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Biomarker Phenotype for Early 
Diagnosis and Triage of Sepsis to 
the Pediatric Intensive Care Unit
Beata Mickiewicz1, Graham C. Thompson   2, Jaime Blackwood2, Craig N. Jenne3, 
Brent W. Winston   4, Hans J. Vogel1 & Ari R. Joffe5

Early diagnosis and triage of sepsis improves outcomes. We aimed to identify biomarkers that may 
advance diagnosis and triage of pediatric sepsis. Serum and plasma samples were collected from young 
children (1–23 months old) with sepsis on presentation to the Pediatric Intensive Care Unit (PICU-sepsis, 
n = 46) or Pediatric Emergency Department (PED-sepsis, n = 58) and PED-non-sepsis patients (n = 19). 
Multivariate analysis was applied to distinguish between patient groups. Results were compared 
to our results for older children (2–17 years old). Common metabolites and protein-mediators were 
validated as potential biomarkers for a sepsis-triage model to differentiate PICU-sepsis from PED-sepsis 
in children age 1 month-17 years. Metabolomics in young children clearly separated the PICU-sepsis 
and PED-sepsis cohorts: sensitivity 0.71, specificity 0.93, and AUROC = 0.90 ± 0.03. Adding protein-
mediators to the model did not improve performance. The seven metabolites common to the young 
and older children were used to create the sepsis-triage model. Validation of the sepsis-triage model 
resulted in sensitivity: 0.83 ± 0.02, specificity: 0.88 ± 0.05 and AUROC 0.93 ± 0.02. The metabolic-
based biomarkers predicted which sepsis patients required care in a PICU versus those that could be 
safely cared for outside of a PICU. This has potential to inform appropriate triage of pediatric sepsis, 
particularly in EDs with less experience evaluating children.

Sepsis is defined as life-threating organ dysfunction caused by a dysregulated host response to infection1. If the 
diagnosis of sepsis is missed due to nonspecific presentations, sepsis may deteriorate to septic shock in which 
underlying circulatory and cellular/metabolic abnormalities substantially increase patient mortality2. It has been 
estimated that infections account for almost 60% of all deaths in children younger than 5 years old3. In the U.S.A. 
sepsis causes over 75,000 hospitalizations and nearly 10,000 deaths every year in children4. Moreover, the preva-
lence of sepsis and sepsis-associated mortality have been significantly higher in neonates and infants than in any 
other subgroup of pediatric (age < 20 years) patients4,5. Despite advances in methods for detecting microbial 
pathogens, the underlying cause of pediatric sepsis cannot be clearly identified in over 75% of cases6. The proper 
diagnosis of sepsis remains a priority for the health care system; thus, it is necessary to develop new techniques 
and identify reliable biomarkers to improve sepsis diagnosis and prognosis. Early diagnosis of sepsis followed by 
correct triage of patients (i.e. patient admission to a hospital ward for observation or to a pediatric intensive care 
unit (PICU)) and initiation of appropriate treatment are associated with improved patient outcome7,8. Frequently, 
these initial important decisions are left to physician judgement7,9. Physician choices may significantly differ 
between pediatric emergency departments (PED) with extensive experience with sepsis in children and smaller 
centers without such knowledge10,11.

In our previous study we found that in children 2–17 years old, who are likely to have a mature immune 
system, metabolic and inflammatory protein-mediator profiling could be utilized to differentiate children with 
sepsis requiring care in a PICU from children with and without sepsis safely cared for outside of a PICU12. 
Integrating these two sources of biomarker data may improve prediction by increasing the information available 
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describing the state of the organism. This systems biology-based approach may realistically lead to development 
of a point-of-care test aiding sepsis triage decisions, but in addition needs to be examined in a younger pediatric 
cohort (under 2 years old) who may have a less mature or developing immune response to sepsis. Therefore, here 
we have investigated whether metabolomics and inflammatory protein-mediator profiling can be applied for early 
diagnosis and triage of sepsis in infants (1–23 months old). Next, we selected the most significant metabolites 
and inflammatory protein-mediators responsible for sepsis triage and we validated these potential biomarkers in 
the entire pediatric cohort (children age 1 month-17 years). Specifically, we hypothesized that a biopattern can 
be identified that differentiates between children with sepsis that require care in a PICU versus those that can be 
safely cared for outside of a PICU.

Methods
Patients and sample collection.  The study was approved by the Conjoint Health Research Ethics Board 
of the University of Calgary (Ethics ID 23426), and the Health Research Ethics Board of the University of Alberta 
(Pro00008797), and all patients, or their next of kin, provided written informed consent for participating in this 
study. All samples were collected in accordance with the Tri-Council policy statement. The sample collection pro-
tocol has previously been described in detail12. Briefly, samples were obtained from an existing arterial or central 
venous catheter (PICU-sepsis cohort) or with intravenous insertion or blood culture draw (PED-cohorts). Blood 
was drawn as soon as possible (within 24 hours of meeting eligibility).

PICU-sepsis cohort.  All eligible children admitted to the only two PICUs in Alberta with a diagnosis of sepsis 
were prospectively enrolled (04/2010–10/2013). Sepsis was defined as systemic inflammatory response syndrome 
(SIRS), caused by a suspected/proven bacterial/fungal infection, with antibiotics ordered, and an arterial and/or 
central venous line in place. Patients were excluded if: expected survival ≤24 h, decision for palliation, or having 
severe sepsis for ≥48 h (in order to exclude those with late presentation of severe-sepsis to the PICU). Patients 
with microbiologically confirmed sepsis (positive culture from a normally sterile site, including blood, cerebro-
spinal fluid, peritoneal fluid, or tissue) or pneumonia without microbiological confirmation (SIRS with chest 
infiltrate suggesting pneumonia) had specimens analyzed. Site of infection was defined as that diagnosed by the 
attending medical team. Blood was drawn as soon as possible upon PICU admission using a deferred consent 
model, except for the few patients that had blood drawn in the PED (2/46 (4%) and 3/94 (3%) of the PICU-sepsis 
cohort age 1–23 months and 2–17 years respectively).

PED-sepsis cohort.  Children admitted to one PED in Alberta with a diagnosis of sepsis were prospectively 
enrolled. Sepsis was defined as SIRS caused by a suspected or proven bacterial or fungal infection, with antibiotics 
and blood culture ordered. If a patient was admitted to the PICU from the PED, they were only included in the 
PICU-sepsis cohort. The definition of PICU-sepsis was more stringent (excluding those without clear bacte-
rial sepsis, e.g., with unknown, viral, or other causes of systemic inflammatory response syndrome) than in the 
PED-sepsis cohort. This was for both operational reasons (inability to follow the PED-sepsis cohort throughout 
their hospital [n = 35] or outpatient management), and to identify the PICU-sepsis cohort as those with serious 
infection requiring care in a PICU.

PED-control cohort.  In the same PED, previously healthy children were prospectively enrolled if they were 
admitted for a procedure requiring intravenous sedation/analgesia, and without an infection (no history of fever 
within 2 weeks, and no clinical evidence of infection).

Sample preparation and data collection.  1H Nuclear magnetic resonance (NMR) spectroscopy.  The 
sample preparation protocol and NMR spectral acquisition are presented in the Supplementary Methods and 
have previously been described in detail12–14. Briefly, high resolution one-dimensional 1H NMR spectra of fil-
tered serum samples were obtained on a 600 MHz Bruker Ultrashield Plus NMR spectrometer (Bruker BioSpin 
Ltd., Canada). The spectra were profiled in Chenomx NMR Suite 7.5 software (Chenomx Inc., Edmonton, AB, 
Canada)15. The concentration of internal standard (0.5 mM) was used to determine the concentrations of detected 
metabolites. All samples and 1H NMR spectra were randomized prior to analysis to avoid progressive bias.

Inflammatory protein-mediators.  Quantification of targeted inflammatory protein-mediators (cytokines, 
chemokines and acute-phase proteins that are involved in inflammation) was done using validated Luminex 
bead-based multiplexing assays according to the manufacturer’s instructions, as described previously12,16.

Statistical analysis.  For detailed information about data pre-processing and statistical data analysis see 
the Supplementary Methods. Briefly, multivariate statistical analysis was performed using SIMCA-P+ 12.0.1 
software (Umetrics, Sweden) and consisted of principal component analysis (PCA) and orthogonal partial 
least squares discriminant analysis (OPLS-DA). For each OPLS-DA model the R2Y (the percentage of variation 
explained by the model), Q2 (the predictive ability of the model) and CV-ANOVA (Cross-Validated Analysis Of 
Variance) p-value17,18 were calculated based on sevenfold cross-validation (CV)19. The significant metabolites 
and protein-mediators were selected from the OPLS-DA regression coefficients (p < 0.05; jackknife technique)20.

To confirm potential biomarkers for sepsis triage the results for infants were compared to our previously pub-
lished results for older children (2–17 years old)12. Based on the common biopattern for both pediatric cohorts 
alternative OPLS-DA models were created for each age group and for the combined group. The receiver operat-
ing characteristic (ROC) analysis21 was performed for each single potential biomarker, and for the multivariate 
OPLS-DA model biopatterns. To validate the sepsis triage model based on the common potential biomarkers, 
the OPLS-DA model which consisted of 2/3 of all available pediatric samples was used as a training set and the 
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remaining samples comprised a test set. The model was validated 3 times and for each training set the samples 
were randomly selected.

Results
Patient cohort.  The demographics, sites of infection, and severity-of-illness measures for each cohort are 
provided in Table 1. Eligible children were prospectively registered into the database after deferred consent 
was obtained; the consent rate was 78%. Of 63 patients age <24 months, those without clear bacterial sepsis 
(unknown, viral, or other causes of systemic inflammatory response syndrome) were excluded from the PICU-
sepsis nested cohort. Most (>90%) of the PICU-sepsis cohort developed sepsis and were enrolled on the day 
of PICU admission (median PICU length of stay at enrollment 0 [IQR 1.0] days; 4 (8.7%) enrolled after day 
1 of PICU stay; Table 1), with the large majority (>90%) admitted directly from an ED to PICU (only 2 (4%) 
had study labwork sent while in the PED)22. The first lactate on the day of enrolment was 1.9 (SD 1.4) mmol/L, 
suggesting early enrolment. On the day of enrolment, the PICU-sepsis cohort patients (n = 46) had PEdiatric 
Logistic Organ Dysfunction scores and Pediatric RISk of Mortality III scores comparable to other PICU sepsis 
trial patients23,24. Most (90%) PICU-sepsis patients were ventilated (for a median of 8 days) during the index sep-
sis episode, and 50% received vasoactive infusions on the first day of sepsis. The median PICU length of stay after 
sepsis was 10 days, with only 4% staying in PICU <2 days after enrolment (Table 1). There were no statistically 
significant differences between the two hospital’s PICU-sepsis cohorts in day of enrolment mechanical venti-
lation, WBC count, lactate, PRISM score, or PELOD score, or in the duration of ventilation or PICU stay after 
inclusion [data not shown]. In addition, we found no statistically significant difference between the two PICU-
sepsis cohorts in a combined metabolic and protein-mediator model [data not shown]. The PED-sepsis cohort 
showed comparable demographics, except for having fewer comorbidities and better values for platelet count and 
systolic blood pressure. No patient in the PED-sepsis cohort was admitted to a PICU within 7 days of enrolment.

Metabolic profiling dataset.  A total of 59 metabolites were detected, assigned and quantified in each 
serum sample. Acetaminophen and propylene glycol were excluded from the statistical analysis as they are 
related to medication and treatment25, and glycerol, a potential contaminant from the microcentrifuge filters, 
was also excluded. Additionally, the ethanol concentration could not be determined in more than half of samples 
as its metabolite peaks were in the noise level in the NMR spectra (i.e., below the threshold for reliable detec-
tion). Consequently, the 1H NMR dataset used for statistical analysis consisted of 55 metabolites (Supplementary 
Table S1) and 3.1% of missing values which were randomly distributed.

The PCA model was based on three principal components which in total summarized 36.2% of variation in 
the dataset (Fig. 1A). Four PICU-sepsis samples were detected as outliers (1/8 (13%) of the venous samples, and 
3/38 (8%) of the arterial samples) and were further excluded from analyses; outliers can potentially bias the results 
of supervised analysis18.

To better reveal metabolic differences between two specific patient cohorts OPLS-DA analysis was carried 
out (Fig. 2A). The OPLS-DA score scatter plots demonstrated clear separation between patient cohorts with 
high values of R2Y and Q2 metrics and significant CV-ANOAVA p-values (Fig. 2A and Table 2). The ROC 
analysis (Table 2) revealed high AUROC values: AUROC = 0.90 ± 0.03 for PICU-sepsis versus PED-sepsis, 
AUROC = 0.99 ± 0.01 for PED-sepsis versus PED-controls and AUROC = 1.0 for PICU-sepsis versus 
PED-controls.

Inflammatory protein-mediator profiling dataset.  Overall, 57 inflammatory protein-mediators were 
recognized and quantified in the plasma samples (Supplementary Table S2). Fibrinogen, serum amyloid A, hap-
toglobin and C-reactive protein were excluded from the statistical analysis as they were showing “out-of-range” 
values (above upper limit of detection) for more than 50% of the samples. The final dataset consisted of 53 
protein-mediators and 3.1% of missing values (randomly distributed).

Three principal components were calculated for the PCA model and the total variation summarized by the 
model was 46.7% (Fig. 1B). Eleven samples were detected as outliers: 7 PICU-sepsis samples and 4 PED-sepsis 
samples. Similar to the 1H NMR dataset these outliers were excluded in further statistical models as is recom-
mended for this type of analysis18.

The OPLS-DA models for the PED-sepsis cohort versus PED-controls and the PICU-sepsis cohort versus 
PED-controls demonstrated very good separation between the patient groups with high values of validation 
parameters and significant CV-ANOVA p-values (Fig. 2B and Table 2). However, the OPLS-DA model for the 
PICU-sepsis cohort versus PED-sepsis patients had lower values of R2Y, Q2 and AUROC parameters when com-
pared to the other OPLS-DA models: R2Y = 0.37, Q2 = 0.32, AUROC = 0.84 ± 0.04 (Fig. 2B and Table 2).

Combined metabolic and protein-mediator profiling dataset.  Three principal components 
explained 38.3% of the total variation in the combined metabolic and inflammatory protein-mediators profiling 
dataset (Fig. 1C). There were 12 outliers: 9 PICU-sepsis samples and 3 PED-sepsis samples. All outlying samples 
were excluded in subsequent supervised analyses. Of note, only 1 patient was an outlier in all three analyses; on 
review there were no obvious clinical reasons for this.

The OPLS-DA score scatter plots clearly distinguished between the patient groups and were associated with 
high values of R2Y and Q2 parameters, and significant CV-ANOVA p-values (Fig. 2C and Table 2). The most 
powerful combined metabolites/protein-mediators OPLS-DA model was constructed for the PICU-sepsis 
patients versus the PED-controls: R2Y = 0.94, Q2 = 0.90 and AUROC = 1.0. Interestingly, the PICU-sepsis ver-
sus PED-sepsis OPLS-DA model for the 1H NMR-based data was superior when considering all implemented 
approaches, while the OPLS-DA model for PED-sepsis versus PED-controls showed very similar results for the 
metabolomics, protein mediators and combined datasets (Table 2).
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Supervised models without outliers excluded.  To confirm that excluding the outliers from the super-
vised analyses did not bias the results, we recalculated the OPLS-DA models including all outlying samples which 
were detected in the PCA models. Leaving the outliers out from the supervised analyses only had a minor influ-
ence on the discriminative and predictive ability of the models (Supplementary Table S3). Of note, the subsequent 
combined age 1 month to 17 years old models were analysed without any outliers excluded.

Potential biomarkers and model validation.  Overall, 21 metabolites and 15 inflammatory 
protein-mediators were responsible for the separation between the PICU-sepsis patients and the PED-sepsis 
cohort (Supplementary Table S4; Supplementary Fig. S1). After comparing these results to the previously 
published outcomes of metabolite and protein-mediator profiling for 2–17 year old children (Supplementary 
Table S5 and Supplementary Fig. S1)12 we found that 7 metabolites and their concentration changes were 
common to infants and older children: increased level of dimethylamine, mannose, 3-methyl-2-oxovalerate 
and 3-hydroxyisovalerate, and decreased concentrations of alanine, O-acetylcholine and acetate. None of the 

Descriptive variable PICU-sepsis cohort
PED-sepsis 
cohort

PED-control 
cohort

Number of patients n = 45a n = 58 n = 19

Age (months) 9.8 (7.4) 11.2 (6.7) 11.7 (9.5)

Gender: male 28 (61%) 31 (53%) 11 (58%)

Weight (kg) 8.1 (3.2) 9.1 (2.6) 11.1 (1.6)

Underlying co-morbidity 0 (0%)

 -Neuromuscular 6 (13%) 1 (2%)

 -Cardiac 10 (22%) 1 (2%)

 -Respiratory 9 (20%) 1 (2%)

 -Chromosomal abnormality 3 (7%) 2 (3%)

PRISM III score 8.6 (6.8); 6 [3,14] N/A N/A

PELOD score 15.0 (9.0); 12 [11,21] N/A N/A

WBC 12.6 (7.4) 12.3 (7.2); n = 55 N/A

Platelet count 239 (161) 314 (132); n = 54 N/A

Creatinine (μmol/L) 30 (19) 26 (21); n = 45 N/A

Lactate (mmol/L) 1.9 (1.4) 1.7 (0.4);n = 9 N/A

Lowest SBP (mmHg) 76 (14) 95 (14) 110 (13)

Lowest MAP (mmHg) 52 (10) — —

pH 7.3 (0.1) 7.39 (0.13); n = 13 —

Sepsis developed after first PICU day 4 (9%) N/A N/A

Site of infection N/Ad

 -Pneumonia without microbiological confirmation 21 (46%) 11 (19%)

 -Microbiologically confirmed (culture positive) 23 (50%)b 21 (36%)c

 -Clinically diagnosed 0 (0%) 26 (45%)c

Mechanical ventilation on first day 35 (76%) N/A N/A

Inotrope/vasopressor infusion on first day 23 (50%) N/A N/A

Duration of mechanical ventilation after enrolment (days) n = 40 (90%);
8 [4, 11] N/A N/A

PICU length of stay after enrolment (days) <2 days: 2 (4%)
10 [6, 14]

Hospital stay
4 [3, 5]; n = 35 N/A

RRT 3 (7%) 0 (0%) N/A

ECLS therapy 2 (4%) 0 (0%) N/A

PICU Mortality 2 (4%) 0 (0%) 0 (0%)

Table 1.  Description of the pediatric patient cohorts. Results given as n (%) or mean (SD) or median [IQR]. 
ECLS: extracorporeal life support; MAP: mean arterial pressure; N/A: not applicable; PED: pediatric emergency 
department; PELOD: pediatric logistic organ dysfunction score; PICU: pediatric intensive care unit; PRISM: 
pediatric risk of mortality score; RRT: renal replacement therapy; SBP: systolic blood pressure. aOne patient 
withdrew consent to use their demographic and clinical data. bSites of infection included: meningitis (9; 3 with 
bacteremia); empyema (1); bacteremia (8; 1 with pneumonia, 2 from central venous line source); peritonitis 
(2; both from gut ischemia); fasciitis (1, of abdominal wall); mediastinitis (1), parapharyngeal abscess from 
Streptococcus pyogenes (1). cSites of infection included: a. Microbiologically confirmed- meningitis (2, both 
with bacteremia); bacteremia (9; 2 with pneumonia, 1 with UTI, 1 with cervical adenitis); urinary tract infection 
(11); MRSA skin abscess (1). b. Clinically diagnosed: retropharyngeal cellulitis (2), otitis media (1), cervical 
adenitis (1), neutropenia with fever (1), presumed viral febrile illness (8; 4 confirmed as RSV-2, Influenza-1, 
HSV stomatitis-1), and unknown source of fever (13). dProcedures for: orthopedic reduction 4; laceration repair 
10; foreign body removal 1; other 4 (amputation revision 1, casting 2, plastibell removal from penis 1).
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inflammatory protein-mediators detected in the OPLS-DA model (combined dataset) for infants PICU-sepsis 
versus PED-sepsis was common to the same type of model for the older children.

Based on these 7 metabolites alternative OPLS-DA models for PICU-sepsis versus PED-sepsis were con-
structed for infants (n = 104) and older children (n = 175) respectively, without excluding outliers. Both models 
revealed highly significant values of validation parameters (Table 3). The ROC analysis performed for a single 
potential biomarker and the 7 metabolites taken together demonstrated that the highest AUROC values were 
obtained for the multivariate biopatterns (Table 4): AUROC = 0.91 ± 0.03 for infants, and AUROC = 0.93 ± 0.02 
for the 2–17 year old cohort.

Finally, the OPLS-DA model for all pediatric patients (1 month-17 years old, n = 279) PICU-sepsis versus 
PED-sepsis, which was based on the multivariate biopattern (7 potential biomarkers), was created: R2Y = 0.53, 
Q2 = 0.52, and AUROC = 0.93 ± 0.02 (Table 3). The model was validated 3 times using 186 randomly selected 
pediatric samples as a training set and the remaining samples (n = 93) as a test set (Table 5). The mean of the pre-
dicted response values for PICU-sepsis samples in the test sets was 0.8 ± 0.2 and for PED-sepsis was 0.2 ± 0.1. The 
average sensitivity, specificity, accuracy and AUROC in these test sets were 0.83 ± 0.02, 0.88 ± 0.05, 0.85 ± 0.01 
and 0.93 ± 0.02 respectively.

Discussion
Sepsis remains a significant cause of morbidity and mortality for pediatric patients worldwide3,5,7, hence iden-
tifying improved diagnostic and prognostic tools remains a priority. Here we have utilized metabolomics and 
inflammatory protein-mediator profiling approaches to investigate whether these methods and/or their com-
bination could be used for the diagnosis and triage of sepsis in infants. Through multivariate statistical analysis 
we were able to identify specific biopatterns in infants (1–23 months old) associated with early differentiation of 
PED-sepsis patients from PICU-sepsis patients requiring care in the PICU (Table 2). Moreover, by comparing 
and integrating the results with our previously published findings for older children we defined and validated 
potential biomarkers responsible for distinguishing a PICU-sepsis cohort from a PED-sepsis cohort for children 
1 month-17 years old. We have identified 7 metabolites that can be described as a biopattern for triage of sepsis 
in children (Table 4).

Figure 1.  Principal Component Analysis results for the 1–23 month old cohorts. (A) Metabolic data profiling, 
(B) inflammatory protein-mediator data profiling, and (C) combined biomarker profiling data. Red dots: PICU-
sepsis patients; blue dots: PED-sepsis cohort; green dots: PED-control. The sphere describes the 95% confidence 
interval of the Hotelling’s T-squared distribution.



www.nature.com/scientificreports/

6SCIENtIFIC REPorTS |         (2018) 8:16606  | DOI:10.1038/s41598-018-35000-7

Metabolomics examines the end result of interactions among the environment and gene expression on metab-
olism in the organism; as such, if levels of certain metabolites are either increased or decreased, this reflects mod-
ulation of the pathways involved in producing those metabolites. The pediatric sepsis triage model based on the 
7 potential biomarkers and their concentration changes was submitted for topological metabolic pathway anal-
ysis in MetaboAnalyst 3.0 software26. This revealed a number of impacted metabolic pathways (Table 6) within 
PICU-sepsis and PED-sepsis cohorts: energy metabolism (e.g. pyruvate metabolism) and amino acid metabolism 
(e.g. alanine, aspartate and glutamate metabolism; valine, leucine and isoleucine degradation) were the most per-
turbed pathways. Adult studies have reported similar impacted metabolic pathways in sepsis, including amino 
acid metabolism, and mitochondrial energy metabolism27.

Figure 2.  Orthogonal Partial Least Squares Discriminant Analysis for the 1–23 month old cohorts. (A) 
Metabolic data profiling, (B) inflammatory protein-mediator data profiling, and (C) combined biomarker 
profiling data. Red dots: PICU-sepsis cohort; blue dots: PED-sepsis cohort; green dots: PED-control cohort.

Patient cohort Data R2Y Q2
CV-ANOVA 
p-value

Sensitivity: 
Specificity PPV:NPV Accuracy

AUROC ± 
standard error

PICU-sepsis versus
PED-sepsis

Metabolites 0.48 0.44 8.5 × 10−13 0.71:0.93 0.88:0.82 0.84 0.90 ± 0.03

Mediators 0.37 0.32 3.0 × 10−8 0.56:0.87 0.76:0.73 0.74 0.84 ± 0.04

Combined 0.45 0.39 2.5 × 10−10 0.70:0.91 0.84:0.82 0.83 0.87 ± 0.04

PED-sepsis versus
PED-controls

Metabolites 0.72 0.61 7.8 × 10−9 0.91:1.0 1.0:0.86 0.94 0.99 ± 0.01

Mediators 0.77 0.75 1.2 × 10−14 0.97:0.94 0.97:0.94 0.96 0.99 ± 0.003

Combined 0.80 0.70 1.6 × 10−11 1.0:0.94 0.97:1.0 0.98 0.99 ± 0.02

PICU-sepsis versus
PED-controls

Metabolites 0.93 0.88 1.9 × 10−14 1.0:1.0 1.0:1.0 1.0 1.0

Mediators 0.86 0.67 2.7 × 10−7 0.89:0.94 0.94:0.89 0.92 0.99 ± 0.01

Combined 0.94 0.90 7.6 × 10−15 1.0:1.0 1.0:1.0 1.0 1.0

Table 2.  Results of orthogonal partial least squares discriminant analysis for the 1–23 month old cohorts. 
AUROC: area under the receiver operating characteristic curve; PICU: pediatric intensive care unit; PED: 
emergency department; R2Y: percentage of variation explained by the model; Q2: predictive ability of the 
model; CV-ANOVA: cross-validated analysis of variance; PPV:NPV: positive predictive value: negative 
predictive value.
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The elevated level of dimethylamine may indicate impairment in renal function as well as an excessive produc-
tion of asymmetric dimethylarginine (ADMA) in sepsis28,29. Dimethylamine is created through the metabolism of 
ADMA which is an important regulator of the L-arginine/nitric oxide (NO) pathway30. ADMA acts as an endog-
enous inhibitor of NO synthase and is responsible for reduced NO availability, development of oxidative stress 
and dysfunction of the immune system response31. The increased concentrations of 3-methyl-2-oxovalerate and 
3-hydroxyisovalerate point to organic acidemia, ketosis and disruption in branched-chain amino acid (BCAA) 
metabolism32,33. 3-Methyl-2-oxovalerate is a product of isoleucine degradation while 3-hydroxyisovalerate is cre-
ated during leucine metabolism. Enhanced amino acid catabolism is a common event during the progression 
of sepsis as the body utilizes energy by increased protein breakdown and oxidation of BCAAs34. A high level of 
mannose suggests a reduction in aerobic glycolysis and the existence of a carbohydrate metabolic disorder in 
hepatic glycogen catabolism35,36. Alanine is an important energy source as it is a precursor of glucose in gluco-
neogenesis while acetate is one of the major components in TCA cycle and pyruvate metabolism25. Changes in 
the concentrations of mannose, alanine and acetate indicate altered requirements for energy in the PICU-sepsis 
patients when compared to the PED-sepsis cohort and probably provide a relative indicator of disease sever-
ity. A drop of the O-acetylcholine level suggests disruption in glycerophospholipid metabolism25. Moreover, 
O-acetylcholine is an important neurotransmitter which modifies the systemic inflammatory response37. These 
metabolic changes are similar to those in adults with severe sepsis, where increased amino acid catabolism, keto-
sis, altered TCA cycle and glucose metabolism, increased ADMA, and altered glycerophospholipid metabolism 

PICU-sepsis versus PED-
sepsis R2Y Q2

CV-ANOVA 
p-value

Sensitivity: 
Specificity PPV:NPV Accuracy

AUROC ± standard 
error

1–23 month old cohort 0.46 0.44 1.8 × 10−13 0.80:0.88 0.84:0.85 0.85 0.90 ± 0.03

2–17 year old cohort 0.60 0.58 2.7 × 10−33 0.87:0.93 0.93:0.86 0.90 0.95 ± 0.02

1 month-17 year old cohort 0.53 0.52 2.3 × 10−22 0.84:0.89 0.89:0.84 0.86 0.93 ± 0.02

Table 3.  Results of orthogonal partial least squares discriminant analysis based on 7 potential biomarkers. 
AUROC: area under the receiver operating characteristic curve; PICU: pediatric intensive care unit; PED: 
emergency department; R2Y: percentage of variation explained by the model; Q2: predictive ability of the 
model; CV-ANOVA: cross-validated analysis of variance; PPV:NPV: positive predictive value: negative 
predictive value.

Potential biomarkers

AUROC ± standard error

1–23 month old 
cohort

2–17 year old 
cohort

3-Hydroxyisovalerate 0.65 ± 0.05 0.71 ± 0.04

3-Methyl-2-oxovalerate 0.64 ± 0.06 0.62 ± 0.04

Acetate 0.73 ± 0.05 0.86 ± 0.03

Alanine 0.84 ± 0.04 0.75 ± 0.04

Dimethylamine 0.79 ± 0.04 0.77 ± 0.04

Mannose 0.75 ± 0.05 0.80 ± 0.03

O-Acetylcholine 0.76 ± 0.05 0.75 ± 0.04

Multivariate biopattern 0.91 ± 0.03 0.93 ± 0.02

Table 4.  Results of receiver operating characteristic analysis for each single potential biomarker and the 
multivariate biopattern for differentiating sepsis requiring care in pediatric intensive care from sepsis cared for 
in the emergency department.

Validation
Training set
(n = 186)

Test set
(n = 93)

Predicted response value 
± standard deviation

Sensitivity: 
Specificity Accuracy

AUROC
± standard error

#1
PICU-sepsis n = 90 n = 50 0.78 ± 0.27

0.84:0.86 0.85 0.94 ± 0.02
PED-sepsis n = 96 n = 43 0.24 ± 0.21

#2
PICU-sepsis n = 93 n = 47 0.78 ± 0.34

0.85:0.85 0.85 0.92 ± 0.03
PED-sepsis n = 93 n = 46 0.21 ± 0.28

#3
PICU-sepsis n = 83 n = 57 0.74 ± 0.27

0.81:0.94 0.86 0.93 ± 0.03
PED-sepsis n = 103 n = 36 0.23 ± 0.22

Table 5.  Validation results for the orthogonal partial least squares discriminant analysis model for 
differentiating sepsis requiring care in pediatric intensive care from sepsis cared for in the emergency 
department based on the multivariate biopattern in children age 1 month-17 years. AUROC: area under the 
receiver operating characteristic curve; PICU: pediatric intensive care unit; PED: emergency department.
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are reported27,38–40. Altogether, these results identify particular early metabolic changes induced by severe sepsis 
(Table 6 and Supplementary Fig. 1) that could become important indicators for PED staff to initiate appropriate 
and rapid treatment, and optimize patient stratification.

Another important finding in our study is that the supervised statistical analysis performed on the inflam-
matory protein-mediator profiling dataset was less able to clearly distinguish between PICU-sepsis patients and 
PED-sepsis patients in children aged 1–23 months compared to the metabolic profiling (AUC 0.84 ± 0.04 versus 
0.90 ± 0.03). This is similar to our previous finding in older children (AUC 0.88 ± 0.03 versus 0.96 ± 0.01)12. 
In both age cohorts the combined metabolic and protein-mediator profiling did not seem to improve predic-
tion significantly from the metabolic model alone. The response to sepsis cannot be easily classified as pro- or 
anti-inflammatory, as many regulatory processes are activated in exceedingly complex ways. From the innumer-
able genomic, transcriptomic, and proteomic (including inflammatory protein-mediators) interacting cascades 
occurring, a metabolic footprint of the organism’s metabolism may be found. Thus, it is possible that inflam-
matory protein-mediator data is redundant as these mediators act, in the end, to alter the metabolome of the 
organism. Interestingly, when we compared the metabolite/inflammatory protein-mediator patterns obtained 
for the OPLS-DA models PICU-sepsis versus PED-sepsis for infants and older children, only seven metabolites, 
and none of the protein-mediators were common for both pediatric age groups (Supplementary Tables S4, S5, 
and Fig. S1). This may reflect the gradual maturation of the immune system during early infancy, with differing 
responses to infection from older children41. Alternatively, and more in keeping with our hypothesis about the 
power of metabolomics, the different specific protein-mediators and metabolites identified in the two age cohorts 
may simply reflect differences in timing of presentation during the cascades occurring, while the common metab-
olites reflect the end-result of those cascades.

Limitations of this study should be recognized. First, the study included a modest cohort of 122 patients age 
2–23 months and 175 children age 2–17 years from two centers in Alberta, with a consent rate of 78%. Although 
this study is the largest involving metabolomics in children with sepsis, is multicenter involving the only two 
PICUs in the province serving a population of over 4 million, and had a high consent rate, further prospective 
validation in a larger multicenter cohort would strengthen the findings. Second, our internal validation meth-
odology of training and test data sets also requires prospective validation in an independent cohort. Third, the 
cohort definitions relied on the clinical triage decision and not a more objective method. For example, we did not 
require measurements of organ dysfunction in the PED-sepsis cohort, and thus cannot determine how a more 
objective organ dysfunction score compares to or adds information to the biopattern classifications. It is likely 
that the PED-sepsis cohort would have had lower PELOD scores than the PICU-sepsis cohort. However, the 
decision of whether to measure these laboratory indices of organ dysfunction is itself subjective (often based on 
clinician level of worry about triage to a PICU), and our aim was to determine an objective biopattern that tracks 
these real-world decisions. Moreover, if not measured these indices are assumed to be normal in calculating the 
scores. Since the goal was to track the decision to triage to PICU, comparing these scores between PICU- and 
PED-sepsis patients would have involved circular reasoning. Similarly, we did not use an ED serious infection 
prediction rule or Pediatric Early Warning Score (PEWS) because most of these scores include, in addition to 
vital signs, subjective descriptions of the level of consciousness, capillary refilling, work of breathing, and clini-
cian ‘worry’, overall ‘concern’, or ‘gut feeling’ about clinical status42–46. This may be why evaluations of the existing 
serious infection prediction rules and PEWS have concluded that they have inadequate discriminant ability for 
filling the ‘diagnostic gap’ (i.e., predicting PICU admission or serious infections in the ED)42–46. We found that the 
clinical decisions and the discovered biopatterns differentiated a PICU cohort that had high need for ventilation 
and vasoactive infusions and a prolonged PICU length of stay, from a PED cohort that did not require the spe-
cialized and costly care of a PICU. Differentiating these cohorts may be particularly useful in hospitals without 
specialized PEDs and PICUs, which include most hospitals where children present for care. Fourth, the exact 
timing of onset of sepsis in patients is unclear, and the duration prior to having blood drawn was likely different 
between PED-sepsis (drawn with initial labwork done in the PED) and PICU-sepsis cohorts (done once in PICU 
for 96%). It is possible that the PICU-sepsis cohort biopatterns reflect illness management in the PICU (e.g., 

Metabolic pathway p-value Impact Total Hits

Pyruvate metabolism 3.7 × 10−22 0.1 32 Acetate

Alanine, aspartate and glutamate 
metabolism 3.6 × 10−12 0.06 24 Alanine

Sulfur metabolism 3.7 × 10−22 0.03 18 Acetate

Taurine and hypotaurine 
metabolism 2.2 × 10−37 0.03 20 Acetate, alanine

Fructose and mannose metabolism 2.2 × 10−4 0.03 48 Mannose

Selenoamino acid metabolism 2.2 × 10−37 0.003 22 Acetate, alanine

Table 6.  The list of impaired metabolic pathways differentiating sepsis requiring care in pediatric intensive care 
from sepsis cared for in the emergency department. The p-value was calculated during the pathway enrichment 
analysis and was adjusted by Holm-Bonferroni method. The pathway Impact value was calculated from the 
pathway topology analysis as the sum of the importance measures of the matched metabolites normalized by the 
sum of the importance measures of all metabolites in each pathway. The Total is the total number of compounds 
in the pathway and the Hits show the actually matched metabolites detected as potentially important 
compounds in our study. The analysis was performed using the MetaboAnalyst 3.0 software22.
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ventilation, vasoactive medications, and other resuscitation), rather than predicting these needs. An ideal study 
design would have been to have the blood drawn from all patients in the PED, prior to the triage decision being 
made. Our pragmatic deferred consent model in the PICU-sepsis cohort that ensured the blood was drawn on the 
day of eligibility, within 24 hours of presentation, may mitigate this concern.

In conclusion, in children age 1–23 months, metabolic and protein-mediator profiling early in presentation 
can differentiate infants with sepsis requiring care in a PICU from infants with and without sepsis safely cared 
for outside of a PICU. In children age 1 month-17 years, a biopattern for sepsis triage consisting of 7 metabolites 
found early in patient presentation was internally validated using development and test sets of children in our 
cohorts. This biopattern mostly reflects altered energy metabolism in more severely affected children with sepsis. 
This discovery systems-biology based approach identified a limited number of metabolites-of-interest that may 
realistically lead to the development of a point-of-care sepsis triage decision aid, which may be particularly useful 
in ED without pediatric expertise. This finding requires prospective validation in an independent cohort, ideally 
with comparison to and/or addition to clinical prediction scores..

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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