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The gold-standard periodontal probe is an aging tool that can detect periodontitis and monitor gingival health
but is highly error-prone, does not fully characterize the periodontal pocket, and causes pain. Photoacoustic
imaging is a noninvasive technique that can address these limitations. Here, a range of ultrasound frequencies
between 16-40 MHz were used to image the periodontium and a contrast medium based on cuttlefish ink was
used to label the pockets. A 40 MHz ultrasound frequency could spatially resolve the periodontal anatomy,
including tooth, gum, gingival margin, and gingival thickness of tooth numbers 7-10 and 22-27. The photo-
acoustic-ultrasound measurements were more precise (0.01 mm) than those taken with physical probes by a

dental hygienist. Furthermore, the full geometry of the pockets could be visualized with relative standard de-
viations of 10% (n = 5). This study shows the potential for non-invasive monitoring of periodontal health with
photoacoustic-ultrasound imaging in the dental clinic.

1. Introduction

Periodontitis affects nearly 50% of Americans and exerts both local
and systemic effects on the body [1,2]. These range from mild dis-
comfort to debilitating pain, tooth loss, and excessive activation of the
immune system [3-5]. In fact, studies have identified the chronic in-
flammation from periodontitis as a risk factor for conditions such as
cardiovascular disease [6-8], cancer [9], and dementia [10,11]. Thus, it
is critical to diagnose periodontal disease early while the symptoms are
mild and reversible [12].

The current metrics for monitoring periodontal health include at-
tachment level, probing depth, bone loss, mobility, recession, and de-
gree of inflammation [13]. The gold standard for quantifying period-
ontitis progression is the measurement of clinical attachment loss with a
periodontal probe. This tool provides a numerical metric that reflects
the degree of apical epithelial attachment measured from the gingival
margin and is critical for disease staging [14].

However, the periodontal probe is a relatively unsophisticated tool
that suffers from poor reproducibility [14,15]. These errors are

attributed to the significant variation in probing force between opera-
tors, which can vary across multiple orders of magnitude [16]. Physical
probing can penetrate inflamed tissue leading to patient discomfort,
bleeding, and inaccurate measurements [5,17]. The probe can also only
measure depth at the point of insertion—with no information on the full
width or contour of the pocket. Furthermore, the benefit of traditional
probing around dental implants is abrogated due to the implant threads
that impede probe penetration along the implant surface [18,19]. This
limits clinical assessment of these tissues potentially leading to peri-
implantitis [20,21].

We recently described an approach that uses photoacoustic imaging
to potentially address these issues [22]. Photoacoustic imaging is a
hybrid imaging modality that combines visible and near infrared ex-
citation with acoustic detection [23-26]. It extends the utility of ul-
trasound by enabling contrast based on optical absorption [27,28].
Traditional ultrasound operates under the principle of “sound in, sound
out”, but photoacoustic imaging shifts this concept to “light in, sound
out” [29]. Here, a near infrared laser excites a light-absorbing target.
The target then undergoes spatially confined heating followed by
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thermoelastic expansion. This generates wideband acoustic waves that
can be detected with ultrasound transducers for image generation. The
clinical applications of photoacoustic imaging are growing; some recent
examples include endogenous imaging of inflammatory arthritis, non-
invasive assessment of Crohn’s Disease, and diagnosis of vascular
malformations [30-35]. Though photoacoustic-ultrasound (PA-US)
signal can be limited by tissue penetration, it has two significant ad-
vantages over radiography, the most common dental imaging modality
[36]: (1) it can image soft tissue; and (2) it does not use ionizing ra-
diation. Additionally, the surfaces of hard tissues such as bone [37] and
teeth [38] can be imaged.

Our previous report demonstrated the first application of photo-
acoustics for periodontal health and used a biocompatible oral contrast
agent based on food-grade cuttlefish ink [22]. That work utilized swine
models and imaged nearly 40 teeth to validate the method. While bias
values relative to gold standard were low (< 0.2mm), unresolved
questions remained about its clinical utility. Here, we show that pho-
toacoustic-ultrasound can image both the full depths and geometries of
pockets in healthy human adults for non-invasive monitoring of gin-
gival health after local irrigation of the pocket with contrast media.

2. Materials and methods
2.1. Reagents and equipment

Cuttlefish ink was purchased from Conservas de Cambados and
contained ink, water, salt, and sodium carboxymethyl cellulose.
Phosphate-buffered saline tablets were purchased from Sigma-Aldrich.
Ultrasound gel was obtained from Next Medical Products. PA-US
images were taken with a laser-integrated high frequency ultrasound
system from Visualsonics (Vevo LAZR). A medical head immobilizer
was purchased from DealMed. Disposable dental cheek retractors were
obtained from Url Dental.

Contrast agent solutions were prepared individually from stock so-
lutions of cuttlefish ink for each imaging experiment. Stock cuttlefish
ink solutions (50% w/v in 0.1 M PBS) were aliquoted and refrigerated.
To prepare the contrast agent, an aliquot was diluted and mixed with
corn starch to a final solution containing 5% ink w/v and 2% corn
starch. It was briefly heated to boiling to achieve homogeneity. The
spherical melanin nanoparticles within the contrast agent were pre-
viously characterized with transmission electron microscopy, which
indicated a mean particle size of 125 nm from 500 nanoparticles; and
dynamic light scattering, which showed a hydrodynamic radius of
266 nm with a polydispersity index of 0.116 [22]. It is a food-grade
material and was approved for human use by the Institutional Review
Board (IRB). Human subject exclusion criteria included a shellfish al-
lergy or a kosher diet.

2.2. Volunteer recruitment

This case study enrolled a healthy 22-year old adult female with
good oral hygiene. All work with human subjects was approved by the
UCSD IRB and conducted according the ethical standards set forth by
the IRB and the Helsinki Declaration of 1975. The participant gave
written informed consent and teeth 7-10, 22-27 were imaged.

2.3. Periodontal probe measurements

Pockets were measured with the Williams and Marquis probes [39]
by a licensed periodontist. The measurements were performed at the
distobuccal, mesiobuccal, and buccal sites according to clinical con-
vention [40]. For distal and mesial measurements, the probe was in-
serted at a 10° angle at the interproximal space between adjacent teeth.
The buccal measurements were collected at the deepest point observed
after walking the probe across the width of the pocket. Per standard
clinical practice, measurements were rounded up to the nearest integer.
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For the Williams probe, all measurements < 2mm were recorded as
2 mm. For the Marquis probe, readings within the 3 mm intervals were
estimated to be either in the lower 1.5 mm or upper 1.5 mm range and
then rounded up to the nearest integer.

2.4. Pocket labeling

The subgingival pockets were labelled with ~8 uL of contrast agent
per tooth. A micropipette with a sterile 2-20 pL tip was placed in
contact with the gingival sulcus and used to irrigate the region with
contrast agent. Following imaging, the contrast agent was removed
from the pockets by rinsing the mouth with water or gentle tooth
brushing (< 105).

2.5. Imaging procedure

Photoacoustic imaging was performed by pulsing light through two
optical fiber bundles integrated with both sides of a rectangular, linear
array transducer. The laser excitation (Q-switched Nd:YAG) used 5ns
pulses at 20 Hz (6 Hz frame rate). The ultrasound resolution was con-
trolled by changing between three transducers: LZ-201 (center
frequency = 16 MHz), LZ-250 (center frequency = 21 MHz), and LZ-
550 (center frequency = 40 MHz). Typical gains were 15dB for pho-
toacoustic signal and 10 dB for ultrasound. The subject and operator
both wore near-infrared protective laser goggles during experiments.
The subject was seated in front of the imaging system and rested their
chin on a flat surface in front of the transducer. The subject wore dental
cheek retractors and a medical head immobilizer to reduce movements
that contribute to motion-based imaging artifacts. A layer of ultrasound
gel was applied to the transducer, which was adjusted to 1 cm from the
tooth. The 680 nm laser was initialized, and the stepper motor was
scanned 17 mm (0.076 mm step size) to obtain a 3D PA-US image via
maximum intensity projection [41].

2.6. Image analysis and statistics

Following raw data acquisition, sagittal cross-sections were ex-
amined in ImageJ to determine the penetration of contrast agent and
quantify pocket depths. First, images were converted to 8-bit images
and exported as two files: one that displayed only the photoacoustic
signal and another that displayed only the ultrasound. For these images,
a line profile was manually drawn parallel to the gingival margin
through both images (Fig. S2). From this, the pixel intensity could be
plotted with respect to the position along the line for both the photo-
acoustic and ultrasound images. Then, a minimum pixel intensity of 4%
was used as a threshold, above which signal was considered significant.
If both signals were above the threshold at a given position, then that
point was considered part of the pocket depth. Taken together, all of
these points formed a length and its magnitude was recorded as the
pocket depth.

To avoid bias during quantitative comparison to physical probing,
sagittal planes were chosen the same way each time: for distobuccal and
mesiobuccal sites, we chose the first 8 sagittal planes (0.6 mm-wide
sections) with a measurable pocket depth on each lateral side of the
tooth. These sections mimicked the diameters of the physical probes.
For the buccal sites, we selected 0.6 mm-wide sections from the images
at the deepest part of the pocket. This dimension mimicked the dia-
meter of the physical probes and the typical procedure of recording the
lowest number obtained by walking the probe across the pocket width.
For replicate measurements, images were collected on nonconsecutive
days across two weeks.

The buccal contours of the pocket geometry were mapped by
averaging five separate imaging events. The width of the pocket con-
sisted of dozens of sagittal planes. For each plane, two measurements
were taken: the distance from the crown of the tooth to the gingival
margin, and the distance from the gingival margin to the edge of
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Fig. 1. Overview of the imaging setup, periodontal anatomy, and workflow. (A) The PA-US transducer was connected to a stepper motor for axial scanning and
a sliding positioner for lateral control—these components were attached to a larger frame for general positioning. The head immobilizer (cross-section shown) rested
on a flat surface. (B) The simplified diagram shows a tooth, gingiva, gingival margin, subgingival terminus, and pocket depth for an arbitrary cross-section. (C)
Anatomical terms for periodontal reference: Mesial refers to a location on a tooth that is closer to the midline while distal refers to one that is further. Lingual refers to
the side of a tooth facing the tongue while buccal refers to the side facing the cheek. For example, mesiobuccal and distobuccal refer to the areas of the buccal face of
a tooth that are closer to and farther from the midline of the mouth, respectively. (D) Experimental workflow. Briefly, a contrast agent containing melanin nano-
particles (TEM inset) derived from cuttlefish ink was used to irrigate the pocket of a target tooth followed by photoacoustic imaging. The pocket could be rinsed with

water and then images could be analyzed to measure pocket depths.

photoacoustic signal (the subgingival terminus). Together, these mea-
surements determined the top and bottom of the pocket for that plane.
Once these measurements were taken for all planes, they were used to
reconstruct a full map of the pocket to overlap on top of the ultrasound
image.

3. Results
3.1. High-resolution ultrasound imaging of teeth and soft tissues

Photoacoustic and ultrasound images were collected by adapting a
commercial PA-US system for human operation (Fig. 1). Ultrasound
imaging was used to generate frontal and sagittal cross-sections of 10
teeth (tooth numbers 7-10, 22-27) and their associated soft tissues
from a healthy volunteer (Fig. 2). They were labelled with the num-
bering system used by the American Dental Association [42]. These
anterior teeth were imaged because the size of the transducer limited
access to the posterior region of the oral cavity.

Increasing the ultrasound transducer frequency (Fig. 2A) sig-
nificantly improved our ability to identify the gingival margin. The
spatial resolution of the ultrasound mode was approximately 100 um at
40 MHz and 300 um for the photoacoustic mode [22,43]. At 15 and
21 MHz, the gingival-tooth interface and subgingival tooth could not be
identified. These features were clearly resolved at 40 MHz, and we used
this frequency for all subsequent images. Frontal views captured surface
features of the teeth and tissue, while sagittal views revealed the gin-
gival margin, gingival thickness, and surface topology (Fig. 2B).
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3.2. Periodontal labeling and photoacoustic imaging

The contrast agent possessed broad photoacoustic absorption from
680 to 970 nm due to the presence of melanin nanoparticles (Fig. S1)
[22,44,45]. Following administration of contrast agent, we collected
PA-US images and overlaid the 680-nm signal on ultrasound to measure
the periodontal pocket depths. Frontal and sagittal views of the lower
central incisors in Fig. 3A-D show the signal from the mid-buccal
pocket after applying the contrast agent and imaging. The mid-buccal
pocket depth of tooth number 25 was 1.31 mm (Fig. 3D); signal from
the supragingival surface of the tooth did not contribute to the mea-
surement. The gingival thickness could also be quantified. When mea-
sured at the mid-buccal plane, 2mm below the gingival margin, the
gingival thickness was 1.01 * 0.05mm for tooth 25 and
0.97 = 0.04mm for tooth 24 (n = 5). These values matched the
average thickness reported for a 16-24 year old age group [46].

To demonstrate reproducibility, we conducted five independent
replicates by performing the entire labelling, imaging, cleaning, and
processing procedure from start to finish on different days (Fig. S2). In
Fig. 3E-F, the pocket depths are plotted across these replicates for
buccal, mesiobuccal, and distobuccal planes. The means and standard
deviations for these locations were 1.24 + 0.04 mm, 0.74 * 0.12mm,
and 0.68 * 0.06 mm respectively. These corresponded to relative
standard deviations of 3%, 16%, and 9%.

The pocket depth could be determined for a single plane, a region of
planes, or the full buccal width of the pocket. The distance between
each plane was 0.076 mm, corresponding to roughly 50-120 measure-
ments per tooth. Fig. 4 shows the steps to construct a visualization of
the full pocket overlaid on a frontal US image of the tooth. The
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Fig. 2. US images of ten teeth acquired from one subject at 40 MHz and comparison to images at lower frequencies. (A) Frontal and sagittal images of the
bottom front incisors (24 and 25) at increasing US frequencies. Frontal images are inset within the magnified sagittal images of tooth 25 at the gingival margin. Scale
bars are 1 mm and apply to all frequencies for the sagittal images. (B) Frontal and sagittal cross-sections of teeth 7-10 and 22-27. The frontal and sagittal views are
composites of planes from ten separate scans. The gingiva, gingival margin, and tooth are resolved in each sagittal image. The 3-mm scale bar is for sagittal images.

measurements for these steps were performed five times (n = 5) on a
lower central incisor across its measurable width (Fig. 4A-B). The total
mean for the full pocket width was 1.02 + 0.21 mm. The mean stan-
dard deviation of these measurements, i.e. the average of the standard
deviations for every measurement plane across five replicates, was
0.104 mm, resulting in a relative standard deviation of 10.2% (Fig. 4E).

Furthermore, the range of the measurements was 0.57 mm, reflecting
the variation in pocket depth according to probing location. The dis-
tobuccal, buccal, and mesiobuccal regions of planes (0.6 mm wide each)
had measurements of 0.84 = 0.17mm, 1.15 * 0.05, and
0.79 = 0.05. Fig. 4C shows a sagittal plane from Fig. 4B split into
photoacoustic and ultrasound signal only with a line profile drawn

7% Mesiobuccal
1.5 8 Buccal
& Distobuccal

Probing Depth (mm)

ingival Gingival Tooth 200

thickness

Gingiy
Tooth margin

Gingival—;—»
Margin 3

Gingiva4: !
1mm :

Fig. 3. Photoacoustic-ultrasound images of the bottom front incisors (24, 25) before and after administration of contrast agent with demonstrated
reproducibility. (A) Frontal cross-section of teeth 24 and 25 with photoacoustic signal overlaid on ultrasound prior to administration of contrast agent. (B) Sagittal
cross-section of tooth 25, indicated by the dashed yellow line in Panel A, with tooth, gingival margin, and gingival thickness labelled. (C) Frontal cross-section of
teeth 24 and 25 with photoacoustic signal overlaid on ultrasound after administration of contrast agent. (D) The sagittal cross-section of tooth 25 (dashed yellow line
in Panel C) shows the soft-hard tissue interface and pocket revealed by the photoacoustic contrast agent below the gingival margin. (E, F) Reproducibility of
measurements for representative sagittal planes at mesiobuccal, central buccal, and distobuccal probing locations across five replicates in tooth 25; labeling and
imaging procedures were performed independently from beginning to end. Each PA-US image in F corresponds to the mesiobuccal probing depth measurement
(squares) for its given replicate number on the x-axis in E. Light yellow lines show the pocket measurements. White: ultrasound, red: photoacoustic.
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Fig. 4. Procedure for mapping the full width and contours of the periodontal pocket. (A) US frontal image of tooth 25 prior to administration of contrast agent.
(B) PA-US frontal image of the same tooth following contrast agent with the subgingival region of interest highlighted by a black box, prior to image processing. (C) A
sagittal view of the tooth at the yellow dashed line from (A) and (B) used for image processing. The top of panel C is an overlay and the lower panels are ultrasound
and photoacoustic layers. A line (solid turquoise) was manually drawn parallel to the gingival margin for both of the layers using ImageJ. (D) The 8-bit pixel
intensities of the ultrasound and photoacoustic signal along the line were plotted with respect to the length of the line. A minimum intensity threshold (dashed line)
of 10 was chosen to minimize the influence of background signal, and the pocket depth was taken as the total length for which the photoacoustic and ultrasound
signals were both higher than the threshold, i.e., from 2.71 mm to 3.72 mm. (E) Pocket measurements for every sagittal plane across the full buccal width of the
tooth- a total of 40 planes were measured. The x-axis represents each sagittal slice across the width of the tooth. The shaded region represents the geometry of the
pocket and the white region represents the normal area of attachment between tooth and epithelia. Error bars show the standard error of the mean for five replicates
(n = 5). (F) The final mapping of the pocket generated by our photoacoustic method. It was generated by taking the measurements for each sagittal slice from (E) and
overlaying them on the ultrasound image. This step removes the non-specific photoacoustic signal from (B).

parallel to the gingival margin. Fig. 4D quantifies the intensity of each
signal along the line profile, which indicates a pocket depth of 1.01 mm
for the plane. The final mapping of the pocket geometry is shown
overlaid on the ultrasound image in Fig. 4F.

We evaluated the persistence of contrast agent in the pockets fol-
lowing oral rinses with water as well as brushing (Fig. 5). The reduction
of pocket measurements was averaged from six representative planes
across teeth 24 and 25 following 15 s rinsing, 30 s rinsing, and brushing;
these steps resulted in 12.5%, 25.2%, and 100% reductions respectively
when averaged across five replicates.

Finally, we compared our pocket measurements with the gold
standard (Williams and Marquis) probes. The lowest possible mea-
surement from the probes, as determined by a periodontist, was 2 mm
(any lower values were rounded up); this value was recorded for the
buccal pockets of teeth 24 and 25 with both probes. We measured
1.34mm and 1.15mm (n = 5) for teeth numbers 24 and 25 with PA-
US, respectively, which agreed with the gold standard measurements
while providing more precision.

4. Discussion

We report the first application of PA imaging for monitoring dental
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and periodontal health in humans by using a food-grade contrast agent.
This technique is ideal for imaging periodontal pockets, gingival soft
tissue and thickness, and the surfaces of teeth. These features could be
distinguished both by visual inspection— ultrasound signal from tooth
is brighter than tissue— and more quantitatively with line profiles of
photoacoustic and ultrasound pixel intensities (Fig. 4D, Fig. S2). We
determined that a 40 MHz ultrasound frequency provided sufficient
resolution for discerning these features without sacrificing the requisite
penetration depth. The US-only mode is particularly suited for appli-
cations that require knowledge of how a tooth is situated within the
gingiva—one potential example would be diagnosis and monitoring of
patients with delayed tooth eruption [47].

The flow of contrast agent into the gingival sulcus allowed the
imaging and measurement of pocket depths, eliminating the need for
probing. In the case of patients with peri-implantitis, this technique has
potential to allow pocket depth measurements when physical probing is
risky or impossible due to threading along the implant surface and
tissue sensitivity. It was common for the agent to coat the majority of
the tooth surface even when it was locally administered to the gingival
margin (Fig. 3A); however, this did not adversely affect measurements.
The beginning of the pocket could always be identified by overlaying
the ultrasound image to reveal the gingival margin and gingival
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Fig. 5. Removal of contrast agent following oral rinsing with water and teeth brushing. (A) Representative PA-US images show the reduction in photoacoustic
signal/pocket measurement following oral rinsing with water for 15s, 30s, and brushing. Yellow lines indicate the pocket measurements. (B) Fraction of original
measurement following washing steps for five representative sagittal planes taken from teeth 24 and 25. The dotted line indicates the original measurement and error
bars show SEM (n = 5). Asterisks denote significant difference from original measurement (unpaired t-test), ** (P < 0.01), *** (P < 0.001).

thickness (Fig. 3B). The imaging procedure took roughly 5min per
tooth but could be greatly improved with a mouthpiece transducer
capable of scanning all teeth at once.

The PA imaging technique is highly reproducible (Figs. 3E, 4 E) with
relative standard deviations of 10%. This precision offers a major im-
provement over the Williams probe, which can only record integer
values for pocket depths and has inter-operator error of up to 40% [48].
The periodontal pocket is a dynamic structure due to the constant battle
between bacterial invasion and the immune response [49], and integers
are a poor reflection of this process. In a typical oral exam, six mea-
surements are taken per tooth (distolingual, lingual, mesiolingual,
distobuccal, buccal, and mesiobuccal) to approximate the full profile of
the pocket [14]. We show that photoacoustic imaging can be used to
reveal the entirety of the buccal pocket with sub-millimeter (0.01 mm)
precision (Fig. 4). The overlay in Fig. 4F was created manually but it
represents a convenient visualization tool for clinicians; in the future,
the conversion from raw data to final image with highlighted pocket
would be performed by automated algorithms [50]. Imaging the whole
pocket over the patients’ lifetimes has previously been impossible and
could supersede periodontal charting— this practice could reveal the
development of abnormalities that would otherwise be overlooked.

We observed that contrast agent could be easily removed from the
gingival sulcus after imaging (Fig. 5). Oral rinsing with water reduced
the contrast agent both on the surface of the teeth and within the sulcus;
a few seconds of normal brushing completely removed the agent. We
saw that our PA-US measurements (#24 = 1.34 mm, #25 = 1.17 mm)
were in good agreement with those acquired by the Williams and
Marquis probes, which recorded 2 mm for both lower central incisors.
The probes were not capable of distinguishing any values lower than
2 mm; in addition, they could only record integers and relied on sub-
jective estimation. PA-US imaging lowers ambiguity and improves the
precision of measurements.

We recognize some limitations in this study. Due to the size of the
PA—US transducer, only anterior teeth could be imaged. In principle, all
32 teeth and the periodontium can be imaged with this technique but
the geometry of our PA—US transducer physically limited access.
Fortunately, several groups have reported custom transducer geome-
tries, and future work includes development of a mouthpiece-shaped
device to overcome this limitation [51-53]. A mouthpiece transducer
would also reduce imaging artifacts caused by motion from the subject
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during scanning because the subject could bite down on the device.
Partial penetration of contrast agent into the sulcus is also a possibility
but the extent of penetration is consistent across irrigation and scanning
events (Fig. 3C). The subject of the study had good oral hygiene and did
not have deep (= 4mm) pockets indicative of periodontal disease.
However, we previously showed that deep pockets could be imaged in
swine, a good model of the human gingiva [22,54]. Finally, because the
periodontal pocket is a dynamic structure, imaging and probing across
different days may have contributed to small variations in measure-
ments.

5. Conclusion

This work demonstrates the first use of photoacoustic imaging for
monitoring periodontal health in humans by quantitating pocket
depths. The measurements acquired with this technique agreed with
those acquired by a trained periodontist, while providing significantly
more spatial information and precision. The gold-standard periodontal
probe is an established but limited tool. This technique presents an
opportunity for dental clinicians to move away from manual probing
and toward photoacoustic image-guided diagnostics. Ultimately, we
envision the development of a compact, PA-US mouthpiece as a plat-
form for fast, non-invasive collection of critical periodontal metrics.
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