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Abstract

Background & Aims—Improved methods are needed to risk stratify and predict outcomes in 

patients with primary sclerosing cholangitis (PSC). Therefore, we sought to derive and validate a 

new prediction model and compare its performance to existing surrogate markers.

Methods—The model was derived using 509 subjects from a multicenter North American cohort 

and validated in an international multicenter cohort (n=278). Gradient boosting, a machine based 

learning technique, was used to create the model. The endpoint was hepatic decompensation 

(ascites, variceal hemorrhage or encephalopathy). Subjects with advanced PSC or 

cholangiocarcinoma at baseline were excluded.

Results—The PSC risk estimate tool (PREsTo) consists of 9 variables: bilirubin, albumin, serum 

alkaline phosphatase (SAP) times the upper limit of normal (ULN), platelets, AST, hemoglobin, 

sodium, patient age and the number of years since PSC was diagnosed. Validation in an 

independent cohort confirms PREsTo accurately predicts decompensation (C statistic 0.90, 95% 

confidence interval (CI) 0.84-0.95) and performed well compared to MELD score (C statistic 0.72, 

95% CI 0.57-0.84), Mayo PSC risk score (C statistic 0.85, 95% CI 0.77-0.92) and SAP < 1.5x 

ULN (C statistic 0.65, 95% CI 0.55-0.73). PREsTo continued to be accurate among individuals 

5Corresponding Author: Konstantinos N. Lazaridis, M.D.1, Professor of Medicine, Division of Gastroenterology & Hepatology, Mayo 
Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, lazaridis.konstantinos@mayo.edu, Phone: 507-284-1006, 
Fax: 507-284-0762. 

Disclosures: The authors have nothing to disclose

Transcript Profile: None.

Writing Assistance: Not utilized.

Author Contributions: All authors were involved in the drafting and critical revision of the manuscript.

HHS Public Access
Author manuscript
Hepatology. Author manuscript; available in PMC 2021 January 01.

Published in final edited form as:
Hepatology. 2020 January ; 71(1): 214–224. doi:10.1002/hep.30085.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with a bilirubin < 2.0 mg/dL (C statistic 0.90, 95% CI 0.82-0.96) and when the score was re-

applied at a later course in the disease (C statistic 0.82, 95% CI 0.64-0.95).

Conclusions—PREsTo accurately predicts hepatic decompensation in PSC and exceeds the 

performance among other widely available, noninvasive prognostic scoring systems.
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Introduction

Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disorder characterized by 

inflammation and fibrosis in the intra and or extrahepatic ducts that is commonly associated 

with inflammatory bowel disease (IBD), particularly ulcerative colitis (UC).1 Advanced 

fibrosis and manifestations of portal hypertension can develop and are an important source 

of morbidity and mortality.2 Moreover, PSC is a premalignant condition and is associated 

with a higher risk of colorectal and hepatobiliary malignancies, which can arise regardless of 

the presence of advanced fibrosis.2, 3 To date, effective medical therapy for PSC is lacking. 

The reasons for this are multifactorial. This is partly due to the rarity of the disease, which is 

heterogeneous and has a low event rate that is difficult to predict. In turn, this makes clinical 

trials challenging. To address this, improved biomarkers are necessary to risk stratify 

patients in clinical trials and serve as surrogate endpoints.

A number of biomarkers have been examined to predict outcomes in PSC. Serum alkaline 

phosphatase (SAP) has been one of the most widely examined.4-9 A cutoff at or near 1.5 × 

the upper limit of normal (ULN) has been reported in multiple studies as having prognostic 

relevance.5, 6, 8 However, many patients with a SAP >1.5 × ULN, 62% in one study with 9 

year follow up, do not experience liver related complications and individuals can have 

advanced liver disease with a normal SAP.810 The Mayo PSC risk score utilizes the patients 

age, bilirubin, albumin, AST and a prior history of variceal bleeding, was developed to 

predict short term mortality. However it has not been validated to predict long term 

outcomes or other clinically relevant events. Moreover, improvements in the Mayo PSC risk 

score and SAP failed to correlate with outcomes in a randomized controlled trial that 

examined high dose ursodeoxycholic acid.11, 12 Liver histology is less likely to fluctuate 

when compared to any single laboratory test and has been shown to predict survival.13, 14 

However, it is an invasive test that is prone to sampling error and histologic changes, 

particularly fibrosis, may be slow to change.15 To mitigate this, the enhanced liver fibrosis 

(ELF) panel was developed and has been shown to predict transplant free survival.16 

Elastography techniques appear to hold promise to predict clinically relevant events and 

prospective validation studies are ongoing.3, 17, 18 All of these prognostic variables have 

their own limitations and were examined using traditional statistical methods. Machine 

learning (ML) techniques such as gradient boosting machines (GBM) have several 

advantages over traditional modeling and are increasingly being examined for medical 

applications.19-21 ML is an application of artificial intelligence and is a method that can 

examine large complex data sets to generate predictive models. In addition, it is an 

alternative approach to conventional methods such as logistic or cox proportional hazard 
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regression. ML has demonstrated an improved performance compared to logistic regression 

in a variety of clinical scenarios.20-23 Examples of ML include neural networks, support 

vector machines, random forest and GBM.20, 24, 25 To date, ML has not been applied in the 

study of cholestatic liver disease outcomes.

There has been a growing international clarion call among patients, experts in the field, 

industry and regulatory agencies to discover and validate better methods of predicting PSC 

related complications and apply them in prospective clinical trials.26 Consequently, we 

assembled a large, international cohort of PSC patients to create and validate a novel PSC 

risk score and compare its performance to existing prognostic markers using a novel 

approach- GBM, a ML technique.

Methods

Patient Population

Patients with cholangiographic evidence of PSC were included in the study. Exclusion 

criteria included: i) small duct PSC; ii) another concurrent liver disease including overlap 

with autoimmune hepatitis; iii) laboratory tests were unavailable; iv) cholangiocarcinoma 

(CCA) at baseline; v) model for end stage liver disease (MELD) score greater than 14 at 

baseline; vi) prior liver transplantation; or vii) presence of portal hypertension (varices, 

ascites, encephalopathy, splenomegaly or platelets less than 150 × 109/L) at baseline. Hence 

subjects with advanced PSC (i.e., those with manifest signs of portal hypertension or MELD 

score greater than 14, which has been the historic cutoff where individuals would begin to 

receive a survival benefit from transplant) were excluded.27 The rationale for this approach 

was to develop a tool that could be applied in the context of clinical trials. Individuals with 

advanced disease are less likely to be eligible for clinical trials and are less likely to benefit 

from pharmacotherapy in the current era.

The derivation and validation cohorts were assembled from a variety of sources (Figure 1). 

Patients with PSC seen at Mayo Clinic Rochester, Florida or Arizona who were enrolled in 

the study group entitled, PSC Resource of Genetic Risk, Environment and Synergy Studies 

(PROGRESS) were utilized in the derivation cohort. The international validation cohort 

consisted of patients obtained from 3 sources: i) North American patients with PSC who 

contacted (KNL) to participate in the PROGRESS registry who were not seen at one of the 

participating PROGRESS sites; ii) a randomly selected group of patients diagnosed with 

PSC and seen at Mayo Rochester who were not enrolled in PROGRESS; and iii) patients 

with PSC seen at medical centers in Norway. The Norwegian PSC patients were identified 

through a retrospective data set among PSC patients seen at the Oslo University Hospital 

Rikshospitalet. This data set was supplemented with laboratory and clinical records retrieved 

from 31 local hospitals prior to and after patients were referred to the Oslo University 

Hospital. Norwegian PSC patients were also identified through a prospective cohort 

assembled at Haukeland University Hospital in Bergen, Norway. Lastly, a cohort of 116 PSC 

patients who were not included in the derivation or validation cohorts who underwent a 

magnetic resonance elastography (MRE) at Mayo Clinic Rochester were included in a 

supplementary analysis.
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Data Collection & Key Definitions

The electronic and paper medical records were reviewed in detail and all pertinent clinical 

and laboratory data was abstracted on a standardized template. Recognizing that individuals 

with PSC may receive their care at multiple institutions, outside medical records (including 

laboratory tests) were requested for all patients and relevant data was abstracted to maximize 

the phenotypic depth of the cohort.

Large duct PSC was diagnosed using standard criteria.28 A biopsy was required to establish 

a diagnosis of small duct PSC or concomitant autoimmune hepatitis.28, 29 When biopsies 

were available, the fibrosis stage was graded based on the Batts-Ludwig criteria.30 The 

presence of a dominant stricture was determined by endoscopist or JEE using standard 

criteria when possible.28 A diagnosis of CCA was established if there was a mass with 

typical radiographic features of biliary cancer on cross-sectional imaging or a positive 

cytology or biopsy.31 The MELD score, Mayo PSC risk score and SAP × ULN times at 

baseline were abstracted along with values at later time points when possible.12 A SAP < 1.5 

× ULN following a diagnosis of PSC has been associated with an improved prognosis in 

PSC regardless of the presence of a dominant stricture.5, 6, 8 Individuals with at least 3 SAP 

measurements that were < 1.5 × ULN over the course of at least one year were abstracted as 

having a SAP <1.5 × ULN.

The baseline was defined as the time where laboratory tests were first available following a 

diagnosis of PSC. The model was derived to predict a composite outcome of hepatic 

decompensation (i.e., variceal hemorrhage, ascites, hepatic encephalopathy, whichever 

occurred earliest). Individuals were censored at the time of liver transplant, when a diagnosis 

of CCA was established or the time of their last clinical encounter (whichever was earlier). 

Decompensation was selected as the primary outcome for the following reasons: i) it is an 

objective marker of disease severity; ii) while transplant free survival is an important 

endpoint, indications for transplant, severity of disease at the time of transplant and timing 

of transplantation can vary substantially; iii) it is plausible that biomarker(s) predictive of 

complications stemming from portal hypertension would not be as accurate in the prediction 

of liver transplantation for pruritus, recurrent cholangitis or CCA due to differences in the 

etiopathogenesis and the timing of transplant for these indications across multiple centers. 

However, liver transplant for non-malignant PSC complications or PSC related death not 

associated with malignancy was treated as a secondary endpoint. In this analysis, subjects 

were censored at the time of CCA diagnosis or their last clinical encounter (whichever was 

earlier).

Statistical Analyses

Continuous variables were expressed as median, interquartile range (IQR) unless otherwise 

specified and compared using the Kruskal-Wallis rank sum test while categorical variables 

were compared via the Pearson’s Chi-squared test. The model, PSC risk estimate tool 

(PREsTo), was created to predict endpoints within a 5 year time window. Hence if an 

endpoint occurred beyond that time, it was not counted as an event in the primary analysis 

(rather the individual would have been censored at their last follow up within the 5 year 
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window). We applied the model at baseline and 2 years post baseline using the derivation 

and validation cohorts to evaluate its performance.

GBM, a ML technique, was used to create the model with the generalized boosted model 

package (gbm) available in the R software environment.32 GBM is an established technique 

for addressing regression and classification problems by producing a prediction model in the 

form of an ensemble of weak prediction models, typically decision trees. GBM builds the 

model in a step-wise fashion combining information from multiple decision trees 

(Supplementary Figure 1) that are iteratively built in such a way that each iteration focuses 

increasingly on the portions of the data that are most ill-fitting. In other words, GBM uses a 

series of small decision tree, each containing several of the variables from the total variable 

pool of a study. Unlike linear regression, GBM models the data using recursive partitioning 

whereby the decision tree splits the data into smaller groups (partitions) using a cutpoint 

(example, age > 50 years or ≤ 50 years). The resulting groups are then split again using 

another decision or cutpoint. After the initial decision tree is created the model has residuals 

(or what is unexplained by the first tree alone). GBM fits the subsequent decision tree(s) 

based on those residuals to improve the models predictive performance (i.e., the model 

learns from the earlier decision trees). This process is repeated hundreds or thousands of 

times (for example, in developing PREsTo, this procedure was repeated 2,500 times). Each 

decision tree may have different variables. Variables that have the strongest predictive power 

are used in more decision trees and earlier in the model building process.

Individually, each decision tree has a relatively weak predictive performance. However, 

when all the decision trees are combined in the final model the predictive performance is 

greatly enhanced. See Supplementary Figure 1 for an illustrative example.

The chief advantage of this method is that it naturally incorporates interactions between 

variables, is not susceptible to extreme values and handles missing values without the need 

to impute data. The number of decision trees included in the model (number of iterations), 

the depth of the decision trees and the size of the shrinkage parameter were determined by 5-

fold cross-validation minimizing the Cox partial deviance. This is the recommended 

approach to prevent overfitting of the model. In order to assess all of the risk scores using 

the same subject, multiple imputation was run using the default settings of the R package 

“mice” using all the covariates in the gbm model.33 For numeric variables, the default 

imputation approach is predictive mean matching and for unordered categorical variables the 

default is polytomous regression. The average predictions over five instances of the imputed 

data were then reported. Discrimination, the ability of a risk score to accurately rank 

individuals from low to high risk, was assessed by calculating Harrell’s C-statistic and 95% 

confidence intervals were created using bootstrapping.34 Calibration, the ability accurately 

predict the absolute risk level, was assessed comparing observed and expected values in 

subjects with low, medium, and high predicted risk. The 3 risk groups were determined by 

the tertiles of the model’s risk score distribution. Cox models were used to examine the 

impact of each of the risk factors univariately.

The general formula for obtaining a risk estimate from a Cox model is: 

score=1−S0(t)^exp(ΣβiXi) where S0(t) is the baseline event-free rate at follow-up time t 
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(e.g., 5 years), βi is the estimated regression coefficient and Xi is the value of the ith risk 

factor. With a GBM model there are no regression coefficients, however model predictions 

can be obtained using a series of rules (Supplementary Table 1). In this table, each row 

represents a set of rules. Model predictions are obtained by adding up column “y” over all 

the rows where a subject’s values meet the specified criteria (e.g. total bilirubin < 2.65 and 

sodium < 136.5). The 5 year baseline event-free rate for this model is 0.3836.

Results

Clinical Characteristics of Derivation and Validation Cohorts

One-thousand and fifty-seven subjects were reviewed for this study. Ultimately, 787 

individuals were included (derivation n=509; validation n=278) (Figure 1). The median 

(IQR) of follow up for the derivation and validation cohort was 6.09 (2.82-13.10) and 4.21 

(2.31-8.35) years. Markers of PSC disease severity (platelets, bilirubin, MELD, Mayo PSC 

risk score and SAP) were similar between the cohorts Table 1.

Decompensation within 5 years of study entry occurred among 37 subjects in the derivation 

cohort and 21 individuals in the validation cohort. During this same time period, 30 

individuals developed CCA (derivation n=23; validation n=7) and 51 underwent a transplant 

(derivation n=19; validation n=32) (Table 2). Among individuals without a prior history of 

decompensation, transplant or cholangiocarcinoma, 2 individuals died (both in derivation 

cohort and both from cholangitis).

Creation & Calibration of PREsTo Score

Using GBM we investigated 19 potential model covariates (Supplementary Table 2) and 

utilized 2,500 decision trees sequentially, with each successive decision tree fitting on the 

residuals left over from previous decision trees. The parameter decision tree depth was 

optimized at 3, corresponding to three-way interactions, and the shrinkage parameter was 

optimized at 0.001. Covariates with a relative influence greater than 4 were included in the 

final model created to predict the 5 year probability of decompensation (Figure 2, 

Supplementary Table 2). The median (IQR) PREsTo score among those in the derivation 

cohort was 4.45% (3.06%-9.68%). In the derivation cohort, PREsTo accurately predicts the 

5 year probability of decompensation (C statistic 0.96, 95% CI 0.93-98) and was well-

calibrated in its ability to predict the 5 year risk of decompensation among patients at a low-

high risk for developing an endpoint (Table 3, Figure 3a).

Utilizing an online calculator (www.web address will be inserted after acceptance of the 

present model), PREsTo would predict a 5 year probability of decompensation of 19% in a 

41 year old patient with PSC diagnosed 2 years ago and the following labs: total bilirubin 

1.0 mg/dL, SAP 150 U/L (ULN 115 U/L), albumin 3.0 mg/dL, AST 69 U/L, Platelets 204 × 

109/L, Sodium 134 mmol/L and hemoglobin 14 g/dL.

Validation & Comparative Performance of PREsTo

The median (IQR) PREsTo score among those in the validation cohort was 5.1% 

(3.5%-9.8%). In the validation cohort, PREsTo was well-calibrated (Figure 3b) across 
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individuals at low-high risk of decompensation and highly predictive of the 5 year risk of 

decompensation (C statistic 0.90, 95% CI 0.84-0.95), Table 3. Furthermore, it performed 

well when compared to the MELD score, Mayo PSC risk score and SAP<1.5× ULN (Table 

3). Last, we also found PREsTo predictive of a secondary composite endpoint of 

decompensation, liver transplant for non-malignant indication or death from PSC related 

cause (excluding malignancy) in the derivation and validation cohorts (respectively): C 

statistic 0.89, 95% CI 0.85-0.92 and C statistic 0.76, 95% CI 0.69-0.83.

In several exploratory analyses, it did not appear that adding PREsTo to either liver stiffness 

as measured by MRE (n=213) or the fibrosis stage from liver biopsies (n=51) had a 

significant impact on the models performance to predict decompensation. Moreover, 

PREsTo alone performed similarly when compared to these other biomarkers 

(Supplementary Table 3). There was a strong correlation between PREsTo and liver stiffness 

as measured by MRE (r=0.68).

A subgroup of 114 individuals had ELF scores obtained within 3 months of their baseline 

PREsTo score. In this exploratory subgroup, the respective performances of PREsTo and 

ELF in the prediction of hepatic decompensation was C statistic 0.90, 95% CI 0.78-0.98 and 

C statistic 0.75, 95% CI 0.55-0.92, p=0.05, respectively. The correlation between PREsTo 

and ELF was moderate (r=0.43).

Performance of PREsTo at Different Time Points & Phenotypes

We examined the performance of PREsTo at different time points and disease phenotypes. 

We re-applied our inclusion/exclusion criteria 2 years post baseline and reassessed the 

models performance among 164 subjects in the derivation and 98 subjects in the validation 

cohorts (Table 2). This was done to ensure the model performed well at different times in the 

disease course and act as another mechanism to replicate the validity of our findings. Indeed, 

the model continued to have an excellent performance when it was applied at a later time for 

the prediction of decompensation (derivation cohort: C statistic 0.82, 95% CI 0.64-0.95; 

validation cohort: C statistic 0.89, 95% CI 0.77-1.00). PREsTo also has the ability to predict 

long term outcomes beyond 5 years. For example, the model’s ability to predict the primary 

endpoint at 10 years remained excellent: C statistic 0.86, 95% CI 0.78-0.93).

We performed several sensitivity analyses to investigate the impact of disease specific 

factors on the performance of the model. Indeed, the performance was maintained among 

those who were recently diagnosed with PSC and among those with longstanding PSC 

(Supplementary Table 4). The presence of an elevated bilirubin is generally regarded as a 

marker of disease severity but can be transiently elevated due to a biliary obstruction.26 

Furthermore, the presence of jaundice often excludes individuals from participation in 

clinical trials. Indeed, PREsTo continued to perform well among those with a total bilirubin 

2 mg/dL or less (C statistic 0.94, 95% CI 0.90-0.96) and those with a total bilirubin of 2 

mg/dL or greater (C statistic 0.90, 95% CI 0.83-0.95), Supplementary Table 4. Similarly, the 

presence or absence of a dominant stricture, sex, presence or absence of IBD and 

intrahepatic disease distribution versus intra and extrahepatic disease distribution, presence 

of symptoms at PSC diagnosis or having normal SAP did not appear to influence the models 

performance (Supplementary Table 4).
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Discussion

Using state of the art ML techniques, we examined a large international cohort to create and 

independently validate a novel model (PREsTo) that predicts the 5 year risk of hepatic 

decompensation among those with PSC. This model utilizes readily available clinical data, is 

noninvasive, inexpensive and has an excellent performance when compared to existing 

prognostic markers. PREsTo continued to be highly predictive when it was applied at a later 

point in the disease course and among various PSC subgroups that are commonly 

encountered in clinical practice. Moreover, the model accurately predicted 10 year 

outcomes.

Making direct comparisons between PREsTo and other prognostic markers published in 

other studies is challenging due to variations in the patients examined, endpoints and 

statistical methodology. However, it is notable that PREsTo was able to correctly predict the 

development of hepatic decompensation in 9 out of 10 patients and was well calibrated to 

predict the endpoint among low- high risk patients among an independently validated cohort. 

While the Mayo PSC risk score also performed well in this study (C statistic 0.84-0.85) it 

has not always correlated with outcomes in clinical trials.11 SAP <1.5 × ULN performed 

relatively poor in this study (C statistic 0.64-0.65). In another study, subjects with a SAP 

1.3x ULN at baseline and 1 year later had a C statistic that ranged from 0.50-0.70 for 

transplant free survival.5 The incorporation of multiple laboratory and clinical variables in 

PREsTo may be one reason why it has a superior performance when compared to any single 

laboratory test. The ELF panel was able to discriminate between those with and without an 

endpoint (death or transplant) with a C statistic of 0.79 in a European validation cohort.16 

Similarly, a liver stiffness of 9.5kPa, as measured by transient elastography, had a C statistic 

of 0.77 and spleen length had a C statistic of 0.80 for the prediction of liver-related death, 

hepatic decompensation or liver transplant.35 In the present study, we conducted several 

exploratory subgroup analyses which illustrated that the stage of liver fibrosis (C statistic 

0.88) and liver stiffness measured by MRE (C statistic 0.93) were comparable to PREsTo.

PSC is a heterogeneous disorder in both its presentation and outcomes.36, 37 The presence of 

IBD, extrahepatic and intrahepatic disease (compared to intrahepatic alone), presence of a 

dominant stricture, symptoms at the time of diagnosis, jaundice or an elevated SAP have 

been associated with a worse prognosis.13, 37-39 Given the prognostic implications, we 

examined the performance of PREsTo in these key subgroups. Our findings illustrate that 

PREsTo continues to perform well (C statistic 0.90 or greater) in these subgroups 

(Supplementary Table 4). The duration of time since a diagnosis of PSC was established was 

an important variable in the model. However, PSC has a subclinical disease course and may 

be diagnosed at variable times during the natural history of the disease (i.e., development of 

symptoms or elevated liver tests with or without symptoms). Consequently, we performed 

subgroup analyses to determine the performance of PREsTo among those based on the 

presence of symptoms or elevations in SAP at the time of diagnosis. Indeed, PREsTo 

remained well-calibrated regardless of symptoms or elevations in SAP at the time of 

diagnosis (Supplementary Table 4).
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ML has evolved within the past decade due to advances in computational power and cheaper 

data storage. Amazon, Google, NetFlix and others in a variety of interfaces have used ML 

with their customers and employees. Applying ML techniques to big data in digestive 

diseases is just beginning. To our knowledge, this is the first published effort to utilize GBM, 

a ML technique, to predict outcomes in liver disease. GBM utilizes ensemble learning where 

many simple learning algorithms or “decision trees” are used jointly to achieve a more 

optimized prediction than what is possible from any of the individual learning algorithms.40 

In other words, the computer uses boosting and ensemble learning to learn from the errors in 

initial algorithms, modifies them to create a large pool of algorithms that together are more 

accurate.19 While logistic regression utilizes a single model comprised of independent 

variables with linear combinations, GBM uses many models and predictor variables that can 

have complex relationships with the outcome of interest (nonlinear, interacting variables, 

outliers or missing variables).6 GBM has several advantages when compared to its ML 

counterparts: it is less prone to overfitting; it can accommodate both continuous and 

categorical variables; it can estimate error rates; and it can rank the variables relative 

importance.21, 25 GBM has been employed in several clinical applications such as the 

prediction of outcomes following lower gastrointestinal bleeding, cardiovascular risk and 

fracture risk with good results.20, 21, 25 Hence, this technique holds promise for future 

studies beyond the realm of cholestatic liver disease.

Our study has several limitations. First, the participants in this study were largely seen at 

academic medical centers and may not be representative of the entire PSC population. 

Second, detailed imaging covariates, histology and measurements of liver stiffness were not 

available for all subjects. Consequently, we could not examine them for inclusion into the 

model. We tried to mitigate this by performing several exploratory analyses among subjects 

that had a liver biopsy or MRE. However, future studies will be needed. Indeed, it may be 

efficacious to have a combination of variables (biochemical, radiographic, genomic and 

other -omics) in a larger prognostic scoring system, which may mitigate the heterogeneous 

nature of PSC and individual fluctuations in laboratory tests overtime. It should also be 

noted that our model was created and validated among individuals who did not have markers 

of advanced PSC at baseline. Hence, it is uncertain how PREsTo would perform in clinical 

practice if applied to a different PSC population with more advanced disease. However, our 

aim was to create a model that could be directly applicable for the use in clinical trials where 

subjects with advanced PSC are excluded.

Improved methods to risk stratify PSC patients and predict outcomes are a significant unmet 

need in this patient population. Using ML, we have created and validated a novel prognostic 

score, PREsTo, that accurately predicts hepatic decompensation in comparison to other 

existing prognostic markers. These findings suggest PREsTo should be incorporated as an 

exploratory endpoint in future PSC clinical trials and be considered as a method of patient 

stratification. ML methods such as GBM are promising techniques for the study of liver 

disease in the 21st century.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

PSC primary sclerosing cholangitis

IBD inflammatory bowel disease

UC ulcerative colitis

SAP serum alkaline phosphatase

ULN upper limit of normal

ELF enhanced liver fibrosis

ML machine learning

GBM gradient boosting machines

CCA cholangiocarcinoma

MELD model for end stage liver disease

PROGRESS PSC resource of genetic risk, environment and synergy studies)

PREsTo PSC risk estimate tool

MRE magnetic resonance elastography
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Figure 1. 
Patients Included
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Figure 2. 
Variables Included in Model and Their Relative Importance
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Figure 3. 
Model Calibration

a). Calibration in derivation cohort. b). Calibration in validation cohort
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Table 1

Baseline Features

Derivation Validation

Variable (n=509) (n=278) P-value

Age (years) 43.10 (30.10-54.30) 41.70 (30.60-54.20) 0.43

Male 61.70% (314/509) 69.10% (192/278) 0.05

PSC Age Diagnosis (years) 40.00 (27.60-51.40) 35.30 (26.50-47.20) 0.02

PSC Duration (years) 0.49 (0.12-3.06) 1.44 (0.12-6.18) <0.01

IBD Present 80.13% (363/453) 83.09% (231/278) 0.10

•Ulcerative colitis 66.89% (303/453) 67.60% (188/278)

•Crohn’s disease 5.74% (26/453) 10.10% (28/278)

• Indeterminate colitis 7.51% (34/453) 5.40% (15/278)

IBD Age Diagnosis 26.60 (18.30-43.20) 26.9 0 (16.90-42.00) 0.46

IBD Duration (years) 9.69 (2.93-20.80) 8.44 (1.69-18.40) 0.42

Platelets × 109/L 258(220-318) 273 (215-358) 0.17

Sodium mmol/L 140 (138-141) 140 (139-142) 0.02

Creatinine mg/dL 0.90 (0.80-1.10) 0.8 1 (0.70-0.92) <0.001

Albumin g/dL 4.10 (3.70-4.40) 4. 20 (3.90-4.50) <0.001

SAP × ULN 1.82 (1.03-3.41) 2.05 (1.15-3.50) 0.26

SAP > 1.5x ULN 56.20% (213/379) 62. 27% (148/236) 0.13

AST U/L 58 (33-92) 57 (36- 100) 0.52

Total Bilirubin mg/dL 0.80 (0.50-1.30) 0.80 (0.53 -1.35) 0.62

MELDa 7.34 (6.43-8.87) 7.50 (6.43 -9.36) 0.15

Mayo PSC Risk Scoreb −0.09 (−0.71-0.69) − 0.11 (−0.71-0.59) 0.39

a
Available at baseline (349/509) in derivation and (215/278) in validation cohorts

b
Available at baseline (465/509) in derivation and (246/278) in validation cohorts Continuous variables reported as median (interquartile range)

Abbreviations: PSC (primary sclerosing cholangitis); IBD (inflammatory bowel disease); SAP (serum alkaline phosphatase); ULN (upper limit of 
normal); AST (aspartate aminotransferase); MELD (model for end-stage liver disease).
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Table 2

Outcomes in Derivation and Validation Cohorts

Variable Derivation
(n=509)

Validation
(n=278)

Decompensation (0-5 yrs) 7.27% (37/509) 7.55% (21/278)

• Ascites 5.70% (29/509) 6.47% (18/278)

• Variceal Hemorrhage 1.38% (7/509) 0.72% (2/278)

• Hepatic Encephalopathy 0.20% (1/509) 0.36% (1/278)

Censoring Events (0-5 yrs) 92.73% (472/509) 92.44% (257/278)

• Liver transplantationa 3.73% (19/509) 11.51% (32/278)

• Confirmed CCA 4.51% (23/509) 2.51% (7/278)

• Last Clinical Encounter 84.50% (430/509) 78.42% (218/278)

Decompensation (2-7 yrs)b 7.93% (13/164) 5.10% (5/98)

• Ascites 4.27% (7/164) 3.03% (3/99)

• Variceal Hemorrhage 3.04% (5/164) 1.01% (1/99)

• Hepatic Encephalopathy 0.61% (1/164) 1.01% (1/99)

Censoring Events (2-7 yrs) 92.07% (151/164) 94.90% (93/98)

• Liver transplantationc 5.49% (9/164) 8.16% (8/98)

• Confirmed CCA 3.05% (5/164) 1.02% (1/98)

• Last Clinical Encounter 83.54% (137/164) 85.71% (84/98)

Abbreviations: PSC (primary sclerosing cholangitis); CCA (cholangiocarcinoma).

Events that developed first are shown.

a
Derivation transplant indications (PSC symptoms not associated with portal hypertension n=18; concern for biliary neoplasia n=1); Validation 

transplant indications (PSC symptoms not associated with portal hypertension n=29; concern for biliary neoplasia n=3).

b
After re-applying our inclusion/exclusion criteria at year 2, the derivation cohort included 164 subjects & validation cohort included 98 subjects.

c
Derivation transplant indications (PSC symptoms not associated with portal hypertension n=9); Validation transplant indications (PSC symptoms 

not associated with portal hypertension n=8).

Hepatology. Author manuscript; available in PMC 2021 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Eaton et al. Page 18

Table 3

Performance of PREsTo & Other Prognostic Markers in Derivation & Validation Cohorts

Prognostic Marker C-statistic (95% CI)

Derivation Cohort-Secondary Endpoint

PREsTo 0.96 (0.93-0.98)

MELD Score 0.73 (0.63-0.82)

Mayo PSC Risk 0.84 (0.76-0.90)

SAP <1.5 × ULN 0.64 (0.56-0.70)

Validation Cohort-Secondary Endpoint

PREsTo 0.90 (0.85-0.95)

MELD Score 0.72 (0.57-0.84)

Mayo PSC Risk 0.85 (0.77-0.92)

SAP <1.5 × ULN 0.65 (0.55-0.73)

Abbreviations: PREsTo (PSC risk estimate tool); CI (confidence interval); SAP × ULN (serum alkaline phosphatase × upper limit of normal); PSC 
(primary sclerosing cholangitis); MELD (model end stage liver disease)
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