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Abstract

Genomic data have provided evidence of previously unknown ancient whole genome duplications (WGDs) and highlighted

the role of WGDs in the evolution of many eukaryotic lineages. Ancient WGDs often are detected by examining distributions

of synonymous substitutions per site (Ks) within a genome, or “Ks plots.” For example, WGDs can be detected from Ks plots

by using univariate mixture models to identify peaks in Ks distributions. We performed gene family simulation experiments to

evaluate the effects of different Ks estimation methods and mixture models on our ability to detect ancient WGDs from Ks

plots. The simulation experiments, which accounted for variation in substitution rates and gene duplication and loss rates

across gene families, tested the effects of WGD age and gene retention rates following WGD on inferring WGDs from Ks

plots. Our simulations reveal limitations of Ks plot analyses. Strict interpretations of mixture model analyses often over-

estimate the number of WGD events, and Ks plot analyses typically fail to detect WGDs when�10% of the duplicated genes

are retained following the WGD. However, WGDs can accurately be characterized over an intermediate range of Ks. The

simulation results are supported by empirical analyses of transcriptomic data, which also suggest that biases in gene

retention likely affect our ability to detect ancient WGDs. Although our results indicate mixture model results should be

interpreted with great caution, using node-averaged Ks estimates and applying more appropriate mixture models can

improve the accuracy of detecting WGDs.

Key words: paleopolyploidy, synonymous substitution rate, mixture models, gene family simulation, gene age

distributions.

Introduction

Genomic data have revealed evidence for previously unde-

tected ancient whole genome duplications (WGDs) in many

eukaryotic lineages, including angiosperms (Schlueter et al.

2004; Cui et al. 2006; McKain et al. 2012; Vanneste et al.

2014), gymnosperms (Li et al. 2015; Guan et al. 2016), ferns

(Vanneste et al. 2015), mosses (Rensing et al. 2007; Szöv�enyi

et al. 2015; Devos et al. 2016; Johnson et al. 2016), teleost

fishes (Taylor et al. 2003; Jaillon et al. 2004; Crête-Lafrenière

et al. 2012), horseshoe crabs (Nossa et al. 2014; Kenny et al.

2016), and spiders (Clark et al. 2015; Schwager et al. 2017).

Analysis of completely sequenced genomes also supported

long-standing hypotheses regarding two rounds of polyploidy

predating the common ancestor of vertebrates (Ohno 1970;

see Dehal and Boore 2005; Nakatani et al. 2007; Holland et al.

2008). Ancient WGDs often are detected by examining the

distribution of synonymous substitutions per site (Ks) among

paralogous genes within a genome, which can be visualized

in a “Ks plot” (Cui et al. 2006; Barker et al. 2008; Vanneste

et al. 2014). In the absence of WGDs or large episodic dupli-

cations, the synonymous substitutions between paralogs

within a genome should follow an exponential distribution

(Lynch and Conery 2003). WGDs should produce additional

normally distributed peaks in the Ks plots (Blanc and Wolfe

2004; Schlueter et al. 2004). The age of the ancient WGDs

can be estimated from the number of synonymous substitu-

tions at these peaks (Maere et al. 2005).

Ks plot analyses require only genomic or transcriptomic

sequence data from a single taxon and can be relatively quick

and easy, especially with the aid of bioinformatic pipelines
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(Lyons et al. 2008; Barker et al. 2010). However, Ks plots can

be difficult to interpret, and the accuracy of WGD identifica-

tion from Ks plots is unclear. For example, Ks plot analyses

sometimes fail to detect peaks from established ancient

WGDs (Johnson et al. 2016). Alternately, substitutional satu-

ration can produce peaks in the Ks plots that do not reflect

WGDs (Vanneste et al. 2013). Many studies construct Ks plots

using pairwise estimates of Ks (Schlueter et al. 2004; Ming

et al. 2013; Kim et al. 2014; Nossa et al. 2014; Johnson et al.

2016), which are susceptible to saturation (Yang 1994) and

introduce many more data points into Ks plots than there are

duplicated genes (Blanc and Wolfe 2004; Cui et al. 2006;

Rensing et al. 2007; Barker et al. 2008). Using the average

Ks estimates for nodes of hierarchical clusters computed from

pairwise Ks estimates (Blanc and Wolfe 2004; Maere et al.

2005; Cui et al. 2006; Barker et al. 2008) or phylogenetic

estimates of Ks (Rensing et al. 2007; Olsen et al. 2016) may

reduce problems caused by using pairwise Ks estimates. The

effects of saturation also may be ameliorated by cropping

high Ks estimates from the Ks plots (Lynch and Conery

2000; Cui et al. 2006; Barker et al. 2008; Tang et al. 2010;

Vanneste et al. 2013, 2014).

The age of a WGD also may impact the efficacy of Ks plot

analyses. For example, relatively recent WGDs with peaks at

low Ks values can be difficult to identify, especially when few

genes are retained from the WGD, because the small evolu-

tionary distances between homeologs resulting from the

WGD can be masked by recently duplicated genes (Cui

et al. 2006). A WGD also could be too old to be detected

with a Ks plot if too many duplicate genes from the ancient

WGD are lost (Paterson et al. 2004; Conant et al. 2014). One

approach to highlight a weak WGD signal from Ks plots is to

include only paralogs that likely emerged from a WGD. A

WGD can produce large syntenic segments within a genome

(Kellis et al. 2004; Tuskan et al. 2006), and constructing Ks

plots using only syntenic paralogs can accentuate the peaks

from WGDs (Tang et al. 2008, 2010; Amborella genome proj-

ect 2013; Myburg et al. 2014).

The null hypothesis for Ks plot analyses assumes exponen-

tially distributed evolutionary distances among paralogs, im-

plying that gene duplication and loss rates have remained

constant over time (Cui et al. 2006; Soltis et al. 2011).

Variation in gene duplication and loss rates through time,

including any episodic burst of gene duplication, conceivably

could affect the interpretation of Ks plots. Large segmental

duplications often are invoked as alternative explanations for

peaks in Ks plots (Al-Mssallem et al. 2013), but biased reten-

tion of other small-scale gene duplications also can potentially

confound Ks plot analyses. For example, Blanc and Wolfe

(2004) detected a modest Ks peak from Arabidopsis thaliana

genomic data that was caused by tandemly duplicated genes.

More recently, episodic expansion of many gene families

caused peaks in the Ks plots from the Octopus bimaculoides

genome, but synteny analyses suggested that recently

expanded tandem duplications have increased the promi-

nence of these peaks (Albertin et al. 2015).

WGDs often are identified by visual inspection of Ks plots

(Yang et al. 2015). Yet an accurate, scalable, and less subjec-

tive approach is desirable. Univariate mixture models can be

used to identify and estimate the timing of WGDs (Schlueter

et al. 2004; Cui et al. 2006; Barker et al. 2008, 2016;

Vanneste et al. 2014). The most commonly used approach

is to maximize a likelihood function that fits one or more (k)

normal probability distributions to a Ks plot. Each normal dis-

tribution for k >1 represents a putative WGD. However, this

approach can overfit distributions (Johnson et al. 2016), lead-

ing to overestimates of the number of ancient WGDs., and

consequently, the results often are ignored, sometimes in fa-

vor of nonparametric approaches that may be less susceptible

to overfitting (Vanneste et al. 2015).

In this study, we used gene family simulation experiments

to explore the effects of WGD age and gene retention rate

following WGDs on our ability to infer and estimate the ages

of WGDs from Ks plots with mixture models. We varied the

age of WGDs to evaluate the range of evolutionary distances

at which Ks plot analyses are effective. We also explored how

much gene retention is necessary to produce a peak in a Ks

plot analysis and evaluated different methods to construct Ks

distributions and infer WGDs from Ks plots, including using

pairwise or phylogeny-based (i.e., node-averaged) estimates

of Ks, different mixture models, and limiting the Ks plots to

genes involved in the WGD.

Materials and Methods

The goals of this study were to characterize and evaluate the

performance of mixture model approaches for detecting

WGDs from Ks plots under different evolutionary scenarios.

We simulated gene family evolution, including WGDs, while

varying the age of the WGDs, the gene retention rate follow-

ing WGDs, and the background rates of gene duplication and

loss. Our simulations also account for variation in gene dupli-

cation and loss rates across gene families as well as heteroge-

neity in substitution rate across branches in each gene family.

We used node-averaged and pairwise estimators to generate

the Ks distributions from the simulated gene families and ap-

plied two different mixture models to estimate the number of

WGDs and their age. We also performed analyses using all

paralogous gene pairs and only those resulting from WGDs

alone. The simulation process is graphically depicted in fig-

ure 1. Finally, we compared our simulation results with anal-

yses of several published data sets from angiosperms.

Simulating Gene Family Evolution

We simulated gene families with WGDs within a single species

using GenPhyloData (Sjöstrand et al. 2013) by allowing gene

trees to evolve under a gene duplication and loss process
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within a species tree, but interpreting speciation events as

WGDs. Like a speciation event, a WGD (or at least an auto-

polyploidy event) results in a split in each gene lineage. We

generated six sets of gene trees with a single WGD at different

ages (15, 50, 100, 200, 300, and 500 Ma, which, in our

simulations, corresponds to Ks ¼ 0.15, 0.5, 1.0, 2.0, 3.0,

and 5.0). For each set, each gene tree had a single gene du-

plication rate (k) and a loss rate (l) for all branches. We in-

corporated variation in k and l among gene trees by allowing

k and l to be independently distributed as b(4, 2460) and b(4,

2053), respectively. The distributions of k and l have means

of 0.00162 and 0.00194, which were estimated from land

plant genomes based on a model of gene copy number evo-

lution (Tiley et al. 2016), with assumed equal variances of

1e10�6. Additionally, we simulated variation in the size of

the gene families by altering the number of genes at the

root of each gene tree by allowing the root age to be expo-

nentially distributed with a mean of 600 Ma. We simulated

1,000 gene trees for each of the six WGD ages.

For each simulated gene tree, we simulated codon sequen-

ces using the EVOLVER program within PAML v4.8a (Yang

2007). First, to introduce among branch variation in substitu-

tion rates, we relaxed the branch lengths using

BRANCHRELAXER (Sjöstrand et al. 2013). We chose to

make rates consistent with the autocorrelated lognormal

model of Rannala and Yang (2007) with mean of 1 and drift

distributed as C(1, 1,000), such that drift had a mean of 0.001

and variance of 1e10�6. This model of rate variation allowed

FIG. 1.—Stylized workflow for simulating gene trees with a known WGD under a known retention rate. Gene families with an explicit WGD are

simulated similar to gene trees evolving within a species tree. The branch length of the root of the species tree is drawn from a distribution so not all gene

families are single copy before the WGD. The branch lengths following the WGD either are 15, 50, 100, 200, 300, or 500 Ma, which correspond to Ks of

0.15, 0.5, 1.0, 2.0, 3.0, and 5.0, respectively. Gene trees then evolve under variable rates of gene duplication and loss, followed by relaxation of branches to

account for substitution rate variation. Sequence data was then simulated on these relaxed gene trees. We implemented a nonstandard data resampling

procedure here that allowed for random gene loss. Individual gene trees were not resampled, but the probability that both lineages following a WGD

survived was resampled. One hundred Ks plots were then generated from the 100 resampled data sets of 1000 trees.
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for different rates of evolution among branches, but not shifts

in rates within branches. We simulated the codon sequence

data for each simulated gene tree using a Goldman–Yang

(GY94) model of codon evolution (Goldman and Yang

1994; Nielsen and Yang 1998) with equal equilibrium codon

frequencies, a transition/transversion rate ratio (j) of 2, a

global dN/dS (x) of 0.2, and an alignment length of 1,000

codons. We set the per site evolutionary distance (t) for sim-

ulations to 0.01268182, so that Ks ¼ 0.01/Myr (see

Supplementary Material online).

Duplicate gene retention following WGD in plants is highly

heterogeneous, with estimates ranging from 1% to 75% of

genes retained (Tiley et al. 2016). To assess the performance

of mixture models under varying degrees of gene loss follow-

ing WGDs, we pruned gene trees such that both gene copies

following a WGD had probability of surviving in 0%, 1%, 5%,

10%, 30%, 50%, and 100% of the gene trees. A 0% survival

probability, or retention rate, means there is no evidence of

the WGD (i.e., all new gene copies from the WGD are imme-

diately lost), and a 100% survival probability, or retention

rate, indicates that there is no instantaneous gene loss follow-

ing the WGD. In the simulations, gene loss was instantaneous,

preventing any further duplication events from occurring on a

branch that was created by the WGD and then lost. We cre-

ated 100 replicated data sets of Ks for each WGD age and

gene retention combination by allowing random instanta-

neous loss on 1,000 gene trees to proceed 100 times. If a

gene tree was randomly chosen to lose a gene from the

WGD, then the left and right subtree had equal probability

of being removed from the gene tree.

Our simulation experiments implicitly assumed autopoly-

ploidy. For autopolyploidy, the Ks plot peak should represent

the time of WGD. In the case of allopolyploidy, the Ks plot

peak represents speciation of the parents rather than the hy-

bridization event leading to polyploidy (Thomas et al. 2017).

However, both autopolyploidy and allopolyploidy are

expected to create peaks in Ks plots, and our simulations

are relevant to both cases.

Estimating Synonymous Substitution Rates

We estimated substitution model parameters from the simu-

lated nucleotide alignments using the GY94 model (Goldman

and Yang 1994; Nielsen and Yang 1998) with the empirical

(i.e., observed) codon frequencies (F3x4). We implemented

the GY94-F3x4 estimator using codeml within PAML v4.8a

(Yang 2007). We obtained node-averaged Ks values by opti-

mizing model parameters on the gene tree used to simulate

the data using the simulated sequence data. For each internal

node, from the tips to the root, node Ks ¼ ((distance to left

childþleft child node Ks)þ(distance to right childþright child

node Ks))/2 (see supplementary fig. S1, Supplementary

Material online). We extracted the node-averaged Ks using

Perl scripts from Newick trees with Ks branch lengths.

We obtained pairwise Ks estimates by optimizing the ML es-

timator parameters for each pair of sequences from a gene

tree with PAML 4.8a (Yang 2007).

We also constructed Ks plots only from nodes in gene

trees that resulted from the WGD. For example, consider

that following a WGD there is both an A and B subge-

nome. If a node is the most recent common ancestor of a

gene from the A subgenome and a gene from the B sub-

genome, then that node must have been generated by a

WGD (supplementary fig. S1, Supplementary Material on-

line). We then constructed Ks plots using only these node-

averaged Ks values that were generated by the WGD

event. These genes could represent sequences located

on large syntenic blocks within a genome resulting from

ancient WGDs. Using only nodes from WGDs allowed us

to assess the value of syntenic data or data enriched for

WGD duplicates for Ks plot analyses.

Discriminate Analyses and Fitting Mixture Models

We fit univariate mixture models to simulated distributions of

Ks by expectation maximization using R (R Core Team 2015)

with in-house source code (https://github.com/gtiley/Ks_plots;

last accessed June 24, 2018) that uses the finite mixture ex-

pectation maximization algorithm implemented by Benaglia

et al. (2009). For each Ks plot, we fit three models with k

mixing components: 1) k normal components (McLachlan

et al. 1999), as used in numerous previous studies

(Schlueter et al. 2004; Cui et al. 2006; Barker et al. 2008),

2) an exponential distribution with k�1 normal components,

to better account for the contributions of background gene

duplication and loss, and 3) an exponential distribution with

k�1 lognormal components, as lognormal distributions may

be more appropriate for evolutionary distances than normal

distributions (Morrison 2008). Distributions of syntenic data

(i.e., nodes resulting from WGDs) were only analyzed with a

mixture of normal distributions, as the exponential distribution

from background duplication and loss was no longer present.

We used 100 random starts to find the optimal mixing com-

ponents for each number of distributions. The number of

components (k) was inferred using the DBIC. Due to the large

number of simulations performed here, it was not possible to

use nonparametric bootstrapping to develop an empirical null

distribution of likelihood ratio test statistics (McLachlan 1987).

Although DBIC does not provide a formal hypothesis test, it

can guide model selection and is often used in Ks plot analyses

(Barker et al. 2008). We assumed that the DBIC between

nested models provides an approximation of Bayes factors,

and we used DBIC <3.2 as a stopping criterion (Kass and

Raftery 1995). Functions for automating the selection of the

optimal number of mixing components based on DBIC are

implemented in the R source code (https://github.com/gtiley/

Ks_plots; last accessed June 24, 2018) as bic.test.wgd.
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Comparisons with Empirical Data

To assess whether our simulation results were consistent with

analyses of empirical data, we reanalyzed Ks plots for putative

ancient WGDs that occurred before the diversification of

Actinidiaceae (Shi et el. 2010), most Asteraceae (Barker

et al. 2016), and the common ancestor of Asteraceae and

Calyceraceae (Barker et al. 2016). For the Actinidiaceae WGD,

we reanalyzed Ks plots constructed using both node-

averaged and pairwise Ks from Actinidia chinensis and

Actinidia deliciosa EST data sets (Shi et el. 2010). We also

reanalyzed Ks plots built using node-averaged and pairwise

Ks from an Artemisia annua transcriptome for the Asteraceae-

specific ancient WGD, as well as transcriptomes from

Barnadesia spinosa and Acicarpha spathulata for the WGD

shared by Asteraceae and Calyceraceae (Barker et al. 2016).

All Ks estimates >5 and <0.0001 were not included for mix-

ture model analyses. As with the simulated data sets, we es-

timated the optimal number of mixing components and the

mean age in Ks of each component using the bic.test.wgd R

function for the exponentialþnormal and normal mixture

models using 100 random starts with a maximum of five

components.

Results

Detecting WGDs Using Node-Averaged Ks

Accurately estimating the number of WGD events using mix-

ture models is challenging under many conditions. The mix-

ture model analyses had difficulty identifying the correct

number of WGDs and the age of the WGDs, regardless of

whether we used the known simulated values of Ks or Ks

values estimated with maximum likelihood (ML). The error

in analyses using the true Ks values demonstrates that there

was error inherent to the mixture model analyses, and does

not result only from error in Ks values.

In our simulations, if the retention rate was >0, we

expected to detect two peaks in the distribution of Ks for all

paralogs, one representing the WGD and one representing

the background duplications. However, we frequently

detected more than two peaks, even in the absence of a

WGD (i.e., retention rate ¼ 0), especially if we were using

the normal mixture model (fig. 2 and supplementary fig. S2

and table S1, Supplementary Material online). For the expo-

nentialþnormal model, we only obtained accurate estimates

of the number of WGDs in� 50% of the simulations when Ks

¼ 0.5 or 2.0 and the retention rate was� 0.1 (tables 1 and 2).

The only times we failed to detect a WGD with an exponen-

tialþnormal model was when the Ks value for the WGDs was

� 3.0 and the retention rate was � 0.1 (fig. 2 and tables 1

and 2). Otherwise, in most other cases, the exponen-

tialþnormal model overestimated the number of WGDs,

and except when Ks ¼ 5.0, it also generally inferred at least

one WGD when there was none (i.e., retention rate ¼ 0;

fig. 2). The exponentialþlognormal model generally esti-

mated the expected number of components more accurately

than the exponentialþnormal or the normal mixture models

(fig. 2; supplementary fig. S2, Supplementary Material online;

and tables 1 and 2). However, the exponentialþlognormal

model also estimated multiple components in the absence

of a WGD (fig. 2). Using mixtures of normal distributions al-

ways results in more components than the exponen-

tialþnormal model or exponentialþlognormal model (fig. 2

and supplementary fig. S2 and table S1, Supplementary

Material online).

Mixture models often fit the tail of a Ks distribution with

one or more extra components, and the maximum Ks cut-off

can affect the number of components inferred from Ks plot

analyses (Barker et al. 2008; Vanneste et al. 2015). Thus,

rather than strictly interpreting any identified component as

evidence for a WGD, we also examined only the component

whose mean Ks was closest to the actual age of the WGD.

We compared the mean Ks values of gene pairs comprising

these components to the Ks value of the WGD that was used

to simulate the data. Using the exponentialþnormal mixture

model, a WGD often was only detectable, meaning that the

estimated mean of a component in the mixture model corre-

sponded to the true age of the simulated WGD, near the true

Ks value when the gene retention rate was � 0.3 (fig. 3).

When retention rates were� 0.1 for the exponentialþnormal

mixture model, the closest mean Ks for the putative WGD

component generally far exceeded the Ks of the WGD, and

it overlapped with the component observed when there was

no WGD (i.e., retention rate ¼ 0) when Ks was between 0.5

and 2.0 (fig. 3 and supplementary figs. S4–S6, Supplementary

Material online). The exponentialþlognormal model was able

to detect WGD events between Ks¼ 0.15 and 2.0 with 30%

gene retention, except at Ks¼ 1.0, which required 50% gene

retention (fig. 3 and supplementary figs. S3–S6,

Supplementary Material online). While the mean node-

averaged Ks from the putative WGD component from the

normal mixture model analyses overlapped with the true

age of the WGD when Ks � 1.0, a peak also was present

in the case of no WGD (fig. 3 and supplementary figs. S3–S8,

Supplementary Material online). All mixture models had a

component mean that overlapped with the simulated WGD

Ks ¼ 3.0 and 5.0; however, a component would have been

expected at these evolutionary distances even in the complete

absence of a WGD (supplementary figs. S7 and S8,

Supplementary Material online).

In the simulations with a WGD peak mean of Ks ¼ 0.15,

the exponentialþnormal and normal models were not able to

detect the WGD even with 100% gene retention, but the

exponentialþlognormal model detected this component for

a gene retention rate � 0.3 (supplementary fig. S3,

Supplementary Material online). For a WGD peak mean of

Ks ¼ 0.5, the WGD was detectable using the exponen-

tialþnormal model when the retention rate was 1.0 and

Tiley et al. GBE

2886 Genome Biol. Evol. 10(11):2882–2898 doi:10.1093/gbe/evy200 Advance Access publication September 18, 2018

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data


the Ks values of the gene pairs were known. In the simulations

when the WGD was Ks¼ 0.5 and the retention rate was 0.5,

we could distinguish a WGD in some resampled data sets,

which represented a set of possible random gene loss scenar-

ios following WGD, when we knew the node-averaged Ks

values, although there was much overall error (fig. 3a and

supplementary fig. S4, Supplementary Material online).

However, when we used estimated node-averaged Ks values,

the WGD was detectable with little error when the retention

rate was 0.5 or 1.0, and in some replicates for a retention rate

of 0.3 (fig. 3d and supplementary fig. S4, Supplementary

Material online). When Ks ¼ 0.5, the normal mixture model

found the WGD when optimizing the number of compo-

nents, but this peak was also found at the same location in

simulations without a WGD (i.e., retention rate ¼ 0; fig. 3c

and f; supplementary fig. S4, Supplementary Material online).

The exponentialþlognormal model performed similarly to the

exponentialþnormal model at Ks ¼ 0.5 (fig. 3b and e; sup-

plementary fig. S4, Supplementary Material online).

For simulations with a WGD at Ks ¼ 1.0, the WGD was

detectable when optimizing the number of mixing

components using the exponentialþnormal model when

retention rates were � 0.3 (fig. 3g and j; supplementary

fig. S5, Supplementary Material online). The exponen-

tialþlognormal model was less accurate than the expo-

nentialþnormal model at characterizing the true WGD

age at Ks ¼ 1.0, only able to recover the simulated

WGD for a few replicates at 30% gene retention with

some error at 50% gene retention (fig. 3h and m; supple-

mentary fig. S5, Supplementary Material online). The mix-

ture of normal distributions identified the WGD peaks at

high retention rates when the WGD is at Ks ¼ 1.0, but

they were also present when there was no WGD (fig. 3i

and l; supplementary fig. S5, Supplementary Material on-

line). For the WGD at Ks ¼ 2.0, the exponentialþnormal

model had even higher precision for a retention rate of 0.3

and the exponentialþlognormal model could detect

WGDs at a retention rate of 0.1 (supplementary fig. S6,

Supplementary Material online). As the WGD age in-

creased to Ks ¼ 3.0 and Ks ¼ 5.0, all mixture models

performed similarly; peaks detected with 100% gene re-

tention, possibly at the same Ks as the WGD, were also

FIG. 2.—The average number of components for simulated WGD events at different ages and retention rates. Results for node-averaged estimates of Ks

are squares and pairwise Ks estimates are triangles. Error bars represent one standard deviation. The dashed line represents the expected number of

components if Ks plots can be described by a single background distribution and peaks from WGDs alone.
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found in the complete absence of a WGD (supplementary

figs. S7 and S8, Supplementary Material online).

Instead of optimizing the number of components in the

mixture models, we also constrained the number of compo-

nents to 2 (i.e., the expected number of components when

the retention rate is>0) and optimized the mixing distribution

parameters to reveal scenarios where WGDs were most con-

sistently detectable (supplementary figs. S9–S14,

Supplementary Material online). The most recent WGD in

the simulations, Ks ¼ 0.15, was outside of the 95% confi-

dence interval for all mixture models even with complete gene

retention following the WGD (tables 1 and 2; supplementary

Table 1

Detection and Age of WGD Peaks for Distributed Duplication and Loss Rates with Simulated Node Ks

WGD

Age

Retention Exp1Norm

Replicates with

Optimal k 5 2

Exp1LogNorm

Replicates with

Optimal k 5 2

Norm

Replicates with

Optimal k 5 2

Exp1Norm

Mean for k 5 2

Exp1LogNorm

Mean for k 5 2

Norm Mean

for k 5 2

0.15 0 0 0.98 0 3.0360.21 3.1460.21 2.1660.24

0.01 0 0.97 0 2.9760.22 2.9460.23 2.1360.25

0.05 0 0.69 0 2.7360.23 2.6060.25 1.9960.25

0.1 0 0.23 0 2.5360.23 2.4260.26 1.8560.25

0.3 0 0.02 0 2.3060.24 2.2960.27 1.7760.25

0.5 0 0.14 0 2.2560.24 2.2760.27 1.7560.25

1 0.29 0 0.01 2.2360.24 2.2760.27 1.6660.25

0.5 0 0.01 0.03 0 3.1660.20 3.6160.14 2.1060.24

0.01 0.04 0.13 0 3.1860.20 3.9560.11 2.1260.24

0.05 0.18 0.55 0 3.2260.20 4.1760.09 2.1160.24

0.1 0.24 0.48 0 3.2660.19 4.0860.10 2.1060.24

0.3 0.43 0.42 0 3.3160.19 3.4560.15 2.0660.24

0.5 0.36 0.22 0 3.1360.17 2.3160.19 2.0360.24

1 0.92 0 0 0.4660.02 0.7760.18 1.9660.23

1 0 0.25 0.93 0 3.3160.17 3.9460.09 2.0960.23

0.01 0.35 0.93 0 3.4260.16 3.9860.09 2.1760.23

0.05 0.72 0.9 0 3.6160. 14 4.0160.09 2.3660.23

0.1 0.8 0.81 0 3.7260.12 4.0860.08 2.4260.23

0.3 0.04 0.76 0 3.5260.09 4.1160.08 2.4860.22

0.5 0 0.51 0 0.9960.04 3.0860.13 2.4860.22

1 0 0 0 0.9160.04 1.2860.20 2.4560.22

2 0 0.83 0.83 0 5.5160.39 5.8160.35 3.5760.42

0.01 0.86 0.86 0 5.6260.38 5.8960.34 3.6160.42

0.05 0.59 0.59 0 6.2160.34 7.0060.24 3.6860.42

0.1 0.21 0.21 0 6.7160.29 7.1460.21 3.7660.42

0.3 0.24 0.24 0 5.3460.14 3.4560.34 4.0460.42

0.5 0.97 0.97 0 2.0860.08 2.3960.34 4.1560.42

1 1 1 0 1.8660.09 1.9460.10 4.3360.43

3 0 0.01 0.98 0 5.0860.39 3.9060.42 3.2060.40

0.01 0.03 0.97 0 5.0360.40 3.8860.42 3.2160.40

0.05 0 0.95 0 4.6560.34 3.7660.40 3.1260.39

0.1 0 0.98 0 3.7460.20 3.6760.39 3.0560.38

0.3 0 0.94 0 3.0060.12 3.5060.36 2.9560.37

0.5 0 0.92 0 2.9560.12 3.4460.34 2.8960.35

1 0 0.2 0 2.9060.12 3.3460.31 2.8260.34

5 0 0.23 0.82 0 5.1360.17 4.2460.39 3.4960.44

0.01 0.29 0.84 0 5.0660.17 4.3260.38 3.5160.44

0.05 0.5 0.74 0 4.9760.19 4.5060.38 3.5960.45

0.1 0.44 0.65 0 4.9560.18 4.6660.36 3.6460.45

0.3 0.06 0.42 0 4.6660.34 4.8460.34 3.6260.40

0.5 0.02 0.25 0 4.8760.20 4.9260.33 3.8960.46

1 0 0.27 0 4.8560.21 4.9760.32 4.0060.45

NOTE.—The proportion of replicates with and optimal number of 2 components (k) and the mean Ks when k is constrained to 2 is displayed. 95% confidence intervals are
given for WGD peak means.
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fig. S9, Supplementary Material online). When a WGD oc-

curred at Ks¼ 0.5, the second component mean was outside

of the 95% confidence interval when the retention rate was

0.5 (supplementary fig. S10, Supplementary Material online),

but a WGD with a retention rate of 1.0 was identified sepa-

rately from the background distribution for the exponen-

tialþnormal and exponentialþlognormal models (tables 1

and 2; supplementary fig. S10, Supplementary Material on-

line). The exponentialþnormal model detected the WGD

peak for Ks ¼ 1.0 (supplementary fig. S11, Supplementary

Material online) and Ks ¼ 2.0 (supplementary fig. S12,

Supplementary Material online) at retention rates of 0.5 and

1.0, but only at a retention rate of 1.0 for the exponen-

tialþlognormal model (tables 1 and 2; supplementary figs.

Table 2

Detection and Age of WGD Peaks for Distributed Duplication and Loss Rates with Estimated Node Ks

WGD

Age

Retention Exp1Norm

Replicates with

Optimal k 5 2

Exp1LogNorm

Replicates with

Optimal k 5 2

Norm Replicates

with Optimal k 5 2

Exp1Norm

Mean for k 5 2

Exp1LogNorm

Mean for k 5 2

Norm Mean

for k 5 2

0.15 0 0 0.19 0 2.9260.22 3.8260.12 2.1760.24

0.01 0 0.18 0 2.8660.22 3.2260.17 2.1360.24

0.05 0 0.63 0 2.6660.23 2.5960.22 1.9460.24

0.1 0 0.42 0 2.4960.23 2.4060.24 1.8560.24

0.3 0 0.19 0 2.2960.23 2.2760.25 1.7760.25

0.5 0.02 0.01 0 2.2560.23 2.2560.25 1.7260.25

1 0.2 0 0 2.2360.24 2.0260.27 1.6460.24

0.5 0 0.51 0.43 0 3.1260.21 3.5860.16 2.1560.24

0.01 0.72 0.74 0 3.1760.20 3.6860.15 2.1660.24

0.05 0.79 0.99 0 3.2860.19 3.7760.14 2.1760.24

0.1 0.86 1 0 3.3360.19 3.7760.14 2.1560. 24

0.3 0.29 0.68 0 3.4360.18 3.7160.14 2.1260. 24

0.5 0.02 0.24 0 2.4060.12 3.7060.13 2.0860.23

1 0 0 0 0.4960.03 0.8160.17 2.0160.23

1 0 0.1 0.82 0 3.3960.18 4.1460.09 2.1360.24

0.01 0.13 0.87 0 3.5060.17 4.1860.08 2.1560.24

0.05 0.34 0.93 0 3.7460.14 4.1860.08 2.3860.24

0.1 0.41 0.98 0 3.9160.11 4.2060.08 2.5560.23

0.3 0.01 0.82 0 3.6460.08 3.7060.07 2.6360.23

0.5 0 0.45 0 1.2260.05 2.4660.07 2.6560.22

1 0 0 0 1.0360.06 1.2860.18 2.6160.22

2 0 0.63 0.52 0 5.4660.39 7.5260.19 3.7060.42

0.01 0.64 0.48 0 5.4860.39 7.5760.18 3.7160.42

0.05 0.79 0.28 0 5.8060.36 7.3660.20 3.7460.41

0.1 0.67 0.15 0 6.5160.30 7.8560.17 3.8260.42

0.3 0.2 0.03 0 6.9160.18 7.8260.16 3.9960.42

0.5 0.32 0.11 0 2.6060.09 5.4360.26 4.1360.42

1 0.02 1 0 1.8960.09 2.4160.34 4.3060.42

3 0 0.42 0.92 0 4.6860.37 3.9660.40 3.1860.39

0.01 0.37 0.93 0 4.6660.37 3.9560.40 3.1660.39

0.05 0.24 0.96 0 4.5160.35 3.9060.39 3.1460.38

0.1 0.08 0.93 0 4.3160.31 3.7960.39 3.1260.38

0.3 0 0.93 0 3.9560.20 4.3660.39 3.5460.41

0.5 0 0.98 0 3.3860.20 3.6260.37 3.0260.37

1 0 1 0 3.2160.19 3.5960.36 3.0060.36

5 0 0.06 0.37 0 4.9160.37 5.5460.29 3.3760.40

0.01 0.04 0.37 0 4.9760.37 5.4360.30 3.4160.40

0.05 0.04 0.36 0 4.9860.37 5.4860.31 3.4760.40

0.1 0.15 0.38 0 5.0060.37 5.2260.32 3.5560.41

0.3 0.55 0.71 0 5.0660.38 5.2760.33 3.7760.42

0.5 0.03 0.71 0 5.0860.38 5.3260.33 3.8860.42

1 0 0.68 0 5.1160.38 5.4260.32 4.0260.43

NOTE.—The proportion of replicates with and optimal number of 2 components (k) and the mean Ks when k is constrained to 2 is displayed. 95% confidence intervals are
given for WGD peak means.
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S11 and S12, Supplementary Material online). For WGDs at Ks

¼ 3.0 and Ks ¼ 5.0, the exponentialþnormal and normal

mixture models performed similarly, at least for the mean

Ks ML estimates (supplementary figs. S13 and S14,

Supplementary Material online). When a WGD was at Ks ¼
3.0 with retention of 0.5 or 1.0, the second component mean

was slightly older than the true value of 3.0 (tables 1 and 2;

supplementary fig. S13, Supplementary Material online). The

true WGD age was within the distribution of second compo-

nent means for Ks ¼ 5.0; however, a second peak was also

detected at Ks ¼ 5.0 when there was no retention of dupli-

cates from the WGD (tables 1 and 2; supplementary fig. S14,

Supplementary Material online). The WGD was always out-

side of the 95% confidence interval for the second compo-

nent mean for the normal mixture model or overlapped with

the 0% gene retention case (supplementary figs. S9–S14,

Supplementary Material online).

Detecting WGDs Using Pairwise Ks

Inferring the presence and age of a WGD using pairwise

estimates of Ks was less accurate than using node-averaged

Ks (fig. 2). When applying the exponentialþnormal or expo-

nentialþlognormal model, we generally inferred more com-

ponents than when we estimated in the node-averaged

analyses (fig. 2 and supplementary fig. S2, Supplementary

Material online). When analyzing the means of the compo-

nents closest to the true ages of the WGDs across replicates,

for WGDs at Ks¼ 0.5 or Ks¼ 1.0 pairwise distances detected

a peak in the distribution that corresponded to the WGD

FIG. 3.—Distributions of the mean Ks of gene pairs comprising the components closest to the true age of the WGD at Ks¼ 0.5 and Ks¼ 1.0, when the

number of components for each mixture model is optimized by ML. Horizontal black lines represent the true age of a WGD. Panels a–f represent WGDs at Ks

¼ 0.5, and panels g–l are WGD at Ks¼ 1.0. Results for known simulated node-averaged Ks when a WGD is at Ks¼ 0.5 are shown in panels (a), (b), and (c)

for the exponentialþnormal, exponentialþlog normal, and normal mixture model, respectively. Results for the WGD at Ks ¼ 0.5 for estimated Ks are in

panels (d), (e), and (f). The distributions of means of components closest to the true WGD age when the WGD is at Ks¼ 1.0 is given in panels (g), (h), and (i)

for known simulated Ks, and panels (j), (k), and (l) for estimated Ks.
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event when retention rates were 0.5 or 1.0 and for some

replicates with a retention rate of 0.3 or 0.1, but they over-

estimated the WGD age (supplementary figs. S4 and S5,

Supplementary Material online). All models failed to detect

a WGD at Ks ¼ 0.15, even with complete gene retention

(supplementary fig. S3, Supplementary Material online). For

older WGDs at Ks ¼ 2.0, 3.0, and 5.0, we detected a peak in

the Ks distribution at the same evolutionary distance even

when there was no WGD (i.e., retention rate ¼ 0; supple-

mentary figs. S6–S8, Supplementary Material online). For the

exponentialþnormal model, when the WGD was at Ks¼ 2.0,

there was less variation in the distribution of component

means when using the known pairwise Ks values than

when using the estimated pairwise Ks values (supplementary

fig. S6, Supplementary Material online), but the converse was

observed for Ks¼ 3.0 (supplementary fig. S7, Supplementary

Material online) and Ks ¼ 5.0 (supplementary fig. S8,

Supplementary Material online). This result was likely due to

saturation, which may have been mitigated by gene trees in

the node-averaged distributions, especially when Ks � 3.0

(supplementary figs. S12–S14 and tables S2 and S3,

Supplementary Material online). Across all simulation condi-

tions, we could not identify a WGD from the pairwise distan-

ces of all paralogs using two components, particularly when

using Ks estimated from gene pairs. There was little difference

in the qualitative performance of the three mixture models

when using pairwise Ks estimates (supplementary figs. S3–

S14 and tables S2 and S3, Supplementary Material online).

Analyzing “Syntenic” Data instead of All Paralogs

We examined whether using Ks plots built from only paralogs

resulting from a WGD can be used to detect and date ancient

WGDs more accurately than using Ks plots built from all

paralogs. In these experiments, we removed all data points

representing paralogs that were not from WGDs, so that the

remaining genes represented paralogs from large syntentic

regions within a genome, and we only used node-averaged

estimates of Ks. We did not use simulations with retention

rates of 0 and 0.01 because there were no genes resulting

from the WGD when the retention rate was 0 and too few

genes resulting from the WGD when the retention rate was

0.01 (<30 duplication nodes across 1,000 gene trees).

Because the syntenic data lacks the background duplicates

that we attempted to fit with an exponential distribution in

prior analyses, we only applied the normal mixture model to

these data.

Overfitting distributions remained an issue with the syn-

tenic node-averaged data (fig. 4 and supplementary fig.

S15, Supplementary Material online). Only a single compo-

nent was expected in these analyses, since all the duplications

resulted from the WGD. However, when the retention rate

was 0.05, a single component was chosen for estimated dis-

tributions of Ks 14%, 15%, 22%, 34%, 53%, and 67% of

the time for a WGD at Ks ¼ 0.15, 0.5, 1.0, 2.0, 3.0, and 5.0,

respectively. The number of resampled data sets with a single

component decreased when the retention rate was 0.1; a

single component was chosen 0%, 1%, 8%, 10%, 26%,

and 47% of the time when Ks ¼ 0.15, 0.5, 1.0, 2.0, 3.0,

and 5.0, respectively (fig. 4). A single normal component was

never chosen using DBIC for retention rates � 0.3, except in

53% of the replicates for a WGD at Ks¼ 5.0 with 30% gene

FIG. 4.—The average number of components for simulated WGD

events at different ages and retention rates when only using gene pairs

that are products of a WGD event. Results for node-averaged estimates of

Ks are squares and pairwise Ks estimates are triangles. Error bars represent

one standard deviation. The dashed line represents the expected number

of components, which is always one in the case of a single WGD event and

syntenic data.

Ks Plots for Detecting Ancient Whole Genome Duplications GBE

Genome Biol. Evol. 10(11):2882–2898 doi:10.1093/gbe/evy200 Advance Access publication September 18, 2018 2891

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data


retention (supplementary table S4, Supplementary Material

online). Analyses using known Ks values estimated from

gene pairs followed a similar pattern (supplementary table

S4, Supplementary Material online).

Again, the true WGD still may be detectable even if the

optimal number of components does not reflect the number

of WGDs. For both the known and estimated node-averaged

Ks, the WGD peak was detectable, within or very close to the

upper quartile of the estimated component means, when

gene retention rates were 0.05, 0.1, 0.3, 0.5, and 1.0 across

all WGD ages (fig. 5). Still, the mean of the component gen-

erally underestimated the true age of the WGD, except when

analyzing the ML estimates of Ks for retention rates of 0.05

and 0.1 when the WGD was at Ks¼ 5.0. Although there was

some uncertainty in the timing of the WGDs when retention

rates were 0.05 and 0.1 (fig. 5), the WGD was discernable

using normal mixture models on our simulations. However a

single WGD using only syntenic data did not fit the expecta-

tion of a single normal distribution, with a bias toward Ks

values more recent than the expected WGD that may have

been a product of the lognormal distributed rates of evolution

used in the simulations (Rannala and Yang 2007; supplemen-

tary fig. S16, Supplementary Material online).

Performance of Mixture Models on Empirical
Transcriptomic Data

Mixture model analyses of Ks plots from several transcrip-

tomic data sets used to identify ancient WGDs (Shi et al.

2010; Barker et al. 2016) generally were consistent with the

simulation results. The normal mixture model fit at least as

many components as the exponentialþnormal mixture model

(supplementary table S5, Supplementary Material online).

However, the exponentialþlognormal mixture model some-

times fit fewer components than the exponentialþnormal

and normal mixture models (supplementary table S5,

Supplementary Material online). In spite of overfitting, the

WGD peak was detectable in all five empirical cases with all

three mixture models for node-averaged Ks estimates, while

the mixture models failed to detect putative WGD peaks in

two out of the five empirical Ks plots with pairwise Ks esti-

mates (fig. 6 and supplementary table S5, Supplementary

Material online). The peaks identified in the node-averaged

data correspond to WGDs characterized in previous studies

(Shi et al. 2010; Barker et al. 2016); however, the exponen-

tialþnormal model failed to identify a prominent peak near Ks

¼ 0.15 in both Actinidia chinensis and Actinidia deliciosa

(fig. 6 and supplementary table S5, Supplementary Material

online), which was expected given our simulation results (sup-

plementary figs. S3 and S9, Supplementary Material online).

This peak at Ks¼ 0.15 for Actinidia chinensis was detected by

the exponentialþlognormal model for node-averaged data as

well as the normal mixture model (supplementary table S5,

Supplementary Material online). Although, the normal

mixture model likely has an inflated estimate of the propor-

tion of data that corresponds to the peak near Ks ¼ 0.15 by

not accounting for the background duplicates with an expo-

nential component (supplementary table S5, Supplementary

Material online). Peaks consistently identified in pairwise data

for Barnadesia spinosa and Acicarpha spathulata were close to

their node-averaged estimates (fig. 6 and supplementary ta-

ble S5, Supplementary Material online).

Discussion

Although our simulations indicate that mixture model analy-

ses of Ks plot distributions should be interpreted with great

caution, they can detect ancient WGDs under some condi-

tions. For example, we detected simulated WGDs in Ks plots

when the Ks distance was between 0.5 and 2.0 and at least

30% of duplicate genes were retained from the WGD (fig. 3

and supplementary figs. S3–S8, Supplementary Material on-

line). We were able to detect simulated WGDs in this range

using only two component for the exponentialþnormal and

exponentialþlognormal in the presence of complete gene re-

tention, suggesting that the mean of the components asso-

ciated with the WGDs was unlikely to change regardless of

how many additional components were introduced into the

mixture models. The exponentialþlognormal model also had

the benefit of detecting simulated WGDs as recent as Ks ¼
0.15 when freely optimizing the number of components. In

our simulations, it was difficult to detect WGDs when the

gene retention rate following the WGD was � 10%, espe-

cially when the WGD is relatively recent (Ks � 0.5 in our

simulations). Although estimates of gene retention rates fol-

lowing ancient WGDs based on genome sequences from

some angiosperms are <10% (Tiley et al. 2016), estimates

of � 10% duplicate gene retention are not uncommon

(Maere et al. 2005; Barker et al. 2009; Yang et al. 2015).

Perhaps the most troubling aspect of mixture model anal-

yses from Ks plots is their tendency to falsely detect WGDs.

Mixture model analyses of gene age distributions often overfit

the number of components (fig. 2). When analyzing WGDs

with low (� 10%) retention rates with the exponen-

tialþnormal mixture model, not only was the estimated num-

ber of components and ages of the components inaccurate

(fig. 2) but also the results were indistinguishable from the

simulations with no WGD (i.e., 0% genes retention; fig. 3 and

supplementary figs. S3–S8, Supplementary Material online).

Clearly a strict interpretation of optimal mixture model com-

ponents can lead to false positives for the signal of ancient

WGDs, even when limiting the Ks plot analyses to include only

paralogs involved in the WGD (fig. 4 and supplementary fig.

S15, Supplementary Material online). Moreover, the number

of components estimated by the mixture model appears to

often lack biological meaning (Vanneste et al. 2014; Johnson

et al. 2016). The extra components that do not correspond to

either the WGD or background distribution generally fit the
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tails of Ks plots and account for a small proportion of the data,

as also seen with our empirical analyses (supplementary table

S5, Supplementary Material online). Cases where WGD peaks

could be detected in our simulations by the exponen-

tialþnormal mixture also required multiple distributions to ac-

count for the tail (supplementary table S1 and figs. S4–S6 and

S17–S19, Supplementary Material online). Normal mixture

models sometimes required more than one component to

fit the background distribution alone, which contributed to

the overall increased number of components estimated for

normal mixture models compared with the exponen-

tialþnormal mixture models in both the simulated and em-

pirical data (supplementary figs. S4–S6 and S17–S19 and

table S5, Supplementary Material online). These results indi-

cated that the DBIC score often does not provide accurate

estimates of the number of components (i.e., ancient WGDs).

FIG. 5.—Distributions of the means of components closest to the true age of the WGD at Ks ¼ 0.15, 0.5, 1.0, 2.0, 3.0, and 5.0, when the number of

components for a normal mixture model is optimized by ML. Distributions are shown for known and estimated node-averaged Ks of syntenic data.

Horizontal black lines represent the true age of a WGD.

Ks Plots for Detecting Ancient Whole Genome Duplications GBE

Genome Biol. Evol. 10(11):2882–2898 doi:10.1093/gbe/evy200 Advance Access publication September 18, 2018 2893

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy200#supplementary-data


Similar criticisms of DBIC for model selection have been

previously shown for generalized linear mixed models

(Naik et al. 2007), and the overfitting of parametric mix-

ture models likely is exacerbated in Ks plots because they

are bounded at zero (Morrison 2008). Alternative model

selection approaches, such as generating null distributions

of LRTs with nonparametric bootstrapping, may be more

appropriate for detecting ancient WGDs from Ks plots

FIG. 6.—Ks plots for five previously published transcriptome sequences or EST data sets. Node-averaged ML estimates are shown on the left while

pairwise ML estimates are shown on the right. Plots are truncated at Ks ¼ 2 and arbitrarily on the y-axis to ease visualization. Blue asterisks indicated a

component mean that was identified by all three mixture model analyses. Complete mixture model results are given in supplementary table S5,

Supplementary Material online.
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(McLachlan 1987); however, they can be intensely com-

putationally demanding.

Although our results suggested that extremely ancient

WGDs (i.e., Ks¼ 5.0) could be identified with mixture models

when using node-based estimates of Ks (supplementary fig.

S8, Supplementary Material online; tables 1 and 2), we found

that a second peak would manifest at Ks ¼ 5.0 regardless of

whether a WGD occurred or not, similar to Vanneste et al.

(2013). Ks ¼ 5.0 is outside of the range of values considered

for most Ks plot analyses; however, the location of the erro-

neous second peak depends on where a user truncates the Ks

plot, and the presence of a tail that may require additional

normal components. For example, more than two peaks

manifested in nearly all of the Ks plots in our simulation

experiments; Ks plots were truncated at 5.0 for WGDs at Ks

¼ 0.15, Ks ¼ 0.5, and Ks ¼ 1.0, which all showed a second

distribution mean near Ks¼ 3.0 in the absence of a WGD for

the exponentialþnormal model (supplementary figs. S9–S11,

Supplementary Material online). Truncating Ks plots to lower

values will likely push these arbitrary distribution means into

biologically plausible ranges. Thus, no matter how the Ks plot

is constructed, it is important to distinguish between arbitrary

model fitting and lines of evidence for a WGD.

Our simulations confirmed findings from previous research

(Cui et al. 2006; Vanneste et al. 2013) that Ks plots perform

best at a limited range of ages and levels of gene retention

(fig. 3 and supplementary figs. S3–S14, Supplementary

Material online). Thus, we might expect Ks plot analyses alone

to produce a biased view that ancient WGDs are clustered in

time. Many WGDs in angiosperms appear to coincide with

the Cretaceous-Paleogene boundary based on a second Ks

peak generally falling between 0.5 and 1.0 (Fawcett et al.

2009; Vanneste et al. 2014; Lohaus and Van de Peer 2016),

within the range where Ks plot analyses appear optimal, be-

tween Ks ¼ 0.5 and 2.0, in our simulations. Although, this

range of Ks can cover a large amount of absolute time, con-

sidering that variation in substitution rates, such as in Pinus,

can cause a Ks peak of 0.25 to correspond to >200 Ma (Li

et al. 2015). Thus, the efficacy of Ks plots for certain windows

of divergence does not mean that that WGDs are not clus-

tered in this window (e.g., near the Cretaceous-Paleogene

boundary). In fact, many of the primary Ks plot results in

plants (Schlueter et al. 2004; Tuskan et al. 2006; Schmutz

et al. 2010) are supported through analyses of gene trees

using genes of putative WGD origin based on syntenic evi-

dence and absolute dating with the multispecies coalescent

model (Fawcett et al. 2009; Vanneste et al. 2014; Lohaus and

Van de Peer 2016). However, many other WGDs may go

unobserved in Ks plot analyses alone if they are younger

than Ks ¼ 0.15 or older than Ks ¼ 3.0. As more genomic

data for plants, especially nonmodel taxa that may lack near-

chromosome level assemblies, becomes available, methods

that characterize ancient WGDs in a phylogenetic context

(Cannon et al. 2015; Li et al. 2015; Yang et al. 2015;

McKain et al. 2016) may be better able to test hypotheses

regarding the clustering of WGDs and their association with

evolutionary innovation as well as the survival and diversifica-

tion of major plant groups (Tank et al. 2015; Kellogg 2016).

Although our simulation results provided many reasons to

question the strict interpretation of mixture model analyses of

Ks plots, they also offer some guidance on ways to optimize

the inference of WGDs. For example, it is always better to use

node-based estimates of Ks distance than pairwise distance

estimates. Criticisms of pairwise Ks estimates arose early in the

ancient WGD literature (Blanc and Wolfe 2004), and conse-

quently, many studies have corrected for the redundancy of

pairwise estimators with neighbor-joining trees made from

pairwise Ks (Blanc and Wolfe 2004; Maere et al. 2005; Cui

et al. 2006; Barker et al. 2008; Vanneste et al. 2013; Devos

et al. 2016), with few using phylogenetic estimates of evolu-

tionary distances (Rensing et al. 2007; Olsen et al. 2016).

However, the use of pairwise estimates in Ks plot analyses still

persists (Ming et al. 2013; Kim et al. 2014; Nossa et al. 2014;

Johnson et al. 2016). Our simulations indicated that pairwise

Ks distances are limiting compared with node-averaged esti-

mates; a WGD with 100% gene retention cannot be distin-

guished from the absence of a WGD (i.e., 0% gene retention)

regardless of the WGD age (supplementary figs. S3–S8,

Supplementary Material online). However, a WGD at Ks ¼
2.0 could be accurately characterized with the exponen-

tialþnormal or exponentialþlognormal mixture model when

gene retention rates were 30%, and possibly less (supplemen-

tary fig. S6, Supplementary Material online). Pairwise estima-

tors can perform well in some empirical cases though. The

differences between node-based and pairwise Ks distributions

are generally greater in our simulations than in our empirical

analyses (fig. 6 and supplementary figs. S9–S14,

Supplementary Material online), but given that the computa-

tion cost for node-averaged estimates is low, our experiments

suggest there is little reason to use pairwise distances in Ks

plot analyses.

Using the exponentialþnormal and exponen-

tialþlognormal mixture model typically fit fewer components,

and thus resulted in fewer false positives, than using the nor-

mal mixture model (fig. 2 and supplementary fig. S2,

Supplementary Material online). As observed in many empir-

ical studies (Szöv�enyi et al. 2015; Johnson et al. 2016), normal

mixture models generally overfit components (fig. 2). The nor-

mal mixture model could always recover a peak that corre-

sponded to the true age of the simulated WGD for Ks

between 0.15 and 1.0 (fig. 3 and supplementary figs. S3–

S5, Supplementary Material online), but the overlap between

component means at complete gene retention and no gene

retention suggested that these peaks were not caused by the

WGD (supplementary figs. S17–22, Supplementary Material

online). Even when the gene retention rate was high, the age

of a WGD often could be accurately characterized with only

two components by the exponentialþnormal or
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exponentialþlognormal, but not the normal mixture model

between Ks ¼ 0.5 and 3.0 (supplementary figs. S10–S13,

Supplementary Material online). This result provides additional

evidence that while more components may be preferred by

the DBIC, the extra components are likely fitting the tails of

the distributions for the exponentialþnormal and exponen-

tialþlognormal mixtures. One strategy to improve detection

of WGDs is to look for consistency in a component mean, that

is, cases when the estimates of a component mean are similar,

regardless of how many mixing distributions are incorporated

into the model. For example, we demonstrated consistency

for analyses of all paralogs by comparing the exponen-

tialþnormal mixture model where k was constrained to 2

with the exponentialþnormal mixture model where k was

freely optimized. A peak was detectable at the age of the

WGD with only two components (supplementary figs. S9–

S14, Supplementary Material online), and the approximate

age of this peak remained unchanged, even with the addition

of more components when k was freely optimized (figs. 2

and 3; supplementary figs. S3–S8, Supplementary Material

online). Additionally, peaks corresponding to ancient

WGDs in empirical Ks plots were detectable in all three

mixture models, while other component means were not

associated with a visible peak in the Ks distributions (fig. 6

and supplementary table S5, Supplementary Material

online).

The best performance in our simulations resulted from us-

ing Ks plots built only from paralogs that diverged at an an-

cient WGD (e.g., paralogs on large syntenic regions within a

genome). Syntenic data alone can be interpreted as evidence

of a WGD (Kellis et al. 2004; Aury et al. 2006; Tang et al.

2008), and in these cases, the Ks plot analyses may be viewed

as corroborating evidence for an ancient WGD or as a means

to date the WGD. Ks plots built from syntenic data have

helped resolve the absolute timing of notable WGD events

such as two ancient WGDs shared by all Brassicaceae (Bowers

et al. 2003), the papilionoid legume WGD (Schmutz et al.

2010), the ancestral eudicot triplication (Tang et al. 2008), a

WGD predating angiosperms (Amborella genome project

2013), and at least two WGDs shared by most grasses

(McKain et al. 2016). In contrast to analyses that used all

paralogs, when using only paralogs from a WGD, the WGD

peak was consistently prominent across all ages, even when

there was only a 5% gene retention rate following the WGD

(fig. 5 and supplementary fig. S16, Supplementary Material

online). Ks plot analyses of syntenic duplicates also could de-

tect a distinct WGD component at Ks ¼ 0.15, where the

WGD peak is absorbed into the background duplication dis-

tribution in analyses of all paralogs for the exponen-

tialþnormal model, and detect ancient WGDs even beyond

Ks ¼ 3.0. Unfortunately, syntenic data are available from rel-

atively few taxa with near-complete genome assemblies, and

therefore, these simulations are applicable to a limited num-

ber of taxa.

In spite of our cautionary assessment of mixture model

analyses of Ks plots under a number of conditions, they

have helped characterize many well-accepted ancient

WGDs across plants (Schlueter et al. 2004; Cui et al. 2006;

Rensing 2007; Barker 2008; Vanneste et al. 2014; Szöv�enyi

et al. 2015; Johnson et al. 2016). This raises the question

whether Ks plot analyses may perform better on empirical

rather than simulated data. Several empirical studies have

detected peaks with ranges of Ks ¼ 0.1 to Ks ¼ 0.3 from

analyses of all paralogs, such as in Zea mays (Schlueter et al.

2004; Vanneste et al. 2014), Glycine max (Cui et al. 2006;

Vanneste et al. 2014), and Helianthus (Barker et al. 2008). This

suggests that background duplicate gene loss, especially of

recent duplicates, may be faster than we modeled with a

simple stochastic birth and death process. Consequently,

our simulations may have retained too many genes from

background duplications. For instance, Li et al. (2016) showed

that putative single-copy orthologous groups tend to revert to

a single-copy state rapidly following WGD across angio-

sperms. Notably, our simulated distributions lack the distinct

sharp increase of recent paralogs (supplementary figs. S17–

S22, Supplementary Material online) found in many empirical

data sets, including those reanalyzed here (fig. 6; Barker et al.

2008; Shi et al. 2010). The assumptions made in order to

simulate gene family evolution while accounting for gene re-

tention following a WGD event certainly oversimplified the

biological complexities of gene gain and loss, which may

have led to simulated distributions of Ks with much weaker

WGD signals than empirical cases. Gene copies that survive

the fractionation process following a WGD typically maintain

unique balances of gene products (Edger and Pires 2009;

Freeling 2009; Conant et al. 2014). The biases in gene reten-

tion following a WGD may contribute to evidence for ancient

WGDs from Ks plots, as there are typically enrichments in

gene ontology categories among genes corresponding to Ks

plot peaks, such as in Arabidopsis thaliana (Maere et al. 2005)

and Physcomitrella patens (Rensing et al. 2007). Additionally,

many Ks plot analyses are based on transcriptomic data. If

duplicates from WGDs are more frequently expressed than

duplicates from small-scale duplication events (Casneuf et al.

2006), transcriptomic data may be enriched for WGD dupli-

cates compared with genomic data, and our simulations sug-

gest that enriching a data set for WGD duplicates typically

should improve our ability to detect ancient WGDs.

Based on our results, mixture model analyses of Ks plots

should be considered, at most, a hypothesis-generating tool

for ancient WGDs. Evidence of a peak from Ks plot analyses

should not be considered proof of an ancient WGD, nor

should the absence of evidence of a peak from a Ks plot be

considered proof of the absence of an ancient WGD. Multiple

lines of evidence, ideally including syntenic evidence and phy-

logenetic tests for a WGD, should be used to identify and

characterize ancient WGDs. For example, as more compara-

tive genomic and transcriptomic data becomes available,
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combined analyses of Ks plots and gene tree reconciliation

likely will improve the phylogenetic placement of WGDs

(Barker et al. 2009, 2016; Jiao et al. 2011; Li et al. 2015;

Yang et al. 2015). In addition, probabilistic models of gene

gain and loss (Rabier et al. 2014; Tiley et al. 2016) enable

rigorous statistical tests for ancient WGDs. Still, Ks plots are

computationally inexpensive and do not require comparative

genomic data or ultrametric phylogenetic trees. Ks plots also

appear to perform well identifying and dating some ancient

WGDs (Cui et al. 2006; Barker et al. 2009; Vanneste et al.

2014), especially when combined with absolute dating of

gene trees (Vanneste et al. 2014). Furthermore, simple meth-

odological choices, such as using node-averaged estimates of

Ks and diagnosing consistency in mixture model results, can

help evolutionary biologists maximize the performance of

mixture model analyses of Ks plots.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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