operative new set I. One can 

visualize deformations of the Karcher mean tumour shape by following the vector field 

along the geodesic in the directions that are represented by the significant principal 

coefficients in the survival model. Such plots can potentially be used by neuroradiologists to 

visualize and make qualitative statements about deviations from the mean shape relating to 

increased or decreased chances of survival, when adjusting for clinical and genetic factors. 

We provide these displays in Section 3 of the on-line supplementary material for both 

modalities. The shapes become more irregular as we traverse the significant principal 

directions in the direction of a decreased chance of survival. The higher principal directions 

show global deformations that introduce a high level of non-smoothness, which are 

indicative of a protrusion of the tumours into neighbouring structures.

Results from fitting the three Cox models are given in Table 4. Gutman et al. (2013) found 

significant association between the clinical covariate KPS and survival time, adjusting for 

other numerical radiological summaries; this agrees with our results for all three models. 

Although the KPS-score is measured on a scale of 0–100, the only distinct values in our data 

set were 60, 80 and 100 along with missing values for 12 patients. As a measure of the 

ability to perform activities of daily living, the KPS-scores influence the survival time only 

indirectly and, in this data set, they complement the influence of the tumour shape principal 

coefficients. Since tumour volume was recorded for each patient from T1- and T2-images, 

we considered the shapes of tumour outlines rather than shapes and sizes. The size of the 

tumour was included in the model as a separate covariate through the tumour volume. It is 

known that tumours with EGFR mutations are larger than tumours with other mutations 

(Hatanpaa et al., 2010). In our analyses, EGFR and tumour volumes from both T1- and T2-

images were not found to correlate significantly with survival time in the presence of tumour 

shape information. This finding is at odds with that of Gutman et al. (2013) where lesion 

size was used. It is known that older patients with GBM show high EGFR amplification. 

However, the variable EGFR informs us only if a mutation has occurred, not amplification. 

The age of a patient who is diagnosed with GBM is known to influence the survival time 

(Weller and Wick, 2011). Older age is typically used as a surrogate marker for change in the 

biology of GBM. The mean age in our data set was 56.33 years; the variable Age appeared 

to have significant correlation with survival time in all three models, and the inclusion of 

tumour shape information did not alter that.

The discriminatory power of models M1, M2 and M3 was compared by using their 

concordance indices (C-indices), which are defined as the proportion of all pairs of patients 

whose predicted survival times are correctly ordered among all patients who can actually be 
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ordered. For comparison, we use the C-index that was proposed by Harrell et al. (1982, 

1984), and another version of it based on a U-statistic (Gömen and Heller, 2005). The C-

indices (which were obtained through both methods) for model M3 are significantly higher 

than the C-indices for models M2 and M1. This indicates a clear benefit in incorporating 

tumour shape predictors in the form of principal coefficients in a survival model to obtain 

good discriminatory power. The Kaplan–Meier estimates of the survival functions for the 

three models, along with a description, are provided in section 3 of the on-line 

supplementary material.

In summary, among the driver genes that are known to be significant in GBM studies, only 

DDIT3 appears to have a significant correlation with the survival time of a patient when 

adjusted for the effect of tumour shape. Mutation of the driver gene DDIT3 appears to be 

associated with low survival probability (see Fig. 6 in the on-line supplementary material); it 

is known to regulate the glioma pathway through unregulated genes indirectly. Our analyses 

indicate that the shape of the tumour captures sufficient information about the individual 

relationships between each of the driver genes and survival time. A deeper study of the 

relationships between the shape of the tumour and driver genes is well worth exploring.

5. Discussion and future work

The use of shape analysis in medical imaging has been proposed before in other disease 

domains; we refer the reader to chapter 17 of Tofts (2003) and references within, for a good 

review. The shape of specific anatomical structures in the brain has been successfully used in 

multiple-sclerosis studies by Goldberg-Zimring et al. (1998), who based the analysis of 

shape on a few shape indices of the lesion. Landmark-based techniques using Procrustes 

averaging were used to study schizophrenia by DeQuardo et al. (1996). However, landmark 

and descriptor-based methods are not directly applicable to oncology because of multiple 

issues mentioned in this paper. In this work, we provide a comprehensive, Riemannian 

geometric solution to this problem that provides tools for various statistical analyses of 

tumour shapes. The benefits of this framework are clear:

a. it provides an elastic metric to measure interpretable shape deformations,

b. it defines a formal mathematical and statistical framework and

c. it provides tools for shape alignment, comparison, summarization, clustering, 

classification, hypothesis testing and other tasks.

We demonstrate these benefits through a detailed study of tumour shapes in the context of 

GBM. The method proposed can be readily extended to any cancer and/or other imaging 

modalities with similar data characteristics and scientific questions.

The focus of this paper is on two-dimensional tumour shapes obtained from the segmented 

tumour of a single axial slice of the brain with largest tumour area. The influence of the 

location and anisotropic nature of the white matter tracts on the shape of the tumour can be 

better assessed with three-dimensional shape analysis, which is currently in progress. The 

geometric framework that is presented in this paper allows for the extension to three-

dimensional shapes (via square-root normal fields (Jermyn et al., 2012)), which would 
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enable us to capture the full elastic shape of the tumour. However, studying parameterized 

surfaces in this context is difficult because of the large shape heterogeneity of the tumours. 

Except for the work of Goldberg-Zimring et al. (2005), who used spherical harmonic 

functions to model the three-dimensional shape of a tumour (akin to non-elastic analysis of 

tumour shapes), there is a lack of progress in this direction.

One way to view the proposed survival model is within the context that is offered by 

regression with functional predictors. The parametric closed curve representing a tumour 

shape predictor can be viewed as an element of the preshape space 𝒞, which is a 

submanifold of 𝕃2(𝕊1) and not a vector space. Current approaches with functional predictors 

using basis representations of the tumour shape or the coefficient function, or both, are 

hence inapplicable (see Morris (2015) for a detailed review).

The geometric framework that is used in this paper enables us to perform PCA on the space 

of tumour shapes under a Riemannian metric. The physiological interpretation of the 

principal directions, however, is unclear and much work remains to be done in this direction. 

Construction of a set of basis functions for the tangent space of a tumour shape that captures 

the biologically relevant deformations of the shape would be particularly useful; this 

requires significant input from clinicians in the form of prior shape information. The 

deformations that are observed in the tumour shape as we move away from the mean along 

the direction of decreased survival are striking; the shape appears to become more 

spiculated, which is consistent with the heuristic understanding of the seriousness of an 

irregularly shaped tumour. The visualization that is afforded within our framework, in our 

opinion, can profitably be used by neuroradiologists for initial non-invasive diagnoses. An 

alternative approach would be to use sparse PCA methods to model the variability in tumour 

shapes, which has recently proven useful in generating results that are clinically 

interpretable (Sjöstrand et al., 2007).

Applying the survival model M3 to the GBM data set, we uncovered several potentially 

interesting relationships between the shape of the tumour (expressed through the principal 

coefficients) and driver genes. This merits further consideration, and the implementation of 

our methods on other GBM data sets would offer more insight. Biological validation of the 

correlations between the two can significantly impact targeted personalized treatment 

strategies for GBM patients. Importantly, prognostic biomarkers of the transition time from a 

low grade to a malignant glioma can be determined.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
T2-weighted fluid-attenuated inversion recovery MRIs of two patients diagnosed with GBM, 

with survival times (a) longer than 50 months and (b) shorter than 1 month: the segmented 

tumour is marked in red
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Fig. 2. 
Examples of manually segmented tumour contours overlaid on the (a), (c), (e) T1- and (b), 

(d), (f) T2-images for patients with (a), (b) short (less than 1 month), (c), (d) medium (about 

15 months) and (e), (f) long (more than 50 months) survival: each row represents a different 

patient (tumour)
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Fig. 3. 
Comparison of two simulated tumour shapes (we show four coloured points of 

correspondence for improved visualization; the resulting geodesic paths are sampled 

uniformly by using seven points (NE, non-elastic)): (a) curve with three protruding peaks; 

(b) curve with two protruding peaks before reparameterization (uniform spacing of points); 

(c) the same as (b) after reparameterization (optimal non-uniform spacing of points)
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Fig. 4. 
(a), (b), (c) Comparison of T1 tumour shapes for patients with survival times of 14.3 and 

29.2 monthsand (d), (e), (f) comparison of T1 tumour shapes for patients with survival times 

of 8.8 and 48.6 months (we show four coloured points of correspondence for improved 

visualization; the resulting geodesic paths are sampled uniformly by using seven points (NE, 

non-elastic)): (a), (d) curve representing the first tumour; (b), (e) curve representing the 

second tumour before reparameterization (uniform spacing of points); (c), (f) same as (b) 

and (e) after reparameterization (optimal non-uniform spacing of points)
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Fig. 5. 
(a), (b), (c) Comparison of T2 tumour shapes for patients with survival times of 2.69 and 

13.3 months and (d), (e), (f) comparison of T2 tumour shapes for patients with survival 

times of 6.14 and 0.72 months: the descriptions of the panels are the same as in Fig. 4
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Fig. 6. 
Comparison of elastic (blue) and non-elastic (red) shape averages of (a) T1 and (b) T2 

tumour shapes
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Fig. 7. 
Comparison of (a), (b) elastic and (c), (d) non-elastic principal directions of variation for (a), 

(c) T1 and (b), (d) T2 tumour shapes: in each example, we display the path within 2 standard 

deviations of the mean (red)

Bharath et al. Page 28

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Clusterwise principal directions of variation for T1 and T2 tumour shapes (in each example, 

we display the path within 2 standard deviations of the mean (red)): (a) T1 cluster 1; (b) T1 

cluster 2; (c) T2 cluster 1; (d) T2 cluster 2; (e) multi-dimensional scaling plot of the T1 

tumour shape data (

, cluster 1;

, cluster 2); (f) multi-dimensional scaling plot of the T2 tumour shape data (

, cluster 1;

, cluster 2)
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Fig. 9. 
Enrichment plots for the (a) T1- and (b) T2-modalities (

, 0.75 and 0.25 cut-offs for ‘high’ enrichment in cluster 1 (blue) and cluster 2 (green)): (i) 

classical; (ii) mesenchymal; (iii) proneural; (iv) EGFR; v) MDM4; (vi) PDGFRA; (vii) 

PIK3CA; (viii) PTEN
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Table 1.

Cumulative variance of the clusterwise SPCA models for the T1 and T2 tumour data

Cluster Cumulative
variance for T1

Cumulative
variance for T2

1 5.51 10.23

2 14.74 17.95
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Table 2.

Summaries of clusterwise survival for the T1 and T2 tumour data

Cluster Survival
(months) for
T1 (mean)

Survival
(months) for
T1 (median)

Survival
(months) for
T2 (mean)

Survival
(months) for
T2 (median)

1 18.8 14.4 18.2 14.2

2 12.0 10.8 16.3 13.3

Difference 6.8 3.6 1.9 0.9
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Table 3.

Permutation test results for TI and T2 tumour shapes†

Survival cut-off
(months)

T1 p-value T2 p-value

12 0.511 0.134

13 0.039 0.426

14 0.712 <0.001

15 0.841 <0.001

†
p-values smaller than 0.05 are indicated by italics.
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Table 4.

Results from fitting Cox models M1, M2 and M3†

Model Predictors
significant at 0.05

C-index 1
(Harrell et al., 1982)

 C-index 2
(Gömen and Heller, 2005)

M1 Age, KPS 0.641 0.652

Clinical

M2 Age, KPS 0.722 0.728

Clinical + genetic DDIT3, PIKC3A

M3 Age, KPS, DDIT3 0.859 0.841

Clinical + genetic + imaging 11 principal component shape coefficients

†
Predictors significant at the 5% level are tabulated, and the two concordance indices are reported.
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