
predictor of response to immune checkpoint blockade across tu-

mour types [6, 7]. A subset of patients with gastroesophageal ade-

nocarcinoma, who are microsatellite stable, but have high TMB,

have been identified using whole exome sequencing [8]. This

high mutation load population, which would fall into the large

predominantly immunologically ‘cold’ TCGA chromosomally

unstable (CIN) subgroup, also had high levels of infiltrating lym-

phocytes which is suggestive of an active immune response [8, 9].

These results imply that TMB could also be associated with sensi-

tivity to immune checkpoint blockade in GC: therefore, this hy-

pothesis warrants prospective evaluation.

In summary, the negative results of JAVELIN 300 are disappoint-

ing for patients with advanced GC. To optimise the benefits of

single-agent immunotherapy, work on predictive biomarkers is nec-

essary to identify the minority of GC patients who are likely to expe-

rience prolonged disease control before treatment. For most GC

patients, who have immunologically evasive tumours, development

of combination therapies to overcome resistance to immune check-

point blockade is likely to be the most successful way forward.
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TP53 mutations are predictive and

prognostic when co-occurring with ALK

rearrangements in lung cancer

The entity now known as anaplastic lymphoma kinase (ALK)

gene rearrangement positive non-small-cell lung cancer

(NSCLC) was first identified in 2007 [1] and the enrollment of

patients with these NSCLCs into the original clinical trial of the

multitargeted tyrosine kinase inhibitor (TKI) crizotinib dates

back to 2008 [2–5]. Fast forward a decade and the preclinical to

clinical advances seen in ALK rearranged NSCLC place it at the

forefront of the precision oncology revolution that has trans-

formed the palliation of advanced NSCLCs [6]. Four different

ALK TKIs—crizotinib (since 2011), ceritinib (since 2014), alecti-

nib (since 2015) and brigatinib (since 2017)—are available

worldwide with additional inhibitors, such as lorlatinib, in the

last stages of regulatory approval [7–10]. The pace of clinical trial

development has been so brisk that evidence-based standards

have shifted multiple times and the ‘oldest’ ALK TKI crizotinib

has been displaced in the initial line of treatment by the ‘next-

generation’ ALK TKI alectinib, which is associated with exceed-

ingly high initial overall response rate and median progression-

free survival (PFS) times that can almost reach 3 years [11].

Although biological resistance, mainly through the development

of ALK kinase resistant mutations (one example ALK-G1202R),

is invariable with ALK TKI monotherapy and the central nervous

system a common site of progression; significantly active ALK

inhibitors such as lorlatinib can transiently control these resistant

clones or brain sanctuary sites, respectively [12, 13]. The majority

of patients with advanced ALK rearranged NSCLC can expect to

receive sequential oral TKI monotherapy for prolonged periods

of time with reported median overall survival (OS) that exceeds
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4 years and nearly half of initially treated patients will be 5-year

survivors following diagnosis [14, 15], a true shit in the natural

history of this subtype of lung cancer.

However, there is significant heterogeneity in how an individual

patient with ALK rearranged tumor will benefit from ALK TKIs

and other therapies. A minority of patients can have exceedingly

high (>5 years) PFS times with crizotinib [14] while others can

rapidly progress in the central nervous system or systemically with

below 1 year in OS times [16]. This heterogeneity remains unex-

plained but prevailing hypotheses harken to differences in patient

characteristics (smoking status, age, co-morbidities, metabolism of

ALK TKIs, immune system status) and more importantly in co-

occurring genomic aberrations that can modulate the benefit of

ALK TKIs (i.e. can be putative predictive biomarkers) or survival

(i.e. can be putative prognostic biomarkers). The latter are of ex-

treme importance not only for ALK rearranged NSCLC—where

initial efforts have indicated that even the ALK fusion partner may

alter clinical outcomes [17]—but also for other oncogene-driven

NSCLCs. As an example, epidermal growth factor receptor (EGFR)

mutated NSCLCs are known to harbor a multitude of co-

occurring genomic events when analyzed by comprehensive geno-

mic profiling, including mutations in: tumor protein P53 (TP53),

phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit

alpha (PIK3CA), phosphatase and tensin homolog (PTEN), Erb-

B2 receptor tyrosine kinase 2 (ERBB2), MET proto-oncogene re-

ceptor tyrosine kinase (MET) among others [18, 19]. Some of these

co-occurring genomic events can completely abrogate the ability

to induce a response to EGFR TKI monotherapy, as in the case of

high-level ERBB2 or MET amplification [20], while others have

less impact on initial EGFR TKI response, as is the case of PIK3CA

mutations and heterozygous PTEN mutations [18, 19]. TP53

mutations in these EGFR mutated cohorts are both predictive of

shorter duration of tumor responses to EGFR TKIs and also prog-

nostic of shorter lifespans in these patients [18, 19]. TP53 muta-

tions are the most common mutations found in NSCLCs and co-

occur frequently with driver oncogenes. Indeed, the Lung Cancer

Mutation Consortium (LCMC) confirms that TP53 mutations are

the most common co-occurring event with EGFR mutations or

ALK rearrangements or ROS proto-oncogene 1 receptor tyrosine

kinase (ROS1) or other driver alterations; and the presence of TP53

mutations is one of the strongest prognostic markers for shorter

survival times in advanced lung cancers [21]. The underlying bio-

logical basis for the prognostic impact of TP53 mutations—a sur-

rogate for P53 protein loss—is still an active area of investigation

but it is already known that this tumor suppressor has critical anti-

proliferative/antiapoptotic functions [22], its loss can accelerate

the transforming potential of oncogenes in lung cancers [23] and

its loss can hamper tumor response to TKIs [24].

With this background, Kron reports in this issue of Annals of

Oncology a detailed analysis of co-occurring mutations in ALK

rearranged NSCLC [25]. A total of 216 tumors are analyzed and

pathogenic TP53 mutations are identified in close to a quarter

(23.8%) of these cancers. Other genomic aberrations using the

author’s limited gene panel have frequencies below 1%–5%. As

seen in the aforementioned cases from the LCMC of co-

occurring driver oncogene mutations (in EGFR, ALK, ROS1 and

others) with TP53 mutations, the presence of an ALK rearrange-

ment with a TP53 mutation is both predictive of shorter dura-

tions of PFS to ALK TKIs and is prognostic for shorter OS times.

The authors carry out a detailed statistical analysis that takes into

account patient characteristics (age, sex, smoking history, current

smoker status, performance status and number of brain metasta-

ses), treatment choices (number of treatment lines before crizoti-

nib and number of treatment lines before ceritinib) and the

genomic TP53 mutation status. Only current smoker status and

TP53 mutations are significant negative prognostic factors for OS

in univariate analysis, and merely TP53 mutations remain a nega-

tive prognostic factor in multivariate Cox regression analysis.

The results highlight the powerful prognostic role of TP53

mutations but it is unclear how they will alter the current treat-

ment paradigms in ALK rearranged NSCLC. Unfortunately, ther-

apeutic efforts to re-establish P53 protein function in cancer have

been disappointing and no candidate is available clinically [26].

Therefore, the prevailing question remains if a provider will omit

the use of an ALK TKI in a tumor with an ALK rearrangement co-

occurring with a TP53 mutation? The answer is likely no, as ALK

TKIs are significantly superior to other forms of approved

NSCLC therapy—be them cytotoxic chemotherapy or immune

checkpoint inhibitors—irrespective of TP53 mutational status

[27, 28]. Indeed, worldwide only a fraction of ALK rearranged

NSCLCs are diagnosed by comprehensive genomic profiling

assays that incorporate analysis of TP53 mutation status [6, 29].

This scenario compiled by the lack of recommendation for TP53

mutation analysis in diagnostic specimens with NSCLC [30, 31]

limit the real-world applicability of considering TP53 mutations

status as a predictive and prognostic marker in the offices of most

oncologists that treat patients with these tumors. Kron concludes

their work affirming that ‘future clinical trials stratification of

this patient subgroup should be considered’ and that ‘new treat-

ment strategies should be investigated to improve the outcome of

ALK/TP53 co-mutated patients’ [25]. I agree that as ALK TKI

monotherapies improve the duration of control for ALK rear-

ranged NSCLC and novel combination therapies are tested in

clinical trials, it may be important to understand prognostic

markers such as TP53 mutation status in future trial designs. And

I wholeheartedly recommend that the improvement and/or de-

velopment of therapies for tumors driven by an oncogene with

P53 function loss should be prioritized by academic plus pharma-

ceuticals consortiums evaluating advanced NSCLCs.
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Adjuvant treatment of high-risk renal

cell carcinoma: the jury is still out

Renal cell carcinoma (RCC) is a heterogeneous disease [1] with

considerable variation in its natural history. Surgery remains the

most important curative option for localized disease [2], how-

ever, up to 30% of patients will develop metastases after a

potentially curative nephrectomy [3]. Several prognostic factors,

such as histologic subtype, pathological Fuhrman grade, tumor

dimension or extension and lymph node involvement permit to

stratify patients according to prognostic models able to predict

the risk of recurrence [4].

Adjuvant systemic therapy following nephrectomy has been

used to reduce relapse rates and improve survival in high-risk
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