
Contents lists available at ScienceDirect

Epidemics

journal homepage: www.elsevier.com/locate/epidemics

Kernel-density estimation and approximate Bayesian computation for
flexible epidemiological model fitting in Python

Michael A. Irvinea,⁎, T. Déirdre Hollingsworthb

a Institute of Applied Mathematics, University of British Columbia, Vancouver, Canada
b Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK

A R T I C L E I N F O

Keywords:
Approximate Bayesian computation
Individual-based model
Lymphatic filariasis
Model fitting
Python library

A B S T R A C T

Fitting complex models to epidemiological data is a challenging problem: methodologies can be inaccessible to
all but specialists, there may be challenges in adequately describing uncertainty in model fitting, the complex
models may take a long time to run, and it can be difficult to fully capture the heterogeneity in the data. We
develop an adaptive approximate Bayesian computation scheme to fit a variety of epidemiologically relevant
data with minimal hyper-parameter tuning by using an adaptive tolerance scheme. We implement a novel kernel
density estimation scheme to capture both dispersed and multi-dimensional data, and directly compare this
technique to standard Bayesian approaches. We then apply the procedure to a complex individual-based si-
mulation of lymphatic filariasis, a human parasitic disease. The procedure and examples are released alongside
this article as an open access library, with examples to aid researchers to rapidly fit models to data. This de-
monstrates that an adaptive ABC scheme with a general summary and distance metric is capable of performing
model fitting for a variety of epidemiological data. It also does not require significant theoretical background to
use and can be made accessible to the diverse epidemiological research community.

1. Introduction

There is a trend towards greater realism using individual-based
models within the ecological and epidemiological modelling commu-
nity (Grimm et al., 2006; Bansal et al., 2007; DeAngelis and Grimm,
2014; Heesterbeek et al., 2015). The strength of this approach lies in its
ability to directly address policy-relevant questions, however properly
estimating model parameters and measuring uncertainty in fits is often
problematic/challenging (Deardon et al., 2010; Grimm and Railsback,
2013). In addition, the data will often be highly heterogeneous making
model fitting difficult. Examples of this in epidemiology include both
human and animal parasitic infections, such a soil-transmitted hel-
minths and nematodes, where the variance in egg counts can be bigger
than the mean (Shaw et al., 1998; Elkins et al., 1986; Grenfell et al.,
1990). Data may also come in the form of multivariate time-series, such
as number of diagnoses in different disease stages or different age-ca-
tegories or age/risk/disease stage-stratified prevalence (Hollingsworth
et al., 2008; Pullan et al., 2014). These data can be challenging to fit as
it can be noisy and may not be easily modelled by simple distributions.

Complex individual-based models will often have computationally-in-
tractable likelihoods, or likelihoods that are not easily defined or applied
to data. In such cases, approximate Bayesian computation (ABC) has been

proposed as a valid approach to model fitting (Csilléry et al., 2010). ABC
has primarily been used to fit approximately Gaussian or Poisson-type data
in the context of epidemiology (McKinley et al., 2009, 2014; Beaumont,
2010; Walker et al., 2010; Kypraios et al., 2016). Other data sources have
been incorporated into model fitting using ABC, such a phylogenetic data
(Tanaka et al., 2006; Luciani et al., 2009; Ratmann et al., 2012). It is often
not clear what choice of summary statistic should be used and this is often
domain specific, which can prevent these methods being applied else-
where (Luciani et al., 2009; Marin et al., 2012).

Whilst these are general problems, they are of particular relevance in
the calibration of complex individual-based models designed for policy-
relevant questions. In this paper, we consider the case of lymphatic filar-
iasis transmission. Lymphatic filariasis (LF) or elephantiasis is a neglected
tropical disease, with over 40 million individuals displaying clinical
manifestations of the disease, and with 53 countries requiring preventative
chemotherapy. It is currently targeted for elimination as a public health
problem by the World Health Organisation (WHO) by 2020 through the
use of mass drug administration (MDA) (Rebollo and Bockarie., 2013;
World Health Organization et al., 2011; Ottesen et al., 2008, 1997). As
with many public health interventions, there is a certain amount of sys-
tematic non-adherence or heterogeneity in the use of interventions (Dyson
et al., 2017). Coupled with this is the large amount of heterogeneity in
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exposure to infection across individuals. These complexities require that
transmission models take into account the vector and parasite biology and
human social factors (Irvine et al., 2015; Stolk et al., 2008; Chan et al.,
1998). Due to the sparse nature of the data, parameter uncertainty in the
fitted models must also be estimated if robust predictions are to be made
(Singh and Michael, 2015). ABC then offers a strong alternative to other
techniques for fitting complex individual-based models, which can also
include uncertainty in the model parameters (Beaumont, 2010).

We developed a robust, adaptive ABC scheme for infectious disease
epidemiological data. This approach incorporates a parameter-free
method of estimating the distribution of the data and includes an
adaptive scheme for selecting tolerance values. We have developed this
scheme as an open-source python library with examples demonstrating
its use. In the first section of this paper, we directly compare ABC to a
more standard Bayesian fitting technique as an example of where the
likelihood is known, by modelling counts drawn from a negative-bi-
nomial distribution. We vary the heterogeneity (shape parameter) in
the distribution to investigate how the fitting performs for different
degrees of heterogeneity. We compare how well fitting performs as the
number of tolerance levels and number of particles (parameter sets)
changes, showing how the automated tolerance selection procedure
produces accurate model fits. In the next section we apply the technique
to two simple individual-based models, which include overly-dispersed
one-dimensional data and two-dimensional time-series data respec-
tively. The results show that this technique is amenable to a wide range
of models and data with little coding overhead or hyper-parameter
tuning. Finally we demonstrate the technique on a complex individual-
based model of LF and show how disparate forms of data can be in-
cluded in the model fitting process, highlighting the ease of in-
corporating multiple data sources into the fitting (Smith et al., 2017).

2. Methods

2.1. Epidemiological count data

Count data such as number of diagnosed cases in one year or
parasite/viral load per patient are abundant in epidemiology. Often
these data will be treated as being drawn from a Poisson distribution
(Wakefield, 2007; Pullan et al., 2012). This is where the data is drawn
from a probability distribution of the form

= = −P X x λ λ
x

e( | )
!

.
x

λ
(1)

The Poisson distribution is special because the mean and the variance are
equal. Whilst there is some theoretical justification for this, often sources
of data can be more over-dispersed, where the variance of the distribution
is greater than the mean. In this case the data can be described as a ne-
gative-binomial. The issue is then how to measure the amount of over-
dispersion. Techniques will often focus on a particular distribution such as
maximum likelihood or Bayesian Markov chain Monte Carlo (MCMC).
These techniques have proved highly effective for models where the un-
derlying rates (such as those produced from deterministic differential
equation models) can be described. Individual-based and other stochastic
complex models are not amenable to this technique, however, and so
approximate fitting methods have been considered, such as ABC. It is not
clear, however, how to incorporate an appropriate goodness of fit metric
for over-dispersed data (for example comparing the means would not be
able to capture the heterogeneity in the distribution). Here we propose the
use of kernel density estimation in order to resolve this problem.

Kernel density estimation (KDE) is a non-parametric scheme for ap-
proximating a distribution using a series of kernels, or distributions (Bishop,
2006). The technique has previously been applied to approximating the
likelihood of a summary statistic (Fearnhead and Prangle, 2012; Gutmann
et al., 2016). However we use it here to directly compare between the
modelled and real data. An important benefit of this approach is that, unlike
with histograms, where placement of bins is important, kernels are centred

on each data point and hence bins do not need to be selected. Often a
Gaussian kernel is chosen to represent the data, this has the useful property
of allowing the distribution to be defined everywhere in parameter space,
thus making it possible to compare two empirical distributions. Without this
property, the methodology would be unable to compare between two dif-
ferent empirical distributions if there was not significant overlap.

2.2. Overview of ABC methodology

ABC is a technique used to perform Bayesian inference when a
likelihood is either computationally intractable or not feasible to define.
As an alternative, a sufficient summary statistic is used for the model
data and compared to the data to be fitted. A distance metric is used to
define the error between the data drawn from the model and the real
data. As the error between the summary statistics of the model-gener-
ated data and real data approaches zero, the posterior distribution is
approximated with greater accuracy (Csilléry et al., 2010; Beaumont,
2010; Kypraios et al., 2016).

More precisely, the function f summarises the data D in some form,
for example, the mean parasite load in certain age-groups. For parti-
cular model parameters, θ, the model produces output M*θ , where the
star denotes this is a realisation of the model-data and is subsequently a
random variable. We then define a distance metric, ρ, which compares
the summary statistic from the data, f D( ) with that from the model,
f M( *)θ . The posterior is then approximated as the probability that the
distance metric is below a threshold, ϵ, expressed as

≈ <P θ D P ρ f D f M( | ) ( ( ( ), ( *)) ϵ).θ (2)

The error in the approximation is assumed to decrease as the threshold,
ϵ, decreases, with the method being exact when the threshold is zero
(Rubin et al., 1984). This approximation is dependent on the choice of
summary statistic f and distance metric ρ, which are often problem-
specific. The approximation also requires an appropriate choice of ϵ to
increase accuracy and decrease computation time. If ϵ is too large then
the drawn samples are often a poor approximation of the posterior, and
if ϵ is too low, then only very rarely would sampled M*θ meet the cri-
terion leading to increased computation time.

One of the simplest conceptual algorithms for ABC is a partial re-
jection scheme where a particle (parameter set) θ is drawn from the
prior distribution Θ. This particle is then used in the model M to pro-
duce some sample data M*θ . The sample data M*θ is then compared to
the data D using the distance function ρ that gives a single-value for the
discrepancy between the model data and the real data. This particle θ is
then accepted if this discrepancy is below a pre-defined tolerance ϵ and
rejected otherwise (Wilkinson, 2013) (e.g. for its first use see Pritchard
et al., 1999, and see Blum and Tran (2010) for a smoothed rejection
scheme applied to fitting an SIR model). In reality, this scheme can be
inefficient if the prior is not similar to the posterior meaning that many
particles are rejected. Also if the tolerance is too large then the sample
of particles will be closer to the prior than the posterior. This means the
scheme needs to be fine-tuned and may be impractical for most cases.

A way of overcoming the low particle acceptance rate issue is to start
with a large tolerance ϵ and then to proceed as above until the desired
number of particles are selected (Fig. 1). These particles can then be used
to generate an empirical distribution that can then replace the prior in the
algorithm. The tolerance can then be lowered and the rejection scheme
can be repeated until the desired number of particles are sampled. This
scheme provides a way of lowering the tolerance to increase the accuracy,
whilst also overcoming the issue of a small acceptance rate (Walker et al.,
2010). The distribution of tolerances will depend heavily on the number of
particles used, here we explore how the number of particles affects the
final distribution (see supplementary material).

The challenges with this scheme are to choose a set of tolerances,
{ϵ }t , to efficiently reduce the error in the samples. Typically a set is
chosen prior to fitting. We considered two schemes for tolerance se-
lection. The first is to generate a set of tolerances by sampling the prior
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distribution (Faisal et al., 2013). By drawing two sample particles
∼θ θ, Θ1 2 and recording the error between them = ρ f M f Mϵ ( ( * ), ( * ))θ θ1 2 ,

a distribution of error values can be built up from the prior distribution.
A range of tolerances then may be chosen by taking the 0th, 10th, 20th,
…, 100th percentile values of the error value distribution.

An alternative way of selecting tolerances is to do it adaptively, based
on the distribution of errors that were accepted in the previous iteration
(Beaumont et al., 2002). This is accomplished by recording for particle i,
the accepted error τi. The tolerance in the next iteration can then be chosen
as some percentile of these values. Here, we adapted a scheme where the
50th percentile of these values was set as the new tolerance in order to
keep the acceptance rate at reasonable levels. We found the adaptive
scheme consistently outperformed the prior distribution scheme and as
such we only consider the adaptive scheme here.

We considered data derived from both one-dimensional and two-
dimensional distributions. The particular form of the summary statistic
chosen for all examples was an empirical distribution derived from
count data. Certain summary statistics and distance metrics such a the
mean squared error between time-series data have underlying

assumptions of normality and unimodality (Walker et al., 2010; Brown
et al., 2018). We instead, adopt a scheme that is capable of in-
corporating a general distribution by using a non-parametric method to
approximate the underlying probability density function f of the data.
Note that here, as a simplification, discrete distributions are approxi-
mated by a continuous distribution. This was achieved using a Gaussian
kernel-density estimator for the distribution. An empirical distribution
f̂ from count data y{ }i was produced using a Gaussian kernel K by

∑= −
=

−

f x
n

K x yˆ ( ) 1 ( ).
i

n

i
0

1

(3)

Although each data-point is represented as a Gaussian with a small var-
iance, the total distribution does not need to have the same properties and
can for instance have higher variance or be multi-modal (Silverman,
1986). In order to compare between the two approximated distributions
the non-symmetric Kullback–Leibler (KL) divergence was used. This
measures the difference between the KDE-approximated probability dis-
tribution derived from the model data p̂ and the KDE-approximated
probability distribution derived from the real data q̂. It is defined as

∫=
−∞

∞
D p q p x

p x
q x

x( ˆ|| ˆ) ˆ ( )log
ˆ ( )
ˆ ( )

d ,KL
(4)

where the divergence is greater than zero if the probability distributions
differ and is zero if the distributions are equivalent. This method can also
be easily adapted to a multivariate distribution, where an n-dimensional
symmetric Gaussian with a fixed variance in each dimension can be used
in the KDE step. The calculation of the KL divergence can also be extended
by integrating over the entire support of the probability density function
derived in the KDE step.

Our combined adaptive scheduling partial rejection control with
kernel density estimation algorithm is as follows (Fig. 1). A number of
particles (parameter sets) are drawn from the prior distribution P θ( ) to
produce a set of particles θ{ }i

1 . An initial tolerance value ϵ1 is found by
selecting the median value of the KDE KL divergence between the data and
model derived data from the selected particles. A new set of particles is
generated by randomly sampling from θ{ }i

1 and perturbed using a zero-
mean Gaussian random variable with small variance. The newly generated

particle is accepted if ⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

<( )D f D f M|| * ϵ
θKL 1

i
1 , else it is rejected and

another particle is generated according the procedure defined. Once the
desired number of particles have been accepted the tolerance is lowered
adaptively by selecting the median value of the accepted tolerances from
the previous iteration. A new set of particles is then generated as before
with the lowered tolerance ϵ. Once the particles are generated for the
smallest tolerance, ϵT , the algorithm terminates and these are used as the
sample for the posterior. A summary is given in Algorithm 1. We also show
for a Gaussian likelihood that the minimization of the KL divergence with
a KDE representation of the data is equivalent to maximising the like-
lihood (see supplementary material).

Algorithm 1. Adaptive ABC partial rejection control.

Fig. 1. An overview of the ABC partial rejection control technique fitting to one
parameter and for three steps. The true underlying likelihood is shown at the
bottom, with 25, 50 and 75 percentiles shown as red dotted lines. A number of
particles (N) are fixed at the beginning, here =N 8. In the first step, these
particles are drawn from a prior distribution, which is uniform between two
values (top row, corresponds to steps 1–2 in Algorithm 1). For a given toler-
ance, a new particle is drawn for the updated tolerance ϵ1 by choosing a particle
at random, perturbing it slightly and then running a model evaluation (step 5–6
in Algorithm 1). It then checks if the tolerance of that particle is below ϵ1, the
particle is then either accepted (blue) or rejected (shown in red) (steps 7–8 in
Algorithm 1). This procedure continues until all N particles are accepted at the
new tolerance level (steps 9–10). As the tolerance decreases, the particles
converge onto the target distribution (shown in the bottom row). (For inter-
pretation of the references to color in text/this figure legend, the reader is re-
ferred to the web version of the article.)
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2.3. Example applications of the method

2.3.1. Example one: negative binomial distribution
As a first example in order to compare how fitting using our ABC

scheme compares to other fitting techniques, samples were drawn from
a negative binomial distribution with varying mean and heterogeneity
parameter k. When <k 1, the distribution is over-dispersed, with a
greater variance to mean ratio than expected under a Poisson dis-
tribution. This means that the distribution is more heavy-tailed than for
an equivalent Poisson distribution. When >k 5, the distribution is less
over-dispersed and small samples more closely resemble a Poisson
distribution. In order to test how the parameter fitting performs for
increasing heterogeneity (decreasing k), a sample is drawn from a ne-
gative-binomial parameterised by the mean m and heterogeneity k,

= = + ⎛
⎝ +

⎞
⎠

⎛
⎝ +

⎞
⎠

P X x m k k x
x k

k
k m

m
k m

( | , ) Γ( )
!Γ( )

.
k x

(5)

The likelihood for an independent and identically distributed sample
= … −X x x x( , , , )n0 1 1 is then
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m was varied between 1 and 100 and k was varied between 0.1 and 5. In
order to be consistent between the samples the prior used in ABC was
fixed for all samples before observing the data. Exponential priors were
used with means of the distributions chosen to be the average of the
ranges explored for m and k.

A Metropolis–Hastings MCMC scheme was also implemented and
fitted to the negative-binomial count data (Gilks et al., 1995). The same
priors that were used for the ABC scheme were also used for the MCMC
scheme to provide a faithful comparison.

The impact of number of particles and size of tolerance were also
explored using this model. For fixed parameters ( =m 50, =k 3.0) the
derived distribution was estimated for tolerances from 1 to 25 and
particle numbers 10 to 200. The resulting estimated posterior was then
compared to the true posterior (derived from the MCMC scheme).

The previous example can be easily implemented in the developed
Python library with code that sets up a function that outputs an array of
samples drawn from a negative binomial distribution for inputs m and k
(denoted ibm), defines the priors as a list of functions that generate a
sample for each parameter (denoted priors), provides the fitting object
with the individual-based model, the data (denoted xs), the priors, and
sets the method and number of steps to iterate through (denoted by the
method setup) (Listing 1). The method is then run with a specified
number of particles (denoted by the method run).

Listing 1. Code for negative binomial distribution example.

2.3.2. Example two: parasite model
As a simple epidemiological example, we propose an individual-

based model where individuals acquire parasites at a constant rate that
is drawn from a gamma-distribution with mean λ and shape parameter
k. Each parasite within individuals are lost at a constant rate δ . When k
is low the distribution of parasites is more heterogeneous with many
individuals uninfected, but with a few highly infected, with very large
parasite numbers. Schematically, the parasite dynamics within an in-
dividual Pi can be written for each individual i;

→ +P P λb1 at rate ,i i i (7)

→ −P P δP1 at rate ,i i i (8)

where bi is a random variable drawn from a gamma distribution with
shape k and mean 1. This model could easily be extended by making the
force of infection dependent on the current distribution of parasites as
well as other factors such as environmental heterogeneity. It is how-
ever, meant to be instructive and as such the simplest form was used.

2.3.3. Example three: stochastic SIS model
The stochastic Susceptible-Infected-Susceptible (SIS) model was

implemented as an example of time-series data that can be estimated
using a two-dimensional distribution approach. The model can be de-
scribed as a Markov Process with two events: an infection and a re-
covery. For a population of size n, with the number of infected I , the
infection and recovery events occur according to

→ + −I I β n I I1 at rate ( ) , (9)

→ −I I γI1 at rate . (10)

The parameters β and γ can be reparameterised using the basic
reproduction number R0 and the expected time to recovery −γ 1 as

= −β R γ/0
1 and = −γ γ1/ 1. The model was simulated in discrete time-

steps using a tau-leaping algorithm and the corresponding likelihood
was calculated using the corresponding transition rate matrix for the
Markov Process (see supplementary material). In order to utilize this
data with the KDE approach described we may convert the one-di-
mensional time-series data into two-dimensional distribution data in
the following way, where we can explicitly take advantage of the
Markov property of the underlying model. For a time-series of number
of infected individuals recorded at regular intervals = …I I II ( , , , )T0 1 the
number of infected conditioned on the previous time-step +I I|t t1 can be
represented as the matrix

= ⎛
⎝

…
…

⎞
⎠

+
−

⊤
I I

I I I
I I I| .t t

T

T
1

0 1 1

1 2 (11)

Each row in the matrix is a +I I( , )t t1 pair which are points in 2D and can
therefore be used to build up a two-dimensional probability density
function (an example of this is shown in Fig. 3b).
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With the given data representation the methodology is implemented
in the Python package in exactly the same way as for the one-dimen-
sional negative-binomial example. The output of the model function
(ibm) is used to determine the dimension of the data and the list of prior
random variable generators are used to determine the size of the
parameter space in the model code.

2.3.4. Example four: lymphatic filariasis
We used a stochastic individual-based model of lymphatic filariasis

(Irvine et al., 2015). The model is a multi-scale stochastic simulation of
individuals with worm burden, microfilaraemia (prevalence of the pre-
larval stage of LF in the peripheral blood) and other demographic
parameters relating to age and risk of exposure. Humans are modelled
individually, with their own male and female worm burden denoted
Wi

m and Wi
f . The density of microfilariae (mf) in the peripheral blood is

also modelled for each individual and denoted Mi. The total mf density
in the population contributes towards the current density of L3 larvae in
the human-biting mosquito population. The model dynamics are di-
vided into the individual human dynamics, including age and turnover;
worm dynamics inside the host; microfilariae dynamics inside the host
and larvae dynamics inside the mosquito.

Five villages in the East Sepik Province of Papua New Guinea have
been the focus of extensive research into filariasis epidemiology and
transmission (Bockarie et al., 2003, 1998; Michael and Singh, 2016;

Irvine et al., 2018). These villages received annual mass drug admin-
istration from 1993 through 1998, with no further interventions until
bed-nets (LLIN) were distributed in August 2009. Self reported LLIN use
ranged from 75% to 90% (Reimer et al., 2013).

Microfilaria prevalence were measured in these communities in
2008 as part of the post-MDA evaluation (Reimer et al., 2013). This was
done by a BinaxNow filariasis antigen test and by microscopic evalua-
tion of 1 mL filtered venous blood, collected at night. The age of par-
ticipants was also recorded.

The KDE ABC methodology was implemented on three geo-
graphically variable parameters, the vector to host ratio V/H, the het-
erogeneity of bites k and the probability of an infective bite leading to
an establishment of an adult worm s2. Each of these parameters were fit
separately to the mf count distribution for each village. This was then
compared to when the age-prevalence data was also included in the
model fitting. Age-prevalence data was incorporated through the use of
a mean squared distance function in addition to the KDE KL divergence
function for the mf count data.

2.4. Implementation

The methodology and models were implemented in Python 2.7
(Python Software and Foundation, 2018), using the packages SciPy &
NumPy (Van Der Walt et al., 2011) and seaborn for data visualisation

Fig. 2. Comparison between MCMC and ABC methods for fitting a negative binomial distribution for a range of mean, m and heterogeneity k. (a) Comparison
between fits for different mean values m, the dashed line represents the true values and the shading represents the 95% and 50% percentile range of the prior
distribution, with the median given as a solid line. The prior distribution was kept fixed for each fitting. The adaptive KDE scheme closely matches the MCMC scheme
for all values considered. When the resulting fit is biased for ABC, it is also biased in the same way for MCMC providing confidence that the scheme is approximating
the true posterior. (b) Comparison between MCMC and the adaptive ABC scheme for heterogeneity k. As >k 3 both the MCMC scheme and adaptive ABC scheme
underestimate the true value in a consistent way due to the influence of the prior. Comparison between fitted distributions of the adaptive ABC scheme against the
number of adaptive tolerance steps are shown for (c) m and (d) k. The true posterior calculated using MCMC is represented as a series of shaded regions with the 95%
credible interval, 50% credible interval, and the median shown from lightest to darkest respectively. (For interpretation of the references to color in text/this figure
legend, the reader is referred to the web version of the article.)
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(Waskom et al., 2014). An open-source python library, including ex-
amples can be found at the following URL: https://github.com/
sempwn/ABCPRC. This library has been tested for both Python ver-
sion 2.7 and version 3.6.

3. Results

3.1. Drawing from a negative binomial distribution

MCMC was directly compared to the adaptive ABC method using
samples drawn from a negative binomial distribution with a range of
means m and heterogeneities k (Fig. 2). The ABC scheme was ran on
100 particles over 25 tolerance steps, while the MCMC scheme was ran
for 10,000 steps with a burn-in period of 2000 steps and a fixed step-
size. Visual inspection was used to determine the convergence of the
MCMC chains. Exponential priors with rate 50 and 1 were used for m
and k respectively. For small k, samples from the distribution are more
over-dispersed and larger k values more closely approximate the
Poisson distribution. For all mean m values considered both the MCMC
method and ABC method closely match the true value (Fig. 2a). As the
size of m grows so does the size of the 95% credible interval in both
cases. Where the model fit is biased due to the data realisation produ-
cing more than expected lower probability samples (e.g. mean value
50), both MCMC and ABC are biased in a consistent way. This provides
more confidence that the scheme is recovering the true posterior dis-
tribution. Further evidence of this can be seen in the fitting as

heterogeneity k varies (Fig. 2b). Here the prior is stronger, with a
smaller 95% interval relative to the parameter range considered. For
small values of k, the estimated posterior distributions closely match
the true values. As k increases above 3 the true value moves outside of
the prior's 95% range and thus begins to have more influence on the
posterior. This can be seen as the expected value of k estimated from
both methods is consistently lower than the true value.

The number of adaptive tolerance steps strongly influences the es-
timated posterior for both the mean m (Fig. 2c) and the heterogeneity k
(Fig. 2d). For a small number of steps (1-5), the estimate more closely
resembles the prior distribution than the posterior distribution. From 7
to 9 steps the estimate is a combination of the prior and posterior dis-
tribution. For values above 10, the distributions closely match the true
posterior. It should be noted that these values would likely change
depending on the model and data, although we have found that 20 or
more tolerance steps is sufficient for the estimate to converge to the
posterior for the examples considered here.

The number of particles was also considered in how this hyper-
parameter impacts the estimated posterior. Neither the expected value
or the range were consistently effected by the particle size and even a
small number of particles could approximate the true posterior rea-
sonably well (see supplementary material). This suggests that if model
evaluations are costly, then a small number of particles can be used to
approximately determine the posterior before running the method on a
large particle size.

Fig. 3. The Adaptive KDE ABC scheme for stochastic time-series data. (a) A realisation of the SIS process with =R 20 population size n=100 and recovery time
=−γ 11 (b) The corresponding time-series data converted into an empirical joint distribution using a two-dimensional KDE approach (level sets represent probability

densities). (c) The estimated posterior distribution after 20 steps for 100 particles (in blue), with the true value in red. The true posterior is shown as level sets, with
un-normalised log-values displayed. (d) Comparison of fitted distributions to R0 between the adaptive KDE approach against the MCMC method for a range of R0

values. The prior is represented as a series of shaded regions with the 95%, 50% and the median shown from lightest to darkest respectively. (For interpretation of the
references to color in text/this figure legend, the reader is referred to the web version of the article.)
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3.2. Host–parasite model

The method was applied to the simple individual-based model of
parasitic infection. A data sample was produced from the model
(parameters: =λ 10, =δ 0.5, =γ 1.0) and used in the fitting procedure.
All parameters were given exponential prior distributions with mean
rates broad enough to capture most dynamics. As the tolerance reduced,
the variance in each of the marginal distributions lowered. The final
distribution was unimodal for each parameter, with modal values close
to the true underlying values. The final distribution also captures cor-
relations between certain parameters such as between mortality and
infection rate (see Fig. 2, supplementary material).

3.3. SIS model

A realisation of the SIS model was taken with parameters =R 20 ,
population size n=100, and recovery time =−γ 11 , for 100 time-steps
(Fig. 3a). The corresponding joint distribution of the +It 1, It data was
approximated using a two-dimensional KDE (Fig. 3b). Here the joint
distribution was approximately a bivariate correlated Gaussian, where
the number of infected at time +t 1 was strongly dependent on the
number of infected at time t . The empirical distribution also has a
longer tail than expected for a Gaussian distribution due to the initial

transient phase where the infected population is rapidly increasing from
the initial conditions. The adaptive KDE ABC method was able to ac-
curately determine the correct R0 and −γ 1 values and was consistent
with the true posterior (Fig. 3c). For other R0 values the adaptive ABC
method was able to accurately approximate the true posterior and re-
cover the true value (Fig. 3d).

3.4. LF in Papua New Guinea

Fitting was performed on five separate datasets of lymphatic filar-
iasis infection including individuals’ age and mf count. The summary
statistic used was derived from mf count alone; mf age-prevalence and a
combination of the two. Three parameters were fitted, where other
parameters in the model were derived from literature estimates. Age-
prevalence alone was unable to accurately determine the vector to host
ratio and the probability s2, with wide variances for the estimates of
both (Fig. 4a and c). Using the mf count data only produced a smaller
estimated range for these parameters, whilst giving a slightly wider
range for the heterogeneity k (Fig. 4b). Combining both the mf count
summary statistic and mf age-prevalence produces a more highly re-
solved marginal posterior for all three fitted parameters.

Fig. 4. Results from fitting an individual-based lymphatic filariasis infection model to PNG. The estimated marginal distributions for parameters (a) vector to host
ratio, V H/ ; (b) heterogeneity of exposure, k and (c) probability of larvae developing to reproductive adult, s2. Fitting just using count data in red; fitting using age
prevalence data alone in black; and fitting using both count data and prevalence data in blue. (For interpretation of the references to color in text/this figure legend,
the reader is referred to the web version of the article.)
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4. Discussion

Individual based models abound in epidemiology due to their in-
tuitive description and greater ease of simulating many complex aspects
of a system compared to deterministic models (Auchincloss and Diez
Roux, 2008). These models increasingly involve processes that may not
be easily captured by an ordinary differential equation or standard
stochastic processes. This presents a great challenge, however, as
standard fitting techniques have been developed for more traditional
models, whereas ones for individual-based models have languished
(Heesterbeek et al., 2015). Although for certain models it may be
technically possible to write down a likelihood, there can be huge
computational or technical barriers to do this. Whether this is due to a
large number of hidden states or the sheer number of components in the
model, this leads to having to resort to techniques such as visual in-
spection to perform fitting, introducing potential biases and not having
a structured way to deal with the uncertainty in the fitted parameters.
What is desirable is to have a technique where we can enjoy the benefits
of Bayesian fitting, such as incorporating our prior knowledge and
producing samples to estimate parameter uncertainty, without the often
prohibitive procedure of conceiving of and calculating a likelihood.

Here we explored an ABC method as a solution for Bayesian model
fitting. In particular we developed a technique that was amenable to a
variety of data with minimal hyper-parameter tuning. The motivation is
to provide a tool for model fitting with uncertainty quantification to a
wide range of researchers, who may not have the necessary technical
background to develop a full Bayesian approach with a developed
likelihood. We performed model fitting using a summary statistic of the
counts by approximating the distribution using a kernel density esti-
mator. This allows fitting to be performed without explicit assumptions
on the particular type of distribution the data takes as can be common
with other model fitting techniques.

In order to compare the accuracy of ABC for increasingly hetero-
geneous count data, the procedure was carried out on various data
generated from a negative-binomial distribution. For high hetero-
geneity, the procedure was able to accurately determine the shape
parameter (k), as well as the mean parameter (m). This demonstrates
that this technique is capable of handling a variety of heterogeneous
data and can give similar results to standard Bayesian MCMC. the
technique was also able to perform well on time-series data by trans-
forming the data into a two-dimensional point representation. This
technique would appear generally applicable to other time-series data
including systems that may exhibit chaos (see supplementary material).

For many individual-based models a likelihood may be either
computationally or analytically intractable. In these cases other
methods have been proposed to overcome this issue. Using a partial
rejection control scheme provides, at each iteration, a sample of par-
ticles (parameter sets) that are initially drawn from the prior, but as the
tolerance decreases, these samples become more representative of the
posterior. Although there are typically issues surrounding the choice of
tolerances, such that the scheme is able to draw samples for the next
iteration. Here, we overcome these issues by demonstrating two dif-
ferent schemes for choice a set of tolerances. This creates a much more
efficient pipeline for fitting without the need to perform exploratory
analysis of the error function beforehand (Walker et al., 2010).

One of the key issues with ABC is that it is an approximation method
only. If the method does not sufficiently explore the space of para-
meters, the technique may produce spurious results. One possible di-
agnosis is to check the distribution of errors that were accept for each
tolerance. If the errors are not significantly decreasing then this may
indicate the procedure is stuck in a local minima and the variance of the
priors may need increasing. The distribution of errors for the final
tolerance can also indicate whether the procedure was halted prema-
turely or if lower tolerances can be accepted.

There is also an issue with the choice of summary statistics to be
used and the number of parameters to fit to. It may be that some

parameters can be estimated from independent studies, without the
need to include them in the ABC procedure. It would then seem ad-
visable to use these values either as a well-informed prior or as a point
estimate as was done here. If the model is slow to evaluate, then this
may also lead to practical fitting issues. Emulation methods may help to
further increase the speed of fitting, by approximating the error
manifold through the use of non-parametric fitting techniques such as
Gaussian processes (Conti and O’Hagan, 2010; Drovandi et al., 2011).

One primary advantage of ABC over other techniques is the ability
to utilize a range of data within model fitting. In the example of fitting
an individual-based model of lymphatic filariasis infection to PNG data
a combination of summary statistics was used. We explored fitting using
just count data alone, constructing an empirical probability distribution
and then comparing against the model count data using the KL diver-
gence. This summary statistic was then combined with age-prevalence
data, by constructing the prevalence in a defined set of age-categories
and then using a weighted sum of squares in order to take into account
the number of individuals in each age-category. We found that by
adding in the extra information about the age-prevalence distribution
the fitting was able to better resolve some of the parameters. ABC
provides a way of incorporating many different types of data into the
fitting and this suggests that the full number of pertinent summary
statistics should be used.

5. Conclusion

The adaptive ABC method incorporating kernel density estimation
and partial rejection control is a potentially powerful tool in model
fitting for epidemiological data. We demonstrate that the same meth-
odology can fit to both macro and micro-parasitic infectious diseases,
one-dimensional or two-dimensional data, and can readily incorporate
a wide array of data sources. In order for this tool to be readily-avail-
able to a wide-range of researchers we have developed this as an open-
source python library, including example code to demonstrate its use.

Data availability

All code is packaged as a python library and can be found at the
following GitHub repository: https://github.com/sempwn/ABCPRC.
This includes all code for generating data used in example model fitting.
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