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Abstract

Food image segmentation plays a crucial role in image-based dietary assessment and management. 

Successful methods for object segmentation generally rely on a large amount of labeled data on 

the pixel level. However, such training data are not yet available for food images and expensive to 

obtain. In this paper, we describe a weakly supervised convolutional neural network (CNN) which 

only requires image level annotation. We propose a graph based segmentation method which uses 

the class activation maps trained on food datasets as a top-down saliency model. We evaluate the 

proposed method for both classification and segmentation tasks. We achieve competitive 

classification accuracy compared to the previously reported results.
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1. INTRODUCTION

Six of the ten leading causes of death in the United States, including cancer, diabetes, and 

heart disease, can be directly linked to diet. Measuring accurate dietary intake is considered 

to be an open research problem in the nutrition and health fields. We have developed a 

mobile food record (mFR) system, also known as the Technology Assisted Dietary 

Assessment (TADA) system [1, 2] to automatically determine the food types and energy 

consumed by a person using image analysis techniques [3]. The accurate estimate of energy 

and nutrients using food image analysis is mostly based on the correctly labeled food item 

and a sufficiently well-segmented region. Food labeling per se relies on the correctness of 

interest region detection, which makes food segmentation extremely crucial.

In recent years the concept of deep learning [4] has been gaining widespread attention. As 

convolutional neural network (CNN) [5] gradually becomes dominant in many computer 

vision related areas, various recognition and classification tasks have been improved from 

the previous state-of-art methods [5, 6, 7]. Existing CNN models take advantage of labeled 

data which are used to learn which features are effective in a task as opposed to manually 

designed features. However, for more structured prediction, such as semantic segmentation, 

obtaining the pixel-level training data or even labeled bounding boxes is extremely time-

consuming and expensive. For example, fully the convolutional network [6] requires careful 
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annotation of the segmentation mask. Fast/Faster RCNN [7, 8] uses labeled data in the form 

of bounding boxes. Such dependency on fully supervised training poses a major limitation 

on scalability with respect to the number of classes or tasks [9].

In the field of food image analysis, there is no publicly available segmentation ground-truth 

image dataset. The bounding box information provided in the UECFOOD256 dataset [10] is 

far from sufficient. Im2Calorie [11] uses several CNN models to analyze food intake, but the 

authors have not yet released their Food-201 dataset. Therefore, we would like to explore 

weakly supervised learning where only image-level labels indicating the presence or absence 

of objects are required.

Semantic image segmentation, i.e. assigning a semantic class label to each pixel of an image, 

is an important topic in computer vision. Collecting fully annotated training data poses a 

major bottleneck to improve the segmentation models, thus weakly supervised training 

methods were proposed to reduce the annotation effort. Previous work [12, 13] on weakly 

supervised learning show that the output from a classification network can not only predict 

labels but also estimate object locations. In [14], a new loss function is proposed that uses 

location, classes and boundary priors to improve a segmentation system. Pourian [15] used a 

spectral clustering approach that groups coarse segmented image parts into communities. A 

community-driven graph is then constructed that captures spatial and feature relationships 

between communities while a label graph captures correlations between image labels. 

Finally, mapping the image level labels to appropriate communities is formulated as a 

convex optimization problem. In [13], Class Activation Map (CAM) for CNNs with global 

average pooling (GAP) are described. This enables classification-trained CNNs to learn to 

localize visual objects without using any bounding box annotations.

In this paper, we describe a graph based segmentation method for food images that uses a 

weakly supervised saliency model as prior knowledge. The contribution of this work is two-

fold. First, we improve the CAM as a top-down saliency model by introducing a new 

pooling technique. Second, we incorporate the CAM trained on food datasets in the Biased 

Normalized Cut (Biased Ncut) segmentation method [16]. The proposed method shows 

promising results using various testing datasets, and we believe it can also be used as an 

initial step before manual ground-truthing.

2. NETWORK ARCHITECTURE FOR WEAKLY SUPERVISED LEARNING

Our model uses the fully supervised network of [17], known as VGG-16, that consists of 13 

convolutional layers and 3 fully connected layers. To adapt the VGG-16 architecture to 

weakly supervised learning, we introduce several modifications. First, we add a 1024-

channel convolutional layer and remove the first fully connected layer in the VGG-16 

network. Second, we replace the max pooling layer before the fully connected layers with 

our proposed Global Max-Average Pooling (GMAP) layer. Figure 1 illustrates the proposed 

network architecture. We design the GMAP layer as a cascade combination of a Global Max 

Pooling (GMP) layer and a Global Average Pooling (GAP) layer. Furthermore, we extend 

the capability of GMAP by allowing adaptive pooling kernels. Similar to the ROI pooling 

layer [8], the size of pooling kernel varies based on the desired output, so that the output can 
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be connected to a fully connected layer regardless of the size of the input images to the 

network.

Global Max-Average Pooling.

As discussed in [13], the GAP layer outputs the spatial average of the feature map at the last 

convolutional layer. For example, if there are 1024 feature maps at the last convolutional 

layer, the GAP will generate a 1024 dimensional vector. We adopt the Class Activation Map 

[13], which is essentially a weighted sum of the feature maps of the last convolutional layer.

GMP and GAP has been successfully used in previous studies [14]. However, they both have 

their disadvantages. GMP tends to underestimate the regions of objects as the max pooling 

technique encourages the response from the single location of the highest activation. And 

GAP is more prone to overestimate object sizes, because it takes all the activations into 

account. To overcome these disadvantages in the context of semantic segmentation, we 

propose a new pooling technique, namely GMAP. The cascade structure of max and average 

pooling can be viewed as a generalized pooling layer of GAP and GMP,

F = ∑
j = 0

⌊(W − α)/β⌋
∑
i = 0

⌊(W − α)/β⌋
max( f α( α

2 + jβ, α
2 + iβ))/N (1)

where W × W is the dimension of a feature map, fαis the window function of size α, β 
represents the stride of the max pooling kernel, and N = ⌊(W −α)/β⌋2. From Equation 1, we 

can see that F becomes GAP if we let α = β = 1 and it becomes GMP if we let α = W. At 

this point, the proposed network as shown in Figure 1 takes 224 × 224 RGB images as input 

and generates a 1 × 1 × 1024 vector after the GMAP layer and finally outputs a 1 × 1 × N 
vector of confidence scores. N is the total number of classes.

Adaptive Kernel and multi-label classification.

Region of Interest (ROI) pooling was first introduced in [8], which is essentially a simplified 

version of Spatial Pyramid Pooling (SPP) layer [18]. The goal of the ROI pooling layer or 

SPP layer is to adapt the various size of ROIs in the region proposal based networks. To 

complete the design of GMAP layer, we adopt the idea of the adaptive kernel. In other 

words, α in Equation 1 can be a function of W. Besides, the proposed network can also be 

extended to multi-label classification using multi-scale sliding window training as 

introduced in [12]. However, applying the adaptive kernel and multi-label training is not the 

focus of this paper. As shown in Section 4, we assume that one image only contains a single 

category of object.

3. GRAPH BASED SEGMENTATION

With the class activation map (CAM), the challenge is to use the prior knowledge for 

segmentation. It seems intuitive to incorporate salient stimuli [19] or fine-grained region 

proposals [20] into a graph model for the segmentation task. In [19] both bottom-up salient 

stimuli and object-level shape prior were integrated into min cut/max flow optimization. 
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Such energy minimization is initialized with saliency map which is computed through 

context analysis based on multi-scale superpixels. Object-level shape prior is then extracted 

combining saliency with object boundary information. In [20], Cheng et al. implemented an 

iterative GrabCut [21] method which replaces user inputs with thresholded saliency maps.

In this paper, we incorporate the sampled CAM as a top-down constraint in Biased 

Normalized Cut (Biased Ncut) [16]. Compared to a saliency map [19] as shown in Figure 2, 

the weakly trained CAM is better at localizing the object of interest. Given a region of 

interest in the image, i.e. the CAM in our case, we would like to segment the image so that 

the segment is biased towards the specified region. The image is modeled as a weighted 

undirected graph G = (V, E). The weight, w, on any edge, E, is a similarity measure between 

the end nodes of the edge. A region is modeled as a subset T ∈ V, of the vertices of the 

image. We are interested in the cut ((S, S), which not only minimizes the normalized cut 

value, N cut(S), but achieves sufficient correlation with the region specified by T, where

N cut(S) =de f cut(S, S)
vol(S) + cut(S, S)

vol(S) (2)

S =de f V \S (3)

cut(S, S) =de f ∑
i ∈ S, j ∈ S

w(i, j) (4)

vol(S) =de f ∑
i ∈ S, j ∈ V

w(i, j) (5)

Belief Propogation.

From Figure 2(b), we can see that the CAM peaks at where the network believes in showing 

the most prominent feature of a specific class in the image. However, it may not identify a 

part of the object as prominent even though the part of the object shares similar color and 

texture as its surroundings. To deal with this issue, we propose to use a multi-scale 

superpixel method to distribute the confidence that the network puts on certain regions in the 

image to their surroundings with similar color and texture.

Given an image, let [S1, …, Sp, …SP] be the superpixel mask at different scales, where P 
indicates the number of scales we use and let B be the initial CAM. For any pixel (x, y) of a 

certain superpixel in Sp, we define its belief as follows,
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Bp(x, y) =
∑(x, y) ∈ Sp

(B)
Sp

(6)

where ||Sp|| represents the total number of pixels in the superpixel. So, if the superpixel is 

larger or the resolution of the superpixel mask is coarser, the belief is diffused more. We 

compensate the diffusal by introducing finer superpixel masks. Local variation [22] is used 

as the primary superpixel method because it is fast and relatively good at preserving edges. 

Finally, the new CAM is obtained by normalizing the original CAM and the propagated 

belief across all the superpixel scales,

B′(x, y) =
B + ∑p (Bp(x, y))

Z (7)

where Z is a normalization term that makes sure B′(x, y) ∈ [0, 1].

Gassian Mixture Model and Sampling.

We use a Gaussian Mixture Model in the new CAM to generate a trimap [23]. A trimap 

normally partitions an image into three regions: a definite foreground, a definite background 

and an unknown region. Then the foreground is uniformly sampled with a fixed step, P, and 

these sampled points are used as seeds, sT, in the Biased Normalized Cut [16]. Given the 

graph G = (V, E), the Laplacian of G, LG and the normalized Laplacian, ℒG are defined as 

follows,

LG = DG − AG (8)

ℒG = DG
− 1

2LGDG
− 1

2 (9)

where DG and AG are the adjacency matrix and diagonal degree matrix of G. Finally, the 

optimal cut, x∗, is obtained by combining the eigenvectors of ℒG in the following way,

x * ∝ ∑
i = 2

K ui
TDGsTui
λi − γ (10)

where λi represents the ith smallest eigenvalue, ui is the corresponding eigenvector and γ is a 

correlation parameter [16].
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4. EXPERIMENTAL RESULTS

In this section, we describe our classification and segmentation experiments where we use 

several datasets to validate the proposed method, and we assume that one image only 

contains a single category of object.

Classification.

To validate the proposed pooling method, we trained various models using Caltech-256 [24], 

UECFOOD-256 [10] and Food-101 [25]. Caltech-256 [24] contains 30607 images of 256 

object categories. UECFOOD-256 [10] consists of more than 31,000 images from 256 food 

categories, most of which are popular foods in Japan and other Asian countries. Food-101 

[25] contains 101 food categories, each of which has 1000 images. Each dataset is randomly 

split in the 70/10/20 fashion for train/validation/test sets. We used a pretrained VGG-16 

network to initialize the first 13 layers in our model and all the experiments were done in the 

Tensorflow [26].

Table 1 compares the Top 1 classification acurracy of different pooling methods in the 

proposed network. Training the model with GAP was performed with stochastic gradient 

descent with learning rate of 0.01 and momentum of 0.9 while learning rate of 0.002 and 

momentum of 0.9 were used for the other pooling methods. GMAP – α – β represents 

GMAP with a α × α max pooling kernel and stride of β. As shown in the table, the network 

with GMAP −4−2 shows slightly better results across the three datasets. Figure 3 illustrates 

the visual differences of the CAMs when different pooling methods are used. Recently Yanai 

et al. reported 67.57% on the UECFOOD-256 using a modified AlexNet [27] and the best 

result, 78.11%, on the Food-101 is achieved using GoogleNet by Ao et al. [28]. Compared to 

their work, our model demonstrates comparable accuracy despite using a much simpler 

network architecture. Furthermore, we picked the images of 31 food categories from 

Food-101 [25] that are common in UECFOOD-256 and we named it the Food-31 dataset. 

We wanted to test the proposed model with GMAP − 4 − 2 trained on UECFOOD-256 [10] 

using the Food-31 dataset, since the images from these two datasets were initially collected 

from different sources and thus they should occupy slightly different domains in the feature 

space. As shown in Figure 4, the images of the same category look quite different in the 

different datasets. We achieved 85.8% accuracy over the 31,000 images in the Food-31 

dataset without any fine-tuning.

Segmentation.

To evaluate the segmentation accuracy on the food images, we use a free-living study [29] 

from the TADA system. It consists of 1453 images of 56 commonly eaten food taken by 45 

participants within a week, and we have manually ground-truthed over 900 food segments 

with labels. To our knowledge, there is no publicly available segmentation ground-truth for 

dataset food images yet and we would like to release our data for the academic use soon. 

Nine out of the 56 food categories in the free-living study have the same counterparts in the 

Food-101 [25] (see Figure 5) and there are 317 ground-truth in total.
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Based on our experiment, we choose P = 40, K = 16 and γ = 1e − 4 as discussed in Section 

3. Figure 6 shows an example image from the free-living dataset. Seeds in Figure 6(c) are 

sampled from a trimap generated from Figure 6(b). Figure 6(d) represents the combination 

of the reshaped eigenvectors as discussed in Section 3.

The final segmentation masks are obtained by binarizing the biased normalized cut. We use 

a region based metric [30] to evaluate the segmentation masks. Figure 7 shows the precision 

and recall [31] when various thresholds are used. Compared to our previous work, i.e. SNcut 

[32], the biased normalized cut based on the belief-propagated CAM demonstrates superior 

performance. More examples are shown in Figure 8.

5. CONCLUSION AND FUTURE WORK

In this paper we described a weakly supervised CNN model with a new pooling technique 

and incorporate a class activation map for graph based segmentation. Our experiments shows 

promising results for both classification and segmentation tasks. In the future, we would like 

to test our model using a larger dataset and investigate multi-food segmentation.
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Fig. 1. 
Network architecture for weakly supervised learning.
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Fig. 2. 
From left to right: the original image, its class activation map and saliency map [19].
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Fig. 3. 
Class activation maps using different pooling methods.
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Fig. 4. 
Examples from different datasets.

Wang et al. Page 13

Proc Int Conf Image Proc. Author manuscript; available in PMC 2018 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
TADA groundtruth statistics of 9 selected food categories which are common in the 

Food-101 dataset.
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Fig. 6. 
(a) Original image. (b) The belief-propogated class activation map. (c) Seeds, sT as 

discussed in Section 3. (d) The biased normalized cut.
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Fig. 7. 
Precision and recall of the segmentation results. Blue: Biased Ncut with the CAM prior. 

Red: SNcut
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Fig. 8. 
Example segmentation masks.
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Table 1.

Comparison of different pooling methods.

Accuracy (%) Caltech-256 UECFOOD-256 Food-101

GMP 81.05 63.97 72.75

GAP 81.09 64.01 72.78

GMAP-2–2 81.20 64.80 73.81

GMAP-3–3 81.05 64.01 73.55

GMAP-4–2 81.53 64.89 74.02
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