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Abstract

Six of the ten leading causes of death in the United States, including cancer, diabetes, and heart 

disease, can be directly linked to diet. Dietary intake, the process of determining what someone 

eats during the course of a day, provides valuable insights for mounting intervention programs for 

prevention of many of the above chronic diseases. Measuring accurate dietary intake is considered 

to be an open research problem in the nutrition and health fields. In this paper we compare two 

techniques to estimating food portion size from images of food. The techniques are based on 3D 

geometric models and depth images. An expectation-maximization based technique is developed 

to detect the reference plane in depth images, which is essential for portion size estimation using 

depth images. Our experimental results indicate that volume estimation based on geometric model 

is more accurate for objects with well-defined 3D shapes compared to estimation using depth 

images.
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1. INTRODUCTION

Due to the growing concern of chronic diseases and other health problems related to diet, 

there is a need to develop accurate methods to estimate individual’s food and energy intake. 

Measuring accurate dietary intake is considered to be an open research problem in the 

nutrition and health fields. Our previous study [1] has shown the use of image based dietary 

assessment can improve the accuracy and reliability of estimating food and energy 

consumption. We have developed a mobile dietary assessment system, the Technology 

Assisted Dietary Assessment (TADA) system [2, 3] to automatically determine the food 

types and energy consumed by a user using image analysis techniques [4, 5]. To date our 

work has focused on the use of a single image for food portion size estimation [6] to reduce 
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user burden from having to take multiple images of their food [1]. Portion size estimation is 

the process of determining how much food (in cm3 or grams) is present in the food image.

Food volume estimation (also known as portion size estimation or portion estimation) is a 

challenging problem as food preparation and consumption process can pose large variations 

in food shape and appearance. Several image analysis based techniques have been developed 

for food portion estimation. 3D features are not fully exploited in some of the existing 

works. In [7] food portion estimation is done via pre-determined serving size classification. 

In [8] the food image area and the user’s thumb are used as reference for estimation the 

portion size and in [9] the pixels in each corresponding food segment are counted to 

determine the portion. To better analyze the food eating scene, other methods attempt to 

recover 3D parameters of the scene including the use of mobile 3D range finding [10] and 

stereo vision techniques using multiple images [11, 12, 13]. We feel that either modifying 

the mobile device or acquiring multiple images of the eating scene is not desirable for users 

trying to collect information about their diets. Furthermore, a point cloud obtained from a 

few images using feature based stereo matching is sparse that cannot represent fine details 

on surfaces that are necessary with food images. Thus, we have focused in our work on 

techniques that use single images for food portion size estimation [6].

Estimating the volume of an object from a single view is an ill posed inverse problem that 

requires the use of a priori information. The existing work using single images include the 

use of pre-defined 3D template matching [14, 15], using prior knowledge of the geometric 

model [6] and depth map prediction based using a Convolutional Neural Network (CNN) 

[16, 17]. Template matching using pre-defined 3D models involves manual tuning of model 

parameters which can cause scaling problems [14, 15]. The points search technique in 3D 

coordinates does not require manual tuning of parameters [6] hence scaling with many foods 

will not be an issue. Depth map prediction using CNN requires sufficient images as training 

data and depth sensors that provide sufficient details.

In this paper we examine food portion size estimation accuracy using geometric models and 

depth images as shown in Figure 1. The use of geometric models allow for volume 

estimation where we can use the food label to index into a class of pre-defined geometric 

models for single view portion size estimation. To acquire high quality depth maps, we use a 

structured light technique known as digital fringe projection [18]. The digital fringe 

projection technique is a special type of triangulation-based structured light method where 

variations in pattern intensity are sinusoidal. We adopt the binary defocusing method and 

phase-shifting-based fringe analysis technique for 3D shape measurement because of their 

high speed, high resolution, and high accuracy. In a phase-shifting technique, the sinusoidal 

fringe patterns are shifted spatially from frame to frame with a known phase shift. Analyzing 

a set of phase-shifted fringe images yields the wrapped phase, a distortion measurement, 

usually containing 2π discontinuities that are removed by employing a temporal phase-

unwrapping algorithm [19]. The (x, y, z) coordinates are recovered from the unwrapped 

phase using the system parameters estimated from system calibration [20]. We were able to 

obtain the depth map based on the (x, y, z) coordinates recovered.

Fang et al. Page 2

Proc Int Conf Image Proc. Author manuscript; available in PMC 2018 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To best represent the 3D scene, we used an over-head view when acquiring the depth 

images. To estimate the volume for each food object from a depth image a reference plane is 

required such as the table surface. To detect the table surface, we developed an expectation-

maximization (EM) [21, 22] based technique so that intra-class variations (such as different 

textures shown in Figure 2(a)) on the reference plane can be incorporated. To validate the 

two approaches we compared the estimated volume of the same objects using the two 

methods to the ground-truth information.

2. FOOD PORTION SIZE ESTIMATION

Volume estimation based on a single-view image is an ill-posed problem since most 3D 

information has been lost during the projection process from the 3D world coordinates to the 

2D pixel coordinates. The use of prior knowledge such as “container shapes” allows for 

volume estimation since we only need to estimate some parameters instead of reconstructing 

the 3D scene. Another approach is to utilize the depth information, where depth value is 

determined with respect to the camera sensor plane. The depth image is first converted to a 

voxel representation, then the volume for each object can be obtained by summing the 

voxels that belong to the same object [16].

The reference plane is critical for estimating volume using voxel representation since the 

height of each voxel cannot be determined without a reference plane. RANSAC [23] is used 

for reference plane detection in [16]. To use RANSAC, three parameters need to be specified 

for each task namely the error tolerance rate, the number of subsets to try and a threshold 

value. Furthermore, the intra-class variations on reference plane cannot be properly 

incorporated as RANSAC is designed to eliminate the outliers for estimation task. Instead of 

using RANSAC, our reference plane detection is based on the expectation-maximization 

(EM) [21, 22] with Gaussian mixture models (GMM) [24].

2.1. Portion Estimation Using Geometric Models

Since no single geometric model is suitable for all types of food, the use of geometric 

models with correct food classification label and segmentation mask in the image is 

important so that the food label can be used to index into a suitable class of pre-defined 

geometric models. The task then becomes finding the correct parameters for the selected 

geometric model.

For example, the most commonly used containers that have significant 3D structure either 

can be modeled as cylinders or can be approximated to be cylinders. For a cylinder, only 

radius and height are required to estimate the volume. Instead of reconstructing the 

cylinders, we designed an iterative point search technique to estimate the essential 

parameters which carry sufficient information for volume estimation. This is described in 

more detail in one of our previous papers [6]. The iterative point search technique is based 

on projecting points from world coordinates to pixel coordinates, where the projection 

process is made possible using camera intrinsic and extrinsic parameters [25]. The point 

search process minimize the projection errors of points of interest in 3D world coordinates 

onto estimated 2D image coordinates [6]. Similar to the cylinder model, a sphere model can 

be used for object such as apple.
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For foods served in non-rigid shapes or do not have significant 3D structures, we use the 

prism model. The prism model is an area-based model assuming the height is the same for 

the entire horizontal cross-section [26]. An accurate food area can be obtained by removing 

the projective distortion in the image. The projective transformation matrix can be estimated 

using the Direct Linear Transform (DLT) technique based on the estimated corners and 

known correspondence pattern [27].

2.2. Portion Size Estimation Using Depth Images

The depth maps, along with the grayscale images, are captured using a 3D sensor system 

designed by [19]. The depth map contains the distances of points on object’s surfaces to the 

camera sensor. The depth map is converted to voxel representation. We denote 𝕍  the set of 

all voxels where for each voxel: vp ∈ 𝕍 . For a known food image segmentation mask from 

the grayscale image, each voxel vp can be associated with an object label: lq for lq ∈ 𝕃, 

where 𝕃 is the set of all object labels in the depth image. We use the mapping process: 

ℒ vp = lq to determine which label lq is the voxel vp associated with. Assume widthp and 

lengthp are the size of the base area of voxel vp, if the heightp is known, then the voxel 

volume can be determined. The volume Vlq associated with each label lq can than be 

obtained:

V lq
= ∑

vp ∈ 𝕍, ℒ vp = lq

widthp × lengthp × heightp (1)

The above estimation is based on the assumption we can align the voxel grid on the 

reference plane (e.g., table surface). If the reference surface cannot be correctly detected, we 

would not be able to obtain the volume for each voxel (the height for each voxel will be 

unknown).

2.3. Reference Plane Detection

Detecting the reference plane can be viewed as a clustering task. The goal is to cluster all 

pixels ℙ into two subsets: 𝕊sur f  which is associated with the reference plane, and 

𝕊non − sur f  which contains the rest. A Gaussian distribution is assumed for modeling the 

distribution of samples in 𝕊sur f  and 𝕊non − sur f . Such an assumption is made upon the 

characteristics of distribution of pixel and depths values. If the parameters for the Gaussian 

mixtures are known, we can cluster the pixels into different subsets.

Expectation-maximization (EM) can be used to estimate the above GMM parameters [21, 

22]. EM has been used for image segmentation using multiple image features [28]. Our 

image features are the depth map and the grayscale pixels. An example of grayscale image 

of the scene is shown in Figure 2(a). The corresponding depth map associated with the 

grayscale image is shown in Figure 2(b). We have noticed that for a small portion of regions, 

valid depth values cannot be obtained due to the shadows generated by the structured light 

pattern projector.
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We combine pixel and depth feature for surface detection. We denote di, j ∈ 𝔻 the depth at 

image coordinates (i, j) where 𝔻 is the set contains all valid depths. The size of the set 𝔻 is 

N. Denote the d ∈ ℝ1 × N as the vectorized representation of 𝔻. We construct a vector 

p ∈ ℝ1 × N consists of pixel values: pi, j ∈ p ∀i, di, j ∈ 𝔻 The set of all observations could 

then be obtained as: Y = d; p  where each observation is denoted as: yn ∈ Y, n = {1, ⋯, N}.

We assume the observations are sampled from multivariate Gaussian mixtures which consist 

of K components where the parameters θk for each component is unknown, k ∈ {1, ⋯, K}. 

The task would then be to estimate the parameters Θ = {θ1, ⋯, θK} based on observations 

yn ∈ Y. Θ can be estimated recursively using the EM [22].

To better incorporate the intra-class variations we use K > 2 for table surface detection. We 

set K = 5 to over cluster the pixels initially, as shown in Figure 3(a). We then merge the 

clusters based on the Euclidean distance of θk using k-means. The reference plane can be 

detected based on the mean and variance of depth in a segment, as shown in Figure 3(b). 

Given the reference plane we can now estimate the height for each voxel, and the object’s 

volume.

3. EXPERIMENTAL RESULTS

We compare the estimated volumes of the same objects using the two methods to the 

ground-truth information. The ground truth volume for each object is obtained using water 

displacement [29]. We use 10 objects for testing, as listed in Table 1. Except for the paper 

cup, these objects are selected from NASCO food replicas made with plastic/rubber. The 9 

plastic food replicas are selected to represent different shapes and features.

For the geometric models, we acquire test images using the TADA system [3] on an mobile 

device (an iPhone 6) as shown in Figure 4. Each test images contains 5 – 7 objects from the 

objects listed in Table 1. We vary the layouts of the objects in the scene and the angles used 

to capture the images. A total of 36 test images with different combinations are captured. To 

avoid the errors propagated from automatic segmentation and classification, we use ground-

truth segmentation masks and food labels, then compute the volume Vg for each object as 

shown in Table 1 using the appropriate geometric model.

For food portion size estimation using depth maps, we were able to acquire the depth images 

using a structured light system at Purdue University, more specifically using the digital 

fringe projection technique. Digital fringe projection (DFP) techniques have been 

extensively used for high-quality 3D shape measurement due to their speed, accuracy, and 

flexibility [30, 18]. The system we used is able to obtain a root-mean-square error of about 

73 μm with a calibration volume of 150 mm (height) × 250 mm (width) × 200 mm (depth) 

[20]. Since a grayscale image associated with depth map is available, we can obtain the 

pixel-wise alignment of the image with the depth map. For our system, we were able to 

obtain grayscale images and depth map at the resolution of 640 × 480 pixels. It is 

challenging to use structured light to reconstruct the 3D shape of an object with a large range 

of reflectivity. For our dataset we avoid using NASCO food replicas whose surfaces cannot 
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be properly reconstructed due to issue cause by reflectivity. We converted the depth map into 

voxel representations based on the detection of the table surface. Similar to the test images 

acquired using mobile device, we use different layouts and combinations of objects. Each 

image contains 1–3 objects. We use ground truth label for each segment. The volume 

estimated using the depth map: Vd can than be obtained as shown in Table 1.

Based on our experimental results, we observed that the volume estimation using a depth 

map has a tendency to overestimate the food portion size. We observed that 9 out of 10 test 

objects are overestimated, the coffee cup has a ratio of estimate to ground truth of 2.34 on 

average. The single image approach cannot fully represent the 3D shape since parameters on 

the surfaces that are not visible cannot be recovered. Hence there exists shape ambiguity in 

3D coordinates. However, if we use the prior knowledge of the 3D shape, such as the 

cylinder model, we can obtain significantly better estimation for objects such as “cup”. 

Similarly, for “apple”, if we use a sphere model the volume estimates are better than those 

estimated using depth maps. We used the prism model for the other objects. As shown in 

Figure 5, we were able to obtain more accurate estimates using geometric models with well-

defined 3D shapes compared to estimation using depth images. The number 1 – 10 on the 

horizontal axis in Figure 5 represents foods listed in Table 1.

4. CONCLUSION

In this paper, we presented a comparison of food portion estimation using two techniques: 

geometric models and depth images. We were able to obtain more accurate volume 

estimations using geometric models for objects whose 3D shape can be well-defined. We 

have noticed a tendency of over estimation using depth map. We plan to extend our datasets 

and more objects will be covered including real food items.
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Fig. 1: 
Food Portion Size Estimation Using Geometric Models and Depth Images.
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Fig. 2: 
Gray scale image and the corresponding depth map.
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Fig. 3: 
Reference plane detection with combined features using EM.
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Fig. 4: 
Sample test images captured using mobile device for geometric models-based portion 

estimation.
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Fig. 5: 
Comparison of the ratios of the estimate to ground truth. 1 – 10 on the horizontal axis 

represents foods listed in Table 1. A value ‘> 1’ indicates the volume is overestimated, 

where a value ‘< 1’ indicates the volume is underestimated.
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Table 1:

Comparison of volume estimation using geometric models and depth maps.

Food V
a
(ml) Nd

b Vd(ml)
μ ± SD

Ng
c Vg(ml)

μ ± SD

1 – Apple 275 11 332±29 36 252±57

2 – Banana 200 11 183±29 19 197±26

3 – Cake 125 11 160±28 17 127±20

4 – Bean 100 11 124±16 19 98±10

5 – Pea 50 10 64±29 17 50±6

6 – Sausage 75 10 108±14 17 77±8

7 – Pear 180 11 241±20 17 186±51

8 – Chicken 80 9 95±13 17 83±13

9 – Bread 100 10 111±40 19 101±11

10 – Cup 450 23 1056±80 36 553±115

a
Water displacement

b
Nd is the number of images used for depth-based estimation

c
Ng is the number of images used for geometric model-based estimation
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