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All living things have evolved to sense changes in their environment in order to

respond in adaptive ways. At the cellular level, these sensing systems generally

involve receptor molecules at the cell surface, which detect changes outside

the cell and relay those changes to the appropriate response elements down-

stream. With the advent of experimental technologies that can track

signalling at the single-cell level, it has become clear that many signalling sys-

tems exhibit significant levels of ‘noise,’ manifesting as differential responses of

otherwise identical cells to the same environment. This noise has a large impact

on the capacity of cell signalling networks to transmit information from the

environment. Application of information theory to experimental data has

found that all systems studied to date encode less than 2.5 bits of information,

with the majority transmitting significantly less than 1 bit. Given the growing

interest in applying information theory to biological data, it is crucial to under-

stand whether the low values observed to date represent some sort of intrinsic

limit on information flow given the inherently stochastic nature of biochemical

signalling events. In this work, we used a series of computational models

to explore how much information a variety of common ‘signalling motifs’

can encode. We found that the majority of these motifs, which serve as the

basic building blocks of cell signalling networks, can encode far more infor-

mation (4–6 bits) than has ever been observed experimentally. In addition to

providing a consistent framework for estimating information-theoretic quan-

tities from experimental data, our findings suggest that the low levels of

information flow observed so far in living system are not necessarily due to

intrinsic limitations. Further experimental work will be needed to understand

whether certain cell signalling systems actually can approach the intrinsic limits

described here, and to understand the sources and purpose of the variation that

reduces information flow in living cells.
1 Introduction
Signalling networks enable cells to sense information about their environment in

order to adapt appropriately to changing conditions. Quantifying the reliability of

communication has long been the domain of information theory [1]. Information

theoretic concepts have been relevant to many areas of biology for quite some

time (most notably neuroscience and bioinformatics) [2–8], but have not been

applied to systems biology until relatively recently. It is becoming increasingly

clear, however, that information theory is relevant for understanding information

transmission via signal transduction networks and the corresponding cell-fate

decisions that are made on the basis of environmental cues [9–13]. In the context

of cell signalling, environmental information like the concentration of some nutri-

ent or cytokine corresponds to the input to the channel, S, and the output can be

quantified as some downstream molecular or phenotypic response, R [9]. The rel-

evant quantity for measuring information transmission in signalling networks is

the mutual information:

I(S; R) ;
X

s[S

X

r[R

p(s, r) log
p(s, r)

p(s)p(r)
,
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which is ultimately a non-parametric measure of the corre-

lation between the signal, S, and corresponding downstream

response, R. The mutual information is generally quantified

in units of bits, which arises from employing a base 2 logarithm

in the calculation [1,14]. Furthermore, estimation of the mutual

information requires only that the signal variable and the

response variable in question are measured; no underlying

mechanistic knowledge of the signalling network is necessary.

However, the mutual information depends on the input signal

distribution (i.e. p(S)) and thus does not necessarily reveal

the underlying information transmission capabilities of the

channel that are typically of primary interest. The relevant

quantity for characterizing the limits of information trans-

mission through some arbitrary signalling channel is the

channel capacity, C, which is defined as the supremum of the

mutual information over all possible probability distributions

of the signal:

C ; sup
pS(s)

I(S; R):

This quantity is a property of the channel itself, and it is the

upper limit on the amount of information that can be trans-

mitted through a channel [1,14]. Practically speaking, any

computational framework that aims to estimate C from exper-

imental data cannot try all possible input distributions. Firstly,

the data are always restricted to a finite set of input signals used

in the experiment (call this finite setS). The supremum above is

then estimated by ‘trying’ a finite set of possible probability dis-

tributions and choosing the one that maximizes the mutual

information [9,10,15] (call this finite set of probability distri-

butions P). Technically speaking, calculations of the ‘channel

capacity’ are thus just lower-bound estimates of C given

these two finite sets (which we have previously defined as

ĈS,P [15]). In this work, we follow the convention of calling

these estimates C (e.g. [9,10]), but the limitations of estimating

C from data should be kept in mind (see Methods).

To date, there have been a number of studies examining

the flow of information in intracellular signal transduction.

Levchenko and co-workers measured the information trans-

mitted in the form of nuclear-localized NF-kB given some

level of stimulation by TNF-a [9]. In this case, the response

was measured at a particular point in time corresponding to

the approximate peak in NF-kB localization at 30 min follow-

ing stimulation. Despite the relative importance of this

signalling network in governing cellular decisions, they ulti-

mately found that the amount of information that can be

transmitted by this network is less than 1 bit, meaning that

this particular signal–response pair is incapable of reliably

making even binary decisions. Other studies have explored

whether cells employ strategies to decrease the noise respon-

sible for these seemingly low values (e.g. using dynamical

trends as response to stimulus instead of a single point in

time, or fold-change detection instead of concentration/copy

number of chemical species) [10,16–19], or if noisy responses

can be useful for responses at the level of cellular populations

instead of individual cells [15]. While these investigations

have contributed greatly to our understanding of information

transmission in specific cases, a full understanding of the gen-

eral properties of information transmission in signalling

networks have not yet been realized. For instance, the majority

of signalling networks studied so far have estimated channel

capacities ranging between 0.5 and 2.5 bits of information at

the single-cell level [9,10,15,17–19]. It is currently unclear if
these values are indicative of all signalling networks or if

2.5 bits of information represents an intrinsic upper limit on

intracellular information transmission [15].

In this work, we have begun to characterize the limits of

information transmission in intracellular signal transduction in

order to develop a theoretical understanding of cellular

decision-making in the context of information theory. In particu-

lar, we start by focusing on atomistic signalling motifs (e.g.

ligand–receptor interactions) and then progress to slightly

larger networks that still achieve a dynamic steady state. In

order to do this, we developed a framework for consistent com-

parison of information transmission in distinct systems. In the

presence of only intrinsic biochemical noise, we find that

motifs like the ligand–receptor interaction or post-translational

modification cycles can encode more than 5 bits of information

with reasonable bounds on protein copy numbers and par-

ameters, which is far more than has ever been observed

experimentally. As networks become more complicated (i.e.

post-translational modification cycles coupled in, say, a kinase

cascade), information content degrades as it is transmitted

through the network. Nonetheless, cascades and other motifs

can encode well over 3 bits of information, again much higher

than has been observed experimentally. Our findings thus indi-

cate that low levels of information transmission may be strongly

influenced by ‘extrinsic noise’ in protein levels, as has been

suggested previously [10,15]. By providing comparative esti-

mates of the bounds of information transmission in these

simple signalling motifs, our work also provides an intuitive fra-

mework for future experiments aimed at characterizing cellular

decision-making processes that occur via larger, more complex

networks (e.g. Wnt- or IGF-induced signalling). Finally, since

this work examines specific signalling motifs, we also investigate

whether or not certain biochemical trade-offs regulate or limit

the flow of information through signalling networks in certain

circumstances (e.g. saturation of enzymes in a covalent modifi-

cation cycle tends to reduce information transmission). In

addition to providing a platform for future work into quantify-

ing information transmission in signalling networks, we expect

that this work is fundamental to understanding why and how

certain networks transmit specific levels of information.
2. Results
2.1. Framework
Prior approaches for data collection and estimation of infor-

mation theoretic quantities have not generally considered a

number of factors that can impact these estimates

[9,10,12,13,15], such as the range or density of the sampled

signal values. Since such factors can have a large impact on

the estimation of the mutual information or channel capacity,

any attempt to consistently compare different signalling net-

works must control for these effects. In order to systematically

investigate the upper limits of information transmission in

cells, we first developed a simple framework to control elements

of the sampling of signal values that could impact estimation of

information theoretic quantities.

In order to develop this framework, we considered a simple

model of a signalling network defined only by a sigmoid func-

tion, commonly known as the ‘Hill function’ in biochemistry:

R ¼ Rmin þ (Rmax � Rmin) � Sn

Sn þ Kn þ e,
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Figure 1. Characterizing the information in a simple signalling model. Error bars in this and subsequent figures denote 95% confidence intervals in the channel
capacity estimation procedure. (a) Transition zone dose – response data from the Hill function model sampled with 32 signal values for two different values of n but
identical levels of noise (s ¼ 0:1). (b) The data from panel (a) but with the signal values mapped to indices for comparative analysis. Note that while the
transition zone shrinks with increasing ultrasensitivity, normalization to the width of the transition zone reveals the similarity of the two datasets. (c) Channel
capacity of the simple model for two levels of noise as a function of a shifting range of signal values. In both cases, the maximum information transmission
occurs when DS ¼ 0. (d) Channel capacity as a function of the density of signal values sampled in the transition zone. The minimum signal density for optimal
information transmission depends on the noisiness of the channel. The entropy of the signal distribution is shown (black dotted line), denoting an upper bound to
the channel capacity. (Online version in colour.)
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where R and S denote response and signal, respectively, n con-

trols the ultrasensitivity of the response and K is the signal

value resulting in half-maximal response. This model also

includes a noise term, e, which is sampled from a Gaussian

distribution with mean m ¼ 0, and some chosen standard devi-

ation, s [15]. We chose this model to develop our framework

for a number of reasons beyond its simplicity. For one, this

model removes any assumptions about the underlying reaction

network motif, allowing us to vary parameters like ultrasensi-

tivity and the level of noise independently. Additionally, it

turns out that many signalling motifs produce steady-state

dose–response trends that are reminiscent of a sigmoid func-

tion, including phosphorylation cycles and kinase cascades

[20,21], so this model captures many of the key features that

will characterize the specific signalling motifs considered

below. We proceeded to numerically sample signal and

response pairs from this model; the resulting dose–response

data can be seen in figure 1a for distinct levels of ultrasensitiv-

ity. Figure 1b shows the same data, but transformed to use

indices for the signal in place of the raw values, where the mini-

mum signal value for some arbitrary signal–response dataset

is assigned an index of 0 and the maximum is assigned an

index of N � 1, where N is the number of unique signal

values sampled. This transformation conserves the underlying
correlation between the signal and response (and thus does not

alter mutual information calculations), but facilitates visual

comparison between distinct datasets. Using datasets gener-

ated from this model, we can examine how both the selection

of distinct ranges of signal values and the number of sampled

signal values impact estimates of the channel capacity. To cal-

culate those estimates, we used a software package that we

recently developed [15]. This package implements an approach

to estimating the channel capacity broadly similar to that

employed by Levchenko and co-workers [9]; further details

may be found in the Methods, in the electronic supplementary

material and in [15].

Since collection of data spanning all possible signal values

is obviously experimentally (and computationally) infeasible

for any signalling network, we first characterized how the esti-

mated channel capacity would change as the range of sampled

signal values changes. Intuitively, the majority of information

should be within what we term the increasing regime or the

transition zone of some arbitrary dose–response dataset [6].

In most sigmoidal dose–response curves, the range of signal

values corresponding to this transition zone classically spans

values bounded by Smin ¼ S10 and Smax ¼ S90, which are the

signal values resulting in 10% and 90% of the maximum

response, respectively, after subtracting the baseline response
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[21,22]. This eliminates a large range of signal space in which

the mean response is not changing significantly with signal

(figure 1a). We examined whether the choice of these bounds

(i.e. taking this range to be between S0:05 and S0:95 or S0:15

and S0:85) impacts the estimation of information transmission,

and found that the effects are minimal (see the electronic

supplementary material).

In the above analysis, we assumed that the set of sampled

signal values should be ‘centred’ within the transition zone.

To examine how shifting the window of signal space alters

the channel capacity, we first fixed the number of uniformly

sampled signal values to be 32. We defined DS to be the shift

between the centre of the transition zone (S50) and the

median sampled signal value. If DS ¼ 0, we are sampling all

32 points within the S10 to S90 transition zone; if DS ¼ �1,

then we have shifted the set of sampled points one unit to

the left of this transition zone. As expected, shifting the range

of sampled signal values away from the transition zone

causes a reduction in information transmission for models

exhibiting both low (s ¼ 0:1) and high (s ¼ 1) levels of noise

(figure 1c). This can be explained by the sigmoid shape of the

dose–response curve: when the mean signal value is much

less than or greater than K, mean responses from distinct

signal values become more similar. When sampling outside

of the transition zone, correlation, and thus information,

between signal and response is lost.

Next, we characterized how the number of signal values

uniformly sampled within the transition zone changes the

information transmission. Generally, the number of signal

values chosen to experimentally characterize a dose–response

relationship is essentially arbitrary [9,10,15], but this number

can greatly impact estimation of the channel capacity. Since

the mutual information (and by extension, the channel capacity)

can be written as a difference of entropies:

I(S; R) ¼ H(S)�H(SjR)

(where H(X) denotes the entropy of the random variable X
[14]), the entropy of the signal distribution, H(S), is clearly

upper bound on the mutual information. This limit can be

reached with a uniform signal distribution when the signal

values sampled produce pairwise disjoint response distri-

butions, resulting in perfect information transmission between

signal and response (figure 1d). As the density of sampled sig-

nals increases, however, overlap between the response

distributions from neighbouring signal values prevents the

mutual information from reaching the H(S) upper bound.

There is thus some sufficiently dense sampling of signal

values in the transition zone beyond which the mutual infor-

mation does not increase. In the case of our simple model,

sampling 32 signal values is sufficient for reliable channel

capacity estimation for a model with relatively low noise

(s ¼ 0:1) and sampling merely 8 is sufficient for a case with

higher levels of nose (s ¼ 1:0, figure 1d).

Using the above analysis as a guide, we can suggest

an approach that allows for a reliable and systematic charac-

terization of the limits on how much information can be

transmitted through some arbitrary signalling network. For

data collection, the first step is to estimate the signal value

resulting in half-maximal response and sample numerous

signal values around this value. From this dataset, a Hill

function (or other appropriate function) can be parametrized

through simple least-squares fitting techniques. This fit can

then be employed as a guide to determine the signal values
(Smin and Smax) that correspond to the bounds of the transition

region for the particular system under investigation. Given

those bounds, the next step involves increasing the set of

sampled signal values within the transition region that ‘satu-

rates’ the information transmission as seen in figure 1d. While

we employ this systematic approach to explore the information

theoretic properties of computational models of signalling

systems in this work, this general approach could easily be

applied in an experimental setting, allowing for more straight-

forward comparison of information theoretic estimates from

experimental data [9,10,15].
2.2. Information in binary interactions
We first focused on the simplest motif present in signal trans-

duction networks: a reversible binding interaction between

two molecules. Perhaps the most quintessential example of

this kind of interaction is between an extracellular ligand

and a transmembrane receptor. Such interactions generally

form the ‘first step’ of the cell signalling process that

leads to the downstream cellular response [9,10,15,23,24].

While binary interactions can transmit information at other

stages of signal transduction (i.e. through other types of

allosteric interactions, or nucleation of the formation of a

macromolecular complex [24]), we refer to this case as the

‘ligand–transmembrane receptor’ (LT) model (see figure 2a
for a schematic of this motif ). We proceeded to examine the

information transfer between the extracellular ligand concen-

tration/copy number (the signal) and the concentration/

copy number of the ligand-bound form of the receptor at

steady state (the response). The model itself is composed of

only two reactions: association and dissociation of the

ligand (L) and the transmembrane receptor (T ). In the first

case, we assume a fixed total number of receptor molecules

(denoted TT) and we vary the input signal by changing the

amount of total ligand available to bind the receptor (LT).

One benefit of this simple system is that we can analytically

determine the bounds of the transition zone (in terms of

total ligand concentration, LT) by solving the standard

binding isotherm for distinct levels of bound receptor:

Smin ; S10 ; LT,low ¼
0:1�Cmax(0:1�Cmax�KD�TT)

0:1 �Cmax�TT

and Smax ; S90 ; LT,high ¼
0:9�Cmax(0:9�Cmax�KD �TT)

0:9�Cmax �TT
,

where Cmax ; TT is the maximum possible number of

ligand–receptor complexes and KD is the dissociation

constant that characterizes the strength of the interaction.

We should note that this model is meant to represent a gen-

eric signalling motif, rather than a specific biological case in a

real signalling network, and so we did not attempt to parame-

trize the model using a specific example or by fitting the model

to a particular dataset. As with all stochastic reaction systems in

biology, the amount of ‘intrinsic noise’ in the LT model depends

critically on the total copy number of the proteins involved

[25–28]. We thus estimated the channel capacity for a variety

of values of TT ranging from 102 to 105 (figure 2). This corre-

sponds to reasonable range of copy numbers for biological

systems ranging from bacterial to yeast and mammalian cells

[24,29–32]. Keeping the KD constant for all of the values of TT

would mean that the level of saturation of the binding inter-

action would change dramatically as copy numbers of T
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Figure 2. (a) Schematic of the ‘ligand – transmembrane receptor’ (LT) motif. This represents a simple, reversible binary interaction between two molecules (in this
case, the ‘L’ and ‘T’ molecules). While we consider this a model of a ligand binding a receptor, this could represent any reversible binding interaction in cell
signalling. (b) The number of molecules in the system directly corresponds to the amount of noise in the response (which in this case is the fraction of
bound receptor). (c) Similar to figure 1, we observe ‘saturation’ of information with sufficiently densely sampled signal values that depends on the level of
noise in response. (d) The LT model that includes molecular turnover (i.e. synthesis and degradation of both L and T ) exhibits the same trends as in (a) but
the relative level of noise is higher. (e) A log-linear relationship exists between the number of molecules in the system (inversely proportional to the variability
in response) and the channel capacity. (Online version in colour.)
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increased. In other words, if we had a KD of, say, 100 nM, then

the binding interaction would be unsaturated for TT ¼ 102 and

very saturated for TT ¼ 105. To isolate the influence of copy

numbers on information flow, we thus varied the KD with TT;

for simplicity, we changed KD so that TT=KD ¼ 1 for all cases,

which is a reasonable first-order approximation for binding affi-

nities [31,33]. Assuming this interaction occurs in a yeast cell

volume [24,31,34], this would correspond to a KD of approxi-

mately 10�9 to 10�6 M, well within the range of biologically

observed KD values. While the parameters we employ thus

represent a reasonable scenario for a binary interaction in

biology, we leave detailed exploration of the relationship

between affinity and information flow in such a system to

future work. Further details of the parameters we used may

be found in the electronic supplementary material.

To facilitate construction and analysis of many models, we

used the rule-based modelling language Kappa [31,35–39] to
encode the model, and we simulated this system using the

associated exact stochastic simulator [37,40]. These simulators

use the standard ‘Doob–Gillespie’ approach to characterize

the intrinsic fluctuations due to random chemical events in

this kind of system [41]. A template rule-based model file

for this (and all of our models) is provided as electronic sup-

plementary material, and further details on the simulations

may be found in the Methods and electronic supplementary

material. We ran simulations for a variety of TT values, varying

LT as the signal and using the concentration of the LT complex

at steady state as the response. Since changing the labels of the

signal values does not alter the correlation between signal and

response (and thus has no impact on the mutual information),

we mapped the signal values (i.e. the discrete set of LT ’s used)

to a set of indices both for simpler labelling of the signal values

and visualization of the data. The resulting dose–response

curves are shown in figure 2b.
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Following the framework outlined above, we varied the

number of signal values sampled in the transition zone and

estimated the channel capacity for each dataset. As can be

seen in figure 2b, lower copy numbers of the receptor result

in higher levels of noise, which is a direct consequence of the

increase in stochastic effects at lower copy numbers. As in

our simple Hill function model of cell signalling, we found

that there is a ‘saturating’ density of signal values beyond

which there is no increase in the information transmitted,

and that this density depends on the variability in response

of the system (figure 2c). At these saturating densities we

observe strikingly high levels of information transmission

(about 6 bits) compared to values previously calculated from

experimental datasets [9,15].

The above model assumed that both the total number of

receptors and ligand molecules was fixed at a constant value.

In living systems, receptor and ligand numbers are generally

not fixed, but rather kept (relatively) constant through a combi-

nation of synthesis and degradation [15,24]. Since synthesis

and degradation are themselves inherently stochastic events,

fluctuations induced by molecular turnover could impact

information transfer in this system [25,26]. To account for

this, we added a simple set of ‘birth–death’ reactions to our

models, explicitly including both synthesis and degradation

of the ligand and the receptor. This led to a slightly more com-

plex, but still analytically tractable binding curve from which

we determined the signal bounds of the transition zone (see

the electronic supplementary material).

The resulting dose–response datasets can be seen in

figure 2d, and the signal density-dependent channel capacity

trends can be seen in the electronic supplementary material.

As anticipated, the additional variability introduced by

molecular turnover reduced information transmission. For

saturated signal density, the loss in information was approxi-

mately 0.5 bits regardless of the receptor copy number

(figure 2e). In general, the trends observed for the model with-

out synthesis and degradation were conserved in this model.

As implied in figure 2c, there is clearly a scaling relationship

between the channel capacity of the system and the number

of receptors. Indeed, we found a significant log-linear relation-

ship between the channel capacity (at saturating signal density)

and receptor copy number in the range of receptor numbers we

tested (figure 2e). In other words, regardless of the model in

question, it takes an increase of one order of magnitude in

receptor number to encode 0:5 bits more information in the

L�T interaction. Increases in information transmission, in

this case, are thus offset by considerable costs in terms of the

energy required to synthesize and maintain a large population

of receptor molecules at the cell surface.

Energy cost aside, using these results to extrapolate to

even larger numbers of receptors, we can estimate a hard

upper bound on information transmission in cells. Since the

ligand–receptor binding motif is the first step for virtually all

signalling networks, downstream sensing of that ligand con-

centration is essentially limited by the amount of information

encoded in this first step [9]. We estimate that for an interaction

with over 1 million receptors (an extreme upper bound, being

nearly an order of magnitude larger than what has been exper-

imentally realized for human signalling networks [42]), the

amount of information that can be transmitted is approxi-

mately 8 bits (or 7.5 bits with molecular turnover). While

this is unlikely to be realized in vivo since ligand–receptor

interactions are generally only a part of larger signalling
networks, this gives us a point of reference for understanding

the limitations of information transmission through even the

simplest signalling systems.
2.3. Information in futile cycles
We next focused on the standard chemical modification motif

for signalling: a covalent modification cycle (which we term

the ‘GK loop’ due to Goldbeter & Koshland’s pioneering

mathematical characterization of the cycle) [21]. This model’s

kinetics have been thoroughly characterized mathematically for

a number of operating regimes (e.g. saturated and unsaturated)

and we can use this broad understanding to our advantage

[11,43–45]. While the model encompasses any type of revers-

ible post-translational modification of a protein substrate, our

terminology will primarily reflect that of phosphorylation,

where K, P and W denote kinase, phosphatase and substrate,

respectively. A schematic of this model can be found in

figure 3a. In this system, the input signal that governs the

steady-sate level of substrate phosphorylation, and the value

we use as the signal for our information theory calculations,

is the ratio of maximum velocities of the enzymes [21,43–45]:

S ;
kcat,K � [KT]

kcat,P � [PT]
,

where kcat,E is the catalytic rate of a given enzyme E, and [ET] is

the concentration of that enzyme. While this ratio could be

varied by changing any of the variables above, changing the

copy numbers of K and P would change both the signal

itself and the relative influence of copy number on stochastic

effects. We thus varied the value of the signal S by changing

kcat,P, which also allowed us to more finely sample signal

space for highly ultrasensitive responses, and to more effec-

tively characterize the transition zone (see the electronic

supplementary material). For our information theoretic calcu-

lations, we take the response to be the concentration of

unbound, phosphorylated substrate [21,43,44].

While this model is only slightly more complex than the LT

model described above (with six total chemical species, rather

than three), it can exhibit much more variety in its dose–

response behaviour. In particular, as the substrate concentration

is increased relative to the KM’s of the enzymes, the steady-state

response of phosphorylated substrate becomes extremely ultra-

sensitive [21]. Our measure of enzyme saturation is KM=WT,

where KM is the Michaelis constant (taken to be equivalent

for both enzymes for simplicity) and WT is total substrate con-

centration. Traditionally, altering the saturation of an enzyme is

done by increasing the amount of total substrate relative to a

fixed KM, but, as we saw in the previous section, changes in

copy number correspond to changes in information trans-

mission. We thus varied saturation by varying the association

rate between the enzymes and the substrate (thus changing

KM). For every total copy number of substrate, we varied

KM=WT between 10�2 and 102 (i.e. saturated to not saturated).

By changing KM instead of WT we can independently explore

the effect of copy number and saturation on information flow

in the GK loop. As with the LT model, we focus here on a bio-

logically meaningful range of parameters, and not a specific

biological system; further details on the parameters for this

model may be found in the electronic supplementary material,

and an example model file is available as additional elec-

tronic supplementary material. We applied the methodology

described above to estimate the transition zone for any given
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value of WT and KM in this model: we first sampled the

response distributions for 20 points in signal space (i.e. 20 differ-

ent values of kcat,K � [KT]=kcat,P � [PT]), taking care to capture the

entire transition zone in this range of points, and then fit the

data to a Hill function to determine Smin and Smax. Finally, as

with the LT model, we varied the copy numbers of the
components in the system, while keeping the ratio of

components fixed: KT : PT : WT ¼ 1 : 1 : 100.

As we observed with the LT model, changing the copy

numbers of the signalling components altered the variability

of response to signal, and so we found a positive correlation

between increased copy number and increased channel
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capacity. We also see, similar to the behaviour in our initial Hill

function model, that increased ultrasensitivity (induced by

enzyme saturation) tightens the bounds of the transition zone.

If we again transform the discrete signal values to indices, we

can visually compare how response distributions differ for a

particular (relative) signal in the transition zone as seen in

figure 3b. Dose–response trends also emerge, revealing that

saturated enzymes produce increased noise in the response

for signal values that produce a half-maximal response. This,

in turn, reduces the amount of information present in the

system, from nearly 5.5 bits in an unsaturated cycle to just

above 3 bits (figure 3c).

In many realistic physiological contexts, total copy num-

bers are likely to be maintained by continued synthesis and

degradation of the components of the system (substrate,

kinase and phosphatase). Adding active synthesis and degra-

dation to the model generally increases variability in the

response (figure 3d) and decreases channel capacity (figure 3e),

as in the case of the LT model. In the GK loop, however,

the difference between unsaturated and saturated enzymes

becomes exaggerated when molecular turnover is included in

the model, from approximately 4 bits for the unsaturated

case to less than 1 bit for the saturated case (figure 3e). This is

due to the fact that the saturated response is ultrasensitive

(figure 3b), so small fluctuations in kinase copy number that

arise from synthesis and degradation can move the system

between the low and high response regimes when the signal

is near this transition. This generates massive fluctuations in

the level of phosphorylated protein (i.e. large variability in

the response distribution) and low channel capacities.

These findings reveal that, in certain parameter regimes, a

GK loop can encode 4–5 bits of information, much higher

than have been observed experimentally [9,15]. In different

parameter regimes, however, the GK loop encodes such little

information that binary decisions would be impossible to

make reliably. In addition to controlling the shape of the

dose–response curve, saturation can also control information

flow, allowing even a motif as simple as the GK loop to trans-

mit high levels of information when required (as in the case of,

say, chemotaxis) while amplifying noise when necessary (i.e. to

control the responses of cellular populations) [15].
2.4. Information in kinase cascades
While useful for gaining an understanding of basic informa-

tion transmission properties, the atomistic signalling motifs

described above are rarely present in isolation. On the contrary,

eukaryotic organisms in general, and metazoans in particular,

exhibit increasingly complex cellular signalling networks

[46,47]. One of the most conserved motifs in these more com-

plex networks is the kinase cascade, which is present in both

simple eukaryotes, such as yeast [24,48], and complex multicel-

lular organisms like humans [49]. To examine how more

complex networks transmit information, we constructed a set

of rule-based models that embody the core of a kinase cascade.

We have two similar, but distinct model types: one that employs

a scaffold protein and one that does not [50], termed the scaffold
and solution models, respectively. Both involve kinases which

are sequentially phosphorylated and phosphatases assigned

to dephosphorylate a specific kinase (to prevent saturation

due to substrate-sharing) [44] (figure 4a,b). We also varied the

number of successive kinases in both the scaffold and solution

models, and we refer to this number as the ‘depth’, F, of the
cascade. All kinetic parameters in these models are broadly

based on those found in the yeast MAPK kinase cascade. As a

result of using these parameters, the kinases are unsaturated

[24] in this model. Additional details on the model can be

found in the electronic supplementary material, and an

example rule-based model file is provided as additional

electronic supplementary material.

We then generated dose–response datasets to examine

the flow of information through these networks. In order to do

this, we examined the information transmission bet-

ween the signal and each kinase’s activity in the cascade:

C(S, Ki); 0 � i � F. With these data, we can begin to understand

how changes in the structure of the signalling network (i.e. the

presence or absence of a scaffold) and increases in network

size (i.e. increasing F) can influence information transmission.

We considered cascades of depth F ¼ 2, 3 and 4. The response

of various kinases in the cascade can occur in very different

regimes of input signal, particularly in the solution model,

where each successive kinase in the cascade responds to pro-

gressively smaller input signals (figure 4c) [44]. To deal with

this effect, we used two approaches to calculate the channel

capacity. In the first approach, we found the min and max signals

(Smin ,i and Smax ,i) for each kinase independently. Since the tran-

sition zone in this case varies with the kinase in question, we

call this the variable transition zone (VTZ) approach. The other

approach involves finding the transition zone bounds for the

final kinase, Smax ,F and Smin ,F, and using the resulting range of

signal values for calculating all the channel capacities for all

the intermediate kinases in the cascade. We call this the fixed

transition zone (FTZ) approach. This latter approach is of signifi-

cant interest since the final kinase in these types of cascades is

typically responsible directly or indirectly for initializing some

sort of transcriptional programme that will govern behavioural

changes in response to some stimulus [20,24].

From these dose–response datasets, we noticed a few key

differences between the two models. First, the copy number

of active final kinase for any given signal value is substantially

higher in the solution model than the scaffold model, reaching

approximately 90% activation at the upper bound of the tran-

sition zone (see the electronic supplementary material). This

is likely due to the increase in the number of reaction events

required for activation to occur in the scaffold model; activation

of a given kinase Ki requires independent binding of both Ki

and Ki�1 to the scaffold, whereas only one binding event is

needed in the solution model. Second, as mentioned above,

the response of each successive kinase to incoming signal

becomes increasingly sensitive to signal (i.e. the responses are

shifted to the left in figure 4c) in the solution model, and this

does not occur in the scaffold model (figure 4d). This means

that the sets of signals considered in the VTZ and FTZ approach

are quite different for the solution model, but are essentially

the same in the scaffold model. The fact that scaffold-based cas-

cades can exhibit similar responses for both the first and last

kinase in the cascade has been noted before, and has been

referred to as dose–response alignment or DoRA [20].

We also found significant differences between these models

in terms of the information transfer between the input signal

and the response of the various intermediate kinases for each

intermediate in the cascade when F ¼ 4 (figure 5). With one

exception, the information transmission at each stage in the

scaffold model is lower than the corresponding stage in the sol-

ution model for the VTZ approach. This is likely due to the

lower magnitude of KF response in the scaffold model (see
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the electronic supplementary material); stochastic effects in this

portion of response space would be much greater than that in

the solution model (note the larger amount of noise in the

dose–response curve in figure 4d versus 4c). We observe mono-

tonically decreasing channel capacities as information

progresses through the cascade in both models. Interestingly,

information transmission appears to drop more quickly but
levels off at deeper stages in the scaffold model, whereas the

decrease is more uniform in the solution model.

If we calculate channel capacities using the FTZ approach,

where the range of signals considered in the calculation is taken

based only on the response of the final kinase KF, we observe

further differences between the models. Because the transition

zones for the kinases in the cascade basically do not vary at
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all for the scaffold model (figure 4d), the FTZ approach gives

the same result as the VTZ result for this case (figure 5). By con-

trast, the channel capacity between the signal and early kinases

in the FTZ approach for the solution model is low, since the

transition zone for the final kinase aligns poorly with the

ideal transition zones for the upstream kinases (figure 4c).

Most signal values sampled for the upstream kinases are sig-

nificantly lower than the presumed half-maximal signal

value of the K1 and K2 intermediates’ dose–response curve,

and thus the channel capacity increases with the kinase’s pos-

ition in the cascade (figure 5b). At first glance, this may appear

to violate the data processing inequality, which states that

information content cannot be increased during transmission

through a channel. However, this is not the case in our

model, since the signal and observed intermediates do not

form a Markov chain [14].

It is important to note that the difference between the FTZ

and VTZ result for the solution model is more than just an arte-

fact of calculating channel capacities via simulation. In a

physiological context, a cell will be exposed to a particular

signal distribution, and that distribution may change depend-

ing on the situation faced by an organism. In this model, we

assume that only KF has a physiologically relevant activity,

but in a highly complex signalling network with high amounts

of crosstalk, like the networks found in human cells, each

kinase might act on other substrates or have other functions

[46,47]. In that case, each kinase in a solution cascade would

encode information from highly distinct regions of the signal

space, a property that could be leveraged physiologically.

While these results are specific to the parameter sets we

considered (e.g. unsaturated enzymes allow much greater infor-

mation transmission in cascades, as observed in the GK loop

model), our results from the scaffold and solution model

indicate that distinct configurations of signalling cascades’

underlying interaction networks can impact information trans-

mission. In general, these increasingly complex models of

kinase cascades still exhibit a capacity for far more effective

information transmission (greater than 4 bits) than have been

observed in experimental data of cellular responses to signal.
2.5. Information in more realistic networks
While the above sections focused on several motifs common to

cell signalling networks, we now focus on two cases in which

these motifs, or related sets of signalling events, are composed

into realistic information sensing and processing systems. The

first case we consider is the two-component signalling (TCS)

system from bacteria. These systems generally consist of two

proteins: a sensor histidine kinase (HK) and a response regula-

tor (RR) [29,51–53]. The HK is usually an integral membrane

protein that senses an incoming signal, while the RR is a tran-

scription factor that becomes active after phosphorylation by

the HK. While TCS systems are similar to the GK loops con-

sidered above, the underlying biochemistry is quite different:

in TCS, the HK autophosphorylates itself in response to an

incoming signal, then transfers that phosphoryl group to the

RR after binding it. TCS systems also lack independent phos-

phatase enzymes. Instead, the inactive (unphosphorylated)

HK serves as the phosphatase and dephosphorylates the

RR [29,51,53]. The HK thus acts as both kinase and phospha-

tase for its substrate, depending on its own activation state.

A schematic of TCS signalling is shown in figure 6a.
TCS represents an ideal model system for studying a realis-

tic case of information transfer in biology. These relatively

simple systems span the entirety of a cell signalling pathway,

from detection of the signal to the activation of a transcription

factor that will alter gene expression levels. There is also gener-

ally very little crosstalk between TCS pathways, simplifying

the analysis [29,47,52]. Finally, several TCS pairs have been

studied extensively using experimental techniques, making it

possible to use experimentally determined rate parameters

in our models [29,51,52,54]. To study this system, we adapted

a previously implemented system of differential equations [29]

to use rule-based stochastic simulations in order to introduce

realistic levels of intrinsic noise into the system, and varied

the existing kinetic parameters and protein copy numbers

within ranges appropriate for bacterial systems [29,54]. Further

information on parameters may be found in the electronic

supplementary material, and the rule-based model itself is

provided as additional electronic supplementary material.

In this model, we take the autophosphorylation rate of the

HK to be the input signal and the amount of unbound, phos-

phorylated RR as the response, consistent with the biology of

TCS signalling [29,51,52]. As expected, increasing protein

copy numbers significantly increases channel capacities

(figure 6b,c). Furthermore, increased saturation again induces

a decrease in information, due mainly to a reduction in the frac-

tion of RR that are phosphorylated as saturation increases [29].

Most notably, however, we can use the parameters that most

closely reflect existing experimental data and estimate the chan-

nel capacity of the HK–RR pair from which the original model

was derived: EnvZ and OmpR, respectively [51,54,55] (figure 6c,

red box). Notably, these values are higher than nearly all

experimentally characterized networks [9,15], showing that

individual bacterial cells can, at least in principle, obtain rela-

tively high quantities of information from extracellular stimuli.

We then turned our attention to a much more complex

eukaryotic interaction network: receptor tyrosine kinase signal-

ling cascades. One quintessential example is the epidermal

growth factor (EGF) signalling network whose activity depends

on ErbB2/HER transmembrane receptor dimerization. Owing

to the extensive crosstalk present in human networks, a com-

plete model of the EGF network does not exist [46,47]. Here,

we focus on a previously published rule-based model that

explored the early events of the EGF signalling networks

using exact stochastic simulation of all relevant chemical species

[30]. The kinetic parameters of this model were either directly

measured or determined through comparison to experimental

data by the original authors, and we did not alter those par-

ameters for our simulations. We adapted that model for use

with our information theory framework to characterize how

information about EGF concentration (which we took to be

the input signal) is transmitted through this network to the

responses of several key downstream signalling species. In par-

ticular, we focused on ligand-induced EGF receptor (EGFR)

dimerization, autophosphorylated EGFR (which is required

for recruitment of effector proteins), and active Sos (the down-

stream-most component in this model) (figure 5d). This model

contains nearly 200 000 EGFR molecules and we found that in

order to accurately estimate the information transmission, we

required a high signal density in the transition zone, sampling

256 distinct signal values from the transition zone in order to

reach a ‘saturated’ channel capacity estimation. The model

file we used for these simulations is provided as additional

electronic supplementary material.
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We observed high information transfer among the initial

steps of the cascade: EGFR dimerization in response to EGF

stimulation produced nearly 6.5 bits of information, close to

the upper bound estimated from the LT model. From this

point, the stochasticity of the interactions and lower copy

number of other components, such as Sos, reduces the infor-

mation transmission (figure 6d,e). However, information

transmission through the entirety of the network was greater
than 3 bits. This is quite high compared to experimentally

determined values; however, it is important to note that Sos

recruitment is by no means the final step of the cascade in
vivo. Sos is then responsible for activating the MAPK pathway

in metazoan signalling, and we have seen that information

transfer can vary significantly, depending on the kinetics

of the kinase in question (figure 3c,e). It is enough, however,

to see that even with a model containing moderate
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signalling complexity (over 350 signalling species as opposed

to 3 in the LT model or 6 in the GK model), reliable information

transmission is possible.
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3. Discussion
This work begins to address a fundamental question in the

study of signal transduction and cellular decision-making:

why do signalling networks transmit specific amounts of infor-

mation? Here, we focused on characterizing the intrinsic limits

of information transmission through signalling networks with

the goal of providing context for information theoretic values

estimated from experimental data. We found that models of

simple signalling motifs, as well as larger, more realistic

networks, are capable of transmitting substantially higher

amounts of information than has been estimated experimen-

tally; to date, the highest information transmission estimated

for individual signalling networks in eukaryotic cells (that

we are aware of) is less than 2.5 bits for measurements made

at single time points [9,10,15,17–19].

There are a few possibilities as to why this might be the case.

First, it is possible that the specific networks that have been

examined experimentally using information theory do not

require high levels of information transmission in order to

achieve their intended function, and thus did not evolve to

exist near the intrisic limits characterized here. This raises

the possibility that other networks exist that transmit much

more information than has been previously characterized.

We would predict that networks with the highest information

transmission will be for networks that control a continuous

response variable (i.e. expression of a set of genes at a specific

level, or direction of movement in chemotaxis) or those that con-

trol cell-fate decisions with high entropy (i.e. the differentiation

of a pluripotent stem cell into a variety of cell fates) [15]. Second,

the observed low levels of information in in vivo signal trans-

duction could be a reflection of ‘extrinsic noise’ in a cell

population [23,25,26]. The models we considered only included

the intrinsic randomness of biochemical reaction events; how-

ever, other environmental factors can contribute to overall

variability in response to signal, including noise in the signal

distribution itself [15]. Finally, we showed in prior work that

low information transmission (even values below 1 bit) can be

useful when transmitting information to cellular populations is

paramount. We found that there exists a fundamental trade-off

between information transmission to single cells and cellular

populations, and that there is some optimal level of noise to

maximize population-level information transmission given cer-

tain conditions [15]. Regardless of the reason for low observed

information transmission experimentally, we were able to exam-

ine how common signalling motifs, like post-translational

modification cycles, could be potential mechanisms for the

regulation of information transmission (figure 3).

In order to compare information transmission values from

data obtained by simulation of multiple signalling motifs, we

introduced a novel framework for the consistent application

of information theoretic concepts to systems biology. While

quantities such as the mutual information do not depend on

the underlying structure of the reaction network between

signal and response, they do depend on how the joint

signal–response distribution is characterized (figure 1), mean-

ing that dose–response data from distinct networks must be

obtained using a standard methodology. The framework
developed here can be applied both to simulated and exper-

imental datasets and is crucial to make relevant comparisons

of estimated values, such as those from different cell types or

cell lines, organisms, or even networks with recombinant pro-

teins (which could prove to be useful in the construction of de

novo networks via synthetic biology). The results described

above are an excellent example of the utility of this framework;

we were able to characterize the upper limits of information

transmission in networks of varying size and interconnectivity

through stochastic simulation of rule-based models. The chan-

nel capacities for the initial atomistic signalling motif models

that we examined (binary, physical interaction between macro-

molecules and chemical modification of macromolecules via

enzymes) are generally integrated into more complex network

architectures and can therefore provide perspective for analysis

of larger networks, which are common in metazoan cells. For

example, since examination of the covalent modification

cycle revealed that enzyme saturation reduces information

transmission, we restricted our analysis of the larger cascade

models (which employ a variant of this motif) to those with

unsaturated enzymes since we were primarily concerned

with the upper limits of information transmission. In general,

this framework provides a basis for understanding and com-

paring how various features (e.g. molecular copy numbers,

kinetic parameters) influence the quantity of information trans-

mitted through signalling networks, and it can serve as a

standard for future application of information theory to quanti-

fication of information in signal transduction from both models

and experiments.

We expect that this framework is just a starting point

for broader application of information theory to systems

biology. In particular, fully understanding how information

flows through a network will likely require an explicit consider-

ation of dynamics. While a useful starting point, quantities like

the mutual information represent levels of information at par-

ticular points in time. In this work, we focused on networks

whose components exhibited distinct steady-state responses;

however the response of some signalling networks, such as

those that exhibit perfect adaptation, are not well characterized

by steady-state response [56]. It is clear that the framework pre-

sented here must be further developed, since cellular decision-

making rarely waits until steady state is reached (at least on the

molecular level) [20]. Previous examples of information theory

applied to in vivo signalling networks circumvented this

problem by defining a particular point in time to measure

response, a logical solution when there exists some particular

time at which an interesting event occurs, such as peak nuclear

NF-kB localization [9]. Another possibility is to define the

response as a set of multiple time points from a dynamical

response; however it is currently unclear if any molecular mech-

anisms would allow cells to both remember the previous

activation state of a protein and then integrate that memory

with the current activation level in order to actually extract

that information [10,17]. More complex quantities, such as the

transfer entropy [2,7], have been derived to examine how infor-

mation flows through a system over time, eliminating the need

for making arbitrary choices about when to take measurements.

Adapting these quantities for use with high-resolution time

course data will undoubtedly elucidate additional principles

of information flow in signal transduction [10,17]. Extracellular

signals and their corresponding cellular responses lie at the

core of what cells have evolved to do: adapt to changing

environmental conditions by altering their phenotype.
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Ultimately, we expect that development and application of sys-

tematic approaches such as the one presented here will form the

basis for what becomes a rigorous theory of information

transmission through signalling networks.
lsocietypublishing.org
Interface

Focus
8:20180039
4. Methods
4.1. Estimating the channel capacity
Our approach to calculating the mutual information and channel

capacity is based loosely on the approach developed in [9]. Briefly,

our algorithm uses resampling techniques to deal with the pro-

blem that calculations using finite datasets tend to overestimate
the mutual information [3,8,57]. We first define a number of bins

in signal and response space and construct a contingency table

(i.e. a two-dimensional histogram) to estimate the joint

distribution of signal and response (p(S, R)). We then use this con-

tingency table to calculate the mutual information. We perform

this procedure for resamplings of the data with fewer and fewer

total data points, and extrapolate the dependency between the

size of the dataset and the mutual information to estimate what

the mutual information would be if the dataset were infinite

in size. We then iterate over the number of bins used for the calcu-

lation, since the number of bins has a large impact on the estimate

of the mutual information. We control for artificial inflation of the

estimate due to high numbers of bins by calculating the mutual

information for a randomized dataset given some number of

bins and checking to see if the information is not significantly

different from 0. Finally, to estimate the channel capacity, we

weight the signal distribution of the data using a large set of unim-

odal and bimodal probability distributions, and find the signal

distribution that produces the maximal mutual information.

Further details of this approach may be found in the electronic sup-

plementary material, and an even more extensive description of

the approach can be found in [15]. The software we developed is

freely available as an open-source project on Github (https://

github.com/ryants/EstCC).

4.2. Model definition and simulation
4.2.1. Rule-based modelling
We used both the Kappa [36] and BioNetGen [39] rule-based

modelling languages for model construction. Generally speaking,

rule-based frameworks allow one to encode human- and

machine-readable interactions between molecular species in the

cell in the form of rules, where a rule may specify numerous dis-

tinct reactions between chemical species [31,35–39]. Rule-based
modelling differs from traditional ODE-based approaches by pre-

venting the need to a priori enumerate all possible chemical

species when defining the model. The models generated are also

generally easier to share and modify, and allow for the application

of specific simulation and analysis tools that leverage the syntactic

nature of the rules themselves [35–39,58,59]. In addition, numerous

peripheral software packages have been developed that use rule-

based formalisms either as an underlying engine with convenient

bindings for other languages (e.g. PySB [60]) or providing services

complementary to the modelling itself (e.g. translation [61] or fitting

[62,63]). These languages are embedded within software suites that

contain specific methods for exact stochastic simulation of chemical

kinetics based on Gillespie’s algorithm [37,40,41,64], allowing us to

easily incorporate the intrinsic noise of event-based biochemical

reactions into our information theoretic calculations.

We have provided template models, written in the Kappa

language (v. 3), for all signalling motifs and systems considered

here as electronic supplementary material.
4.2.2. Model parametrization
The scope of this work is to quantify the capacity for common net-

work motifs to enable cells to respond to their environment, and to

provide context for future work in specific signalling networks.

Thus the models used in this work (with the exceptions of the

two-component signalling and EGFR models) contain parameters

that are not specific to some signalling system in a particular organ-

ism, but that are representative of classes of signalling networks

(e.g. covalent modification cycles or MAPK-like kinase cascades).

We use estimates derived from various other literature sources to

parametrize the models, often rounding to the nearest order of

magnitude. We thus did not parametrize the majority of our

models with respect to specific biological datasets. We leave an

in-depth analysis of the parameter sensitivity of information

flow within these models to future work.

Information on the parameter values can be found throughout

the main and electronic supplementary material text. Default

values for the parameters can be found in the rule files themselves.
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