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We present a novel approach to the study of epidemics on networks as thermo-

dynamic phenomena, quantifying the thermodynamic efficiency of contagions,

considered as distributed computational processes. Modelling SIS dynamics on

a contact network statistical-mechanically, we follow the maximum entropy

(MaxEnt) principle to obtain steady-state distributions and derive, under certain

assumptions, relevant thermodynamic quantities both analytically and numeri-

cally. In particular, we obtain closed-form solutions for some cases, while

interpreting key epidemic variables, such as the reproductive ratio R0 of a SIS

model, in a statistical mechanical setting. On the other hand, we consider con-

figuration and free entropy, as well as the Fisher information, in the

epidemiological context. This allowed us to identify criticality and distinct

phases of epidemic processes. For each of the considered thermodynamic quan-

tities, we compare the analytical solutions informed by the MaxEnt principle

with the numerical estimates for SIS epidemics simulated on Watts–Strogatz

random graphs.
1. Introduction
Various real-world crises and disruptive events, such as epidemics, cascading

technological failures, ecological and economic tipping points, can be quantitat-

ively studied as critical phenomena, so that the corresponding critical

thresholds can be identified, predicted and used in planning suitable crisis

interventions (e.g. vaccinations and quarantine, power-grid safety margins, cli-

mate change policies). Modelling critical dynamics typically involves analysis

of sensitivities to initial conditions and the overall spatio-temporal behaviour

at the system level. Within physics, such behaviour is characterized in terms

of the control and order parameters, allowing the modellers to investigate

phase transitions. A canonical example is a second-order phase transition in a

ferromagnetic system, which separates two qualitatively different phases: a dis-

ordered paramagnetic phase characterized by the absence of net magnetization

in the high-temperature regime, and the ordered ferromagnetic phase with a net

magnetization in the low-temperature regime. Importantly, the change between

these phases is sudden and is driven by varying the control parameter (temp-

erature). The resulting magnetization outcome is traced by the order parameter:

the net magnetization vector which quantifies the emerged preferred direction

in space. Formally, a phase transition manifests itself as ‘a sharp change in the

properties (state) of a substance (system)’ occurring when ‘there is a singularity

in the free energy or one of its derivatives’ [1].

Like many other fields of research, epidemiology has also been drawing on

the results obtained within statistical physics in terms of critical thresholds and

phase transitions. For example, several studies have successfully modelled

epidemic spread as a specific example of percolation in networks [2–6].

Under certain (fairly strong) assumptions, the problem of when an epidemic
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takes place becomes equivalent to a standard percolation pro-

blem on a graph, whose objective is to compute the fraction

of sites that must be occupied before the formation of a

‘giant component’ of connected sites. The size of such giant

component scales extensively with the total number of

sites [3], demonstrating scale-invariance, a well-known

feature observed during critical regimes.

A critical threshold that is often studied in epidemiology

is the epidemic threshold defined with respect to the patho-

gen’s reproductive ratio (R0), that is, the number of

secondary infections generated on average, within a suscep-

tible population, by an infected host. The well-known result

is that R0 has to exceed one for an epidemic outbreak to

occur. As pointed out in many studies, this prediction strictly

holds only in deterministic models with infinite popu-

lation [7]. The underlying contact network also strongly

influences the epidemic threshold and its predictions [8,9].

Furthermore, in finite populations, due to finite-size esti-

mation challenges, an accurate identification of the epidemic

threshold is problematic, and instead, an epidemic (critical)

interval may be considered [10]. Following [11,12], the

study of Erten et al. [10] applied an information-theoretic

model of distributed computation to a homogeneous net-

work. It identified (i) the lower bound of the interval, on

the ordered side of the transition, by the peak of the active

information storage, quantifying the ‘memory’ of the compu-

tation during a contagion, and (ii) the upper bound of the

interval, on the disordered side of criticality, with the maximum

of the transfer entropy, quantifying the ‘communication’ aspect

of the contagion [10].

Identifying and detecting critical regimes of a contagion

remains a subject of a vigorous research. The study of Hart-

field & Alizon [7] contrasted the critical community size,

defined as the total population size needed to sustain an

outbreak once it has appeared, with the outbreak threshold

(T0), computed at the onset of an outbreak, and measuring

how many infected individuals are ‘needed to ensure that

an outbreak is very unlikely to go extinct by drift’.

Under some circumstances (such as pathogen mutations or

changes in the host population), even a maladapted pathogen

with R0 below but close to 1 still has a potential for an

outbreak, when the changes cause its R0 to exceed 1. This situ-

ation has been considered for new pathogens emerging by

crossing the species barrier [13]. The sudden changes in the

disease spread are obviously similar to critical dynamics and

have been studied in this context, in an attempt to predict,

and hopefully prevent, the emergence of criticality [14].

Again, the underlying network topology and its mixing

patterns can substantially affect the disease emergence [15].

In summary, some of the present challenges relate to reliably

detecting critical thresholds in finite-size systems, within com-

plex network topologies, and dealing with distributed data

generated by nonlinear dynamics.

A recent thermodynamics-based framework that has suc-

cessfully dealt with such challenges in several abstract

settings uses Fisher information, a measure that is directly

connected to the rate of change of the corresponding order

parameters [16–19]. These studies accurately identified

phase transitions in the global spatio-temporal behaviour

via an estimation of Fisher information for a number of net-

work topologies. Critical thresholds have been pinpointed

when the observed variables were most sensitive to the con-

trol parameters, resulting in divergence of Fisher information
in infinite systems and its maximization in finite-size systems.

Crucially, this method relies on estimation of underlying

probability densities and, thus, is applicable even when the

corresponding order parameter is unknown or cumbersome

to compute.

The approach based on Fisher information has not, to

date, been applied in an epidemiological setting, and prom-

ises to strengthen the prediction accuracy of epidemic

thresholds in complex scenarios, involving heterogeneous

network topologies, large-scale distributed data and probable

emerging pathogens. It may also enable derivations of closed-

form solutions in specific cases. To fully exploit its potential,

however, the framework needs to be well grounded in a stat-

istical-mechanical setting and complemented with rigorous

methods for the suitable estimation of probability densities.

Typically, in statistical mechanics, the model of the sys-

tems is specified in full by providing the microscopic

coupling constants between all components of the systems.

Once the model is given, the challenge is to infer the emer-

ging macroscopic properties of the ensemble using analytic

and computational methods. An inverse problem, that is

the determination of the microscopic coupling constants

from some known macroscopic constraints is solved using

the maximum entropy (MaxEnt) principle. The MaxEnt prin-

ciple states that the least biased model is obtained by

maximizing the entropy of the distribution while at the

same time respecting the imposed constraints.

The MaxEnt principle has been applied to analyse activity

in various complex networks including ecological networks,

networks of neurons [20], biochemical and genetic networks

and flocking birds [21]. Typically, the solution of the variational

MaxEnt problem relies on detailed computer simulations. Even

in these typically hard cases, reasonable approximations can

simplify the problem and lead to closed-form solutions.

Closed-form solutions reveal strong analogies between macro-

scopic systems such as flocks of birds and well understood

statistically mechanical models such as the Ising model.

These analogies elucidate the statistical mechanical origins of

non-trivial collective phenomena, such as phase transitions,

in complex systems.

Applications of the MaxEnt principle in computational

epidemiology has so far been limited. The MaxEnt prin-

ciple has been applied to stochastic SIS and SIR dynamic

models, using real data to fit probability distributions of

various epidemic characteristics such as time to infection,

number of recovered individuals, number of infected indi-

viduals at a specific time interval [0, t], etc. [22]. Going

beyond this goal, we aim to apply the MaxEnt principle

in construction of statistical mechanical models of epi-

demics enabling a statistical mechanical analysis of

epidemic phase transitions.

The state space of the individual nodes on an SIS epidemic

network is binary since the nodes can be either infected or sus-

ceptible. This is reminiscent of the Ising model, where the state

of each node is also binary (either up or down). However,

unlike the Ising model, the contact interactions in epidemic

networks are directional. An infected individual has the

capacity to flip the state of a susceptible neighbour while the

susceptible individual has no effect on the infected neighbour.

This directionality of interactions poses a novel challenge to

the application of the MaxEnt method.

In this paper, we apply the MaxEnt principle to derive a

statistical mechanical model of a contact network undergoing
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SIS dynamics. We obtain an analytic solution for a simple

case, characterizing an initial (seeding) state of an outbreak.

In order to arrive at analytic models for more general cases,

we propose a simplification that assumes independence

between the number of infected individuals and the

number of infective links. We assess the impact of this

assumption by comparing the results of the MaxEnt model

of SIS process on Watts–Strogatz network [23] to the results

generated by computer simulations of the underlying

dynamics. The derived MaxEnt models are used to evaluate

quantities such as entropy, free energy and Fisher infor-

mation in an epidemiological context. The statistical

mechanical setting is used to provide a novel interpretation

of epidemic thresholds. We specifically study the thermodyn-

amic efficiency of contagion, considered as a distributed

computational process. The thermodynamics of computation

have recently been investigated in various contexts [18,24–28],

but have not been applied to studies of epidemics.

The paper is structured as follows. In Background, we

describe relevant epidemic and network models, while Tech-

nical preliminaries outline the MaxEnt principle and an

approach to criticality analysis based on Fisher information.

We then develop our framework applying the MaxEnt prin-

ciple to an SIS epidemic model, including a closed-form

solution derived in specific cases. This is followed by compu-

tational results demonstrating criticality in statistical

mechanical terms.
2. Background
2.1. Models of epidemics
The SIS model of epidemics captures the dynamics of dis-

eases which are transmitted by individual to individual

contact. Additionally, it refers to a type of disease in which

individuals can be infected multiple times throughout their

lives without developing long-lasting immunity. Examples

of diseases following SIS dynamics are rotaviruses, sexually

transmitted infections and bacterial infections [29]. The SIS

model of epidemics refers both to a differential equation

model and a discrete time update process [30]. In the case

of the differential equation model of the SIS dynamics, the

progression of the disease within the population is described

by a pair of coupled ordinary differential equations:

dS
dt
¼ gI � bIS ð2:1Þ

and

dI
dt
¼ bIS� gI, ð2:2Þ

where I is the number of infected individuals, S is the number

of susceptible individuals, the parameter b is the trans-

mission rate and the parameter g is the recovery rate [29].

This model assumes that all individuals within the host

population interact with equal probability [29] and is often

referred to as the mass action model of infection.

As the population is generally considered in isolation, it

is also common to consider a single differential equation,

normalizing the population:

dI
dt
¼ bI(1� I)� gI ð2:3Þ
and

Sþ I ¼ 1: ð2:4Þ

A well-known result of Kermack & McKendrick [31] shows

that if the initial fraction of susceptibles is less than g/b,

dI/dt , 0, the infection dies out. This is referred to as the

‘threshold phenomenon’. This result can also be interpreted

as requiring b/g ¼ R0, commonly known as the basic repro-

ductive ratio, to be large enough that the initial infected

population increases with time. In a more general sense, the

reproductive ratio R0 is defined as ‘A measure of the

number of infections produced, on average, by an infected

individual in the early stages of an epidemic when virtually

all contacts are susceptible’ [32]. R0 is frequently used in

order to broadly quantify the transmissibility of an epidemic

strain; in general, epidemics emerge when R0 . 1 [33].
2.2. Network models
Original approaches have assumed that interactions occur

completely at random within the population [31]. It has

since been argued that because the ‘structure of a contact net-

work can have a profound effect on the dynamics of infectious

disease’ [34] it is imperative to use network models as opposed

to the more traditional mass action models [31]. Thus net-

works have become a standard model for studying the

spread of disease, quantifying interactions between individuals

or populations of individuals [2,4,8,30,35,36].

There are a number of networks which are commonly

investigated within the epidemiological literature. The

most commonly studied have been random networks [35],

lattices [37], scale-free networks [8] and small-world

networks [30].

Unlike the mass action mixing approach, network-based

approaches define a neighbourhood for each individual in

which they can infect others and be infected by others.

Importantly, in some cases, this representation yields a

closed-form solution; for example, the study of [4] shows

that a large class of the SIR models of epidemic disease can

be solved exactly on networks of various kinds using a com-

bination of percolation models and generating function

methods. Another key distinguishing result in the study of

epidemics on networks shows that in some cases there is no

critical threshold [8], with disease propagating regardless of

the probability of infection [8]. As such, for network

models there is no general result analogous to R0 ¼ 1 from

differential equations models.

Of special importance to studies of contagion processes is

the class of small-world networks introduced by Watts &

Strogatz [23]. The algorithm constructing a small-world net-

work essentially interpolates between regular and random

networks, beginning with a lattice, and rewiring edges with

a given probability. The small-world networks are character-

ized by a high clustering coefficient and small average path

length. The clustering coefficient considers each vertex of

the graph individually, and compares the number of edges

between neighbours to a complete graph as a ratio, while

the average path length is the average minimum distance

between two vertices. The Watts–Strogatz model [23] pro-

duces a graph with a small average path length, and a

resulting clustering coefficient which is significantly higher

than the corresponding coefficient of an Erdos–Renyi

random graph model [38]. Importantly, networks of different
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topologies may be considered as small-world networks as

long as they are characterized by a relatively high clustering

coefficient and a relatively low average path length. These

features are of particular relevance to studies of contagion

in many real-world scenarios. The degree distribution for a

Watts–Strogatz network, interpolating between the ring

lattice and a random graph, is similar to the distribution of

a random graph but has a pronounced peak centred on the

mean degree, decaying exponentially for degrees deviating

from the mean [39].

Typically in SIS discrete time update models, the infection

parameter n defines a per contact (edge) per time-step

probability of transmission. That is, given an individual xi

in a neighbourhood with r infected individuals, the per

time-step probability of infection P(xi) [30] is

P(xi) ¼ 1� (1� n)r: ð2:5Þ

The parameter n is analogous to the parameter b in the differ-

ential equations model; however, there is a subtle difference

in interpretation: b is a continuous rate of transmission

while n is a discrete probability of transmission per time

step. As the update scheme is parallel, individuals all

change states at the same time, i.e. recovery events from the

current time step cannot affect infection on the same time

step and vice versa. Given our objective of studying criticality

in a complex distributed setting via the MaxEnt principle, the

various network topologies provide a natural constraint on

the testable information with respect to interactions within

the population. This constraint imposed by heterogeneous

networks presents the key challenge in obtaining a closed-

form solution, unlike approaches based on mean field

approximations.
3. Technical preliminaries
3.1. The maximum entropy method
Often, we are faced with the problem of determining the least

biased probability distribution, consistent with a set of

specific constraints on the average values of measurable

quantities. These may, for example, represent relevant con-

served quantities in a thermodynamic system, or generic

constraints in any probabilistic system of multinomial form

(i.e. a system composed of a number of distinguishable enti-

ties allocated to equiprobable distinguishable categories) [40].

In the most general setting, this problem can be resolved by

extracting the highest amount of (Shannon) information

available. As pointed out by Jaynes, ‘in making inferences

on the basis of partial information we must use that prob-

ability distribution which has maximal entropy subject to

whatever is known. This is the only unbiased assignment

we can make’ [41].

The Shannon entropy S of a discrete random variable A
with state space A ¼ {s1, s2, s3, . . . }, the set of all possible

states, is given by [42]

S(A) ¼
X
s[A
�P(s) log (P(s)), ð3:1Þ

where P(s) is the probability that the system is in the state s.

In order to extract the least biased probability distri-

bution, one typically maximizes the Shannon entropy (3.1),

subject to the normalization and K moment constraints on

the system, shaped by some functions fk(s) with measurable
expectations kfkl, for k ¼ 1, . . ., K:X
s[A

P(s) ¼ 1 ð3:2Þ

and X
s[A

P(s)fk(s) ¼ hfki: ð3:3Þ

In practice, the problem is an optimization problem which

can be solved using the method of Lagrange multipliers.

Using the method of Lagrange multipliers, the form of the

distribution which maximizes the entropy is

P(s) ¼ exp �l0 �
XK

k¼1

lkfk(s)

 !
, ð3:4Þ

where l;fl1, . . ., lk, . . ., lKg is the set of Lagrange multipliers

corresponding to K constraints and l0 is the ‘Massieu function’,

the Lagrange multiplier corresponding to the normalization

constraint. Introducing the generalized partition function

Z(l) ¼ exp l0 yields

P(s) ¼ Z(l)�1 exp �
XK

k¼1

lkfk(s)

 !
: ð3:5Þ

3.2. Fisher information
The Fisher information is a measure of the information that

an observable random variable X contains about a set of

unknown parameters l, defined as

FX(l) ¼ E
@

@l
log P(x; l)

� �2
" #

, ð3:6Þ

which for continuous random variables is

FX(l) ¼
ð

@

@l
log P(x; l)

� �2

P(x; l) dx, ð3:7Þ

where P(x; l) is the probability density function of X con-

ditional on the parameters l.

For a joint random variable, the Fisher information has a

chain rule decomposition [43] such that if X and Y are jointly

distributed random variables,

FX,Y(l) ¼ FX(l)þ FY jX(l): ð3:8Þ

If X and Y are independent random variables, the distri-

bution of Y given X is the same as the distribution of Y,

and therefore, FYj X ¼ FY implying that

FX,Y(l) ¼ FX(l)þ FY(l): ð3:9Þ

Often, it is important to reparametrize the Fisher infor-

mation [44]:

FX(m) ¼ d l

dm

� �2

FX(l(m)), ð3:10Þ

where l and m are both parameterizations of X, and l is a

continuously differentiable function of m.

For many distributions the Fisher information is known

exactly, and in particular, we shall use the closed form

representation for the Fisher information of a Binomial(n, q)

random variable x:

Fx(q) ¼ n
q(1� q)

: ð3:11Þ
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3.3. Thermodynamic efficiency of computation
In a statistical mechanical setting, for thermodynamic vari-

ables l, the solutions obtained according to the MaxEnt

principle are characterized by probability densities in the

form of the Gibbs measure:

P(sjl) ¼ 1

Z(l)
e�bH(s, l) ¼ 1

Z(l)
e�
P

k
lk fk(s), ð3:12Þ

where the state functions fk(s) are defined over the configur-

ation space, b ¼ 1/kBT is the inverse temperature T (kB is the

Boltzmann constant), and the Hamiltonian H(s, l) defines

the total energy at state s [45,46]. In other words,

equation (3.12) expresses the state probability in terms of

the state energy.

The Gibbs free energy of such system is given by

G(T, lm) ¼ U(S, fm)� TS� fmlm, ð3:13Þ

where U is the internal energy of the system, S is the configur-

ation entropy and fm is an order parameter. In such a setting,

the Fisher information quantifies the size of the fluctuations

around equilibrium in the collective variables fm and fn, and

is proportional to the curvature of the free entropy c ¼

ln Z ¼ 2bG [45–48]:

Fmn(l) ¼ h(Xm(x)� hXmi)(Xn(x)� hXni)i ¼
@2c

@lm@ln
: ð3:14Þ

It also identifies phase transitions and the corresponding

critical thresholds [16], being proportional to the derivatives

of the corresponding order parameters with respect to the

thermodynamic variables l [17]:

Fmn(l) ¼ b
@fm

@ln
: ð3:15Þ

Furthermore, under a quasi-static protocol, the Fisher infor-

mation can be interpreted as the generalized work Wgen [18]:

F(l) ¼ �
d 2hbWgeni

dl2
: ð3:16Þ

Using equation (3.16), the rate of expended work can be

expressed as follows:

dhbWgeni
d n

¼ �
ðl
l�

F(l0) dl0, ð3:17Þ

where l* is the zero-response point for which small changes

in the control parameter incur no work:

d hbWgeni
d l

����
l¼l�
¼ 0: ð3:18Þ

Having determined, via Fisher information, the rate of

expended work carried out to generate order within the

system, one may define the thermodynamic efficiency of

computation [18] as ‘the reduction in uncertainty (i.e. the

increase in order) from an expenditure of work given a

value of the control parameter’:

h ¼ �dS=dl

dhbWgeni=dl
: ð3:19Þ

In this work, we shall extend the notion of the thermodynamic

efficiency of computation to contagion processes.
4. Maximum entropy framework for epidemics
4.1. A network model of SIS epidemic
We will consider a graph G(V, E) with vertex set V and edge

set E. The nodes i [ V ¼ {1, 2, 3 . . . } represent individuals in

the population taking one of two states: susceptible or

infected. The state of vertex i will be denoted si and will

take value 0 if the individual is susceptible or 1 if the individ-

ual is infected. The edges (i, j) [ E represent connections

between two individuals i and j along which infection can

spread. The state of the entire system, s will be expressed

as the vector comprising the states of all individuals. That

is, the ith element of s is si. We will denote the set of all

states s as A.

The epidemic dynamics which we will investigate within

the MaxEnt framework are SIS epidemics spreading on a

network. The analytical results will be contrasted with

the simulation results obtained by stochastic discrete-time

parallel-update SIS model introduced by [30]. Similar to the

deterministic SIS model, recovery of individuals in this

model occurs independently of their neighbours, with a

constant probability of recovery, denoted d. This is ana-

logous to the parameter g from the SIS differential

equation model, with the difference being that g rep-

resents a rate, whereas d is a probability per discrete

time step.

We aim to investigate the MaxEnt distribution corre-

sponding to a SIS epidemic spreading on a graph G(V, E),

constrained by the testable information formed by the

averages of two variables in the steady state of the SIS

dynamics. These averages, thermodynamically corresponding

to conserved quantities, are defined as follows:

I(s) ¼
X
si[s

si ð4:1Þ

and

C(s) ¼
X
si[s

si

X
j[Ni

1� sj, ð4:2Þ

where Ni denotes the neighbourhood of node i. The quantity

I(s) is the total number of infected individuals in a configur-

ation s and is of clear interest in the study of infectious

diseases. The quantity C(s) is the number of neighbouring

individuals who have opposite states. In the context of epi-

demic modelling, this is the number of potentially infective

connections in a configuration s. In analogy to an electro-

magnetic spin model such as the Ising model, the

potentially infective connections (C) correspond to the

node–node interaction energy, whereas the number of

infected individuals (I ) corresponds to the energy due to

the applied external magnetic field.

The SIS discrete-time update dynamics have both

an equilibrium state (i.e. the absorbing state of the

system) and a metastable state (i.e. a state which takes

time exponential in the number of vertices to leave). The

equilibrium state corresponds to the trivial case

in which I ¼ 0. At the metastable state, however, the rate

at which infected individuals are recovering and the

rate at which susceptible individuals are being infected

are equal. Between each time step, the rate of recovery

is proportional to I, whereas the instantaneous rate of

infection is proportional to C.



(a) (b)

Figure 1. Example networks of 15 nodes for numerically testing the MaxEnt
model. (a) A ring network and (b) Watts – Strogatz network with p ¼ 1 and
k ¼ 6.
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4.2. Maximizing entropy
In order to obtain the most probable distribution of infection

within the simulated population during a steady state, we use

the MaxEnt method with constraints on the average value of

I as given by equation (4.1) and C as given by equation (4.2).

Formally, the MaxEnt principle for this system with SIS dis-

crete time update dynamics forms the optimization problem

max
P(s)

S(A), for S(A) ¼ �
X
s[A

P(s) log (P(s)), ð4:3Þ

subject to

hIi ¼
X
s[A

P(s)
X
si[s

si

 !
, ð4:4Þ

hCi ¼
X
s[A

P(s)
X
si[s

si

X
j[Ni

1� sj

0
@

1
A

0
@

1
A ð4:5Þ

and

1 ¼
X
s[A

P(s): ð4:6Þ

The form of this MaxEnt solution for K constraints is given by

equation (3.5) specifying Gibbs distribution. The specific

Gibbs distribution consistent with the constraints given by

equations (4.4)–(4.6) is

P(s) ¼ el1I(s)þl2C(s)

Z
, ð4:7Þ

where I(s) and C(s) are defined by (4.1) and (4.2), respect-

ively, and l1, l2 and Z are unknown Lagrange multipliers.

Thus, in order to solve for the Lagrange multipliers and obtain

the MaxEnt distribution consistent with known information,

one must use the the averages of I and C.

For clarity, we abbreviate

x ¼ el1 and y ¼ el2 : ð4:8Þ

Substituting (4.8) into (4.4)–(4.7), we obtain

P(s) ¼ xI(s)yC(s)

Z
, ð4:9Þ

hIi ¼
X
s[A

I(s)
xI(s)yC(s)

Z
, ð4:10Þ

hCi ¼
X
s[A

C(s)
xI(s)yC(s)

Z ð4:11Þ

and

1 ¼
X
s[A

xI(s)yC(s)

Z
: ð4:12Þ

Let us define the sets @I,C, the sets of all configurations s such

that the total number of infected individuals I(s) ¼ I, and the

number of potentially infective connections C(s) ¼ C;

formally, we have

@I, C ¼ {s : I(s) ¼ I, C(s) ¼ C}: ð4:13Þ

The sets @I,C form a partition of A, the space of all configur-

ations. Hence, each configuration s belongs to exactly one of the

sets @I,C. As all elements of the set @I,C have the same value of

I(s) and C(s), we see from equation (4.9) that all states which

belong to the same set @I,C have identical probability.
Specifically, the probability of a state s [ @I,C is

P(s [ @I, C) ¼ xIyC

Z
: ð4:14Þ

As each of the states s in a set @i,c has identical probability, this

naturally follows the concept of a macrostate (I, C). By denoting

the cardinality of the set @I,C by N(I, C), we simplify the system

of equations (4.10)–(4.12) as

hIi ¼
X
I, C

N(I, C)I
xIyC

Z
, ð4:15Þ

hCi ¼
X
I, C

N(I, C)C
xIyC

Z ð4:16Þ

and

1 ¼
X
I, C

N(I, C)
xIyC

Z
: ð4:17Þ

This reformulation opens a way to MaxEnt solutions expressed

in terms of the probabilities P(I, C) defined over the macrostates

(I, C).

4.3. Example: numerical solutions for small graphs
The MaxEnt equations (4.15)–(4.17) is a system of polynomial

equations in x, y and Z, which in general do not have an

analytic solution. The solutions to these equations can be

obtained numerically as we will demonstrate in this section.

To exemplify the numerical construction of our MaxEnt

model of SIS epidemics on complex networks, we have

chosen two graph topologies shown in figure 1. The first

graph is a ring and the second graph is a Watts–Strogatz

random graph with p ¼ 1 and k ¼ 6. Both graphs consist of

15 nodes. As these networks are small it is straightforward

to compute the functions N(I, C) by listing all possible state

configurations and counting the number of configurations

with specific values of I and C. Such method of computing

N(I, C ) is feasible for small networks, but for larger networks

one should make use of more sophisticated combinatorial

algorithms.

In practical applications, the values of constraints, kIl and

kCl, would be taken from field data. For our purposes, we can

obtain the ‘data’ by computationally simulating the dynamics

of an SIS epidemic. We simulate the dynamics using SIS par-

allel update processes stochastic simulation with arbitrarily

chosen values of probability of infection transmission n and

probability of recovery d. The simulation involves initializing

the system at random and then updating the state of the

system for 120 000 time steps. The first 20 000 time steps are
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used to equilibrate the system and the final 100 000 time steps

are used for sampling the equilibrium state. At every time

step, the number of infected individuals I and number of

infected connections C is recorded, and this is used to com-

pute kIl and kCl. The values of kIl and kCl are then used as

constraints in equations (4.15)–(4.16). The equations

(4.15)–(4.17) are solved numerically for x, y and Z.

Figures 2 and 3 compare the computed MaxEnt prob-

ability distributions with distributions from simulation data

for the ring and random networks. There is a good agreement

between the empirical and MaxEnt distributions P(I ), P(C )

and P(I, C) for both ring and random network topologies

supporting the validity of the MaxEnt method.

The numerical solutions of MaxEnt equations are of gen-

eral applicability. However, in order to arrive at

epidemiological interpretation of the Lagrange multipliers

l1 and l2, we would like to express them analytically in

terms of kIl and kCl. The analytic solution may only be

obtained after invoking certain simplifying assumptions, in

particular, independence between P(I ) and P(C ). The deri-

vation and the analysis of the analytic solutions are

presented in the following sections.
4.4. Example: complete graph
We will start our analytic analysis by considering the specific

case in which G(V, E) is a complete graph, with V vertices

and E ¼ V(V 2 1)/2 edges. Given I infected individuals, for
each infected node there are V 2 I susceptible neighbours.

Therefore, there are C ¼ I(V 2 I ) potentially infective connec-

tions. It is worth noting that although a given number of

infected individuals on this topology defines precisely the

number of potentially infective connections, the converse

is not true in general. That is, for a number of potentially

infective connections there is generally more than one corre-

sponding number of infected individuals.

Each I specifies the value of C; however each value of C
often defines exactly two values of I. As knowing I uniquely

defines C, @I,C ¼ @I ¼ fs : I(s) ¼ Ig. Consequently, N(I, C) ¼

N(I ). In a complete graph with V vertices, N(I ) ¼ V
I

� �
, analo-

gous to the outcome of placing I balls into V buckets,

resulting in the binomial coefficient. Therefore, the total

number of infected individuals, represented by the constraint

(4.15), is a sum from I¼ 0 to V , giving

hIi ¼
XV

I¼0

V
I

� �
I

xIyI(V�I)

Z
: ð4:18Þ

Similarly, the constraint (4.16) yields

hI(V � I)i ¼
XV

I¼0

V
I

� �
I(V � I)

xIyI(V�I)

Z
, ð4:19Þ

while the normalization constraint (4.17) becomes

1 ¼
XV

I¼0

V
I

� �
xIyI(V�I)

Z
: ð4:20Þ
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This is not analytically reducible further, and in the next subsec-

tion we consider a simplified system where an exact solution can

be found.

Henceforth, for a graph with V vertices and E edges, we

shall use average quantities kI*l ¼ kIl/V and kC*l ¼ kCl/E.
ietypublishing.org
Interface

Focus
8:20180036
4.5. Example: an initial seeding state
In order to illustrate how the MaxEnt principle yields an

analytical solution, we consider a very simple system with

two constraints: on the number of infected individuals I,
and the usual normalization constraint. This abridged case

(not limited to the complete graph topology) describes the

precursor state of the epidemic with a number of infection

sources distributed within the network. This state essentially

corresponds to the initial state of an outbreak, before any

infective transmissions have taken place, and agent-based

simulation studies often focus on such initial ‘seeding’ state

in quantifying effects of different seeding scenarios [49–51].

Nevertheless, this case will reveal an important thermodyn-

amic analogy between key variables of SIS model and the

inverse temperature of Gibbs distribution resulting from

entropy maximization. Explicitly stated, we wish to find the

MaxEnt solution in the form

P(s) ¼ elI(s)

Z
, ð4:21Þ

subject to the following constraints:

1

Z

XV

I¼0

I
V
I

� �
xI ¼ hIi ð4:22Þ

and

1

Z

XV

I¼0

V
I

� �
xI ¼ 1: ð4:23Þ

The binomial theorem transforms (4.23) into

Z ¼ (xþ 1)V , ð4:24Þ

where x ¼ el is a positive real number. Substituting (4.24)

into (4.22) yields

hIi ¼
PV

I¼0 I V
I

� �
xI

(xþ 1)V ¼ Vx(xþ 1)V�1

(xþ 1)V ¼ Vx
(xþ 1)

: ð4:25Þ

One may be interested in tracing the proportion of the

infected individuals within the total population, kI*l ¼ kIl/V,

which is immediately obtained from (4.25):

hI�i ¼ x
xþ 1

: ð4:26Þ

Hence, the Lagrange multiplier corresponding to the

constraint (4.22), l ¼ logx, is

l ¼ log
hI�i

1� hI�i :

Finally, substituting this expression into the solution (4.21), we

obtain the Gibbs distribution:

P(s) ¼ e( log (hI�i=(1�hI�i)))I(s)

Z
: ð4:27Þ

Thus, interpreting I(s) as the energy of the system, we may

derive a thermodynamic analogy of the equilibrium inverse

temperature in the SIS epidemic model as negative l, that is,
b ¼ log((1 2 kI*l)/kI*l), i.e. the log-ratio between non-infected

and infected proportions during the initial state of an

outbreak.

The partition function, i.e. the Lagrange multiplier

corresponding to the normalization constraint (4.23), can be

explicitly resolved by using (4.26) and (4.24):

Z ¼ 1

1� hI�i

� �V

:

Therefore,

P(I) ¼ V
I

� �
hI�iI(1� hI�i)V�I : ð4:28Þ

This is the binomial distribution with the ‘probability of suc-

cess’ kI*l during V trials, characterizing the initial state of an

epidemic outbreak.
4.6. Assuming independence
In order to obtain an analytical solution to the more general

problem that includes, in addition, the constraint on the

number of infective links (4.5), we introduce an assumption

about the random variables I and C. Specifically, we

assume that I and C are independent: P(I, C ) ¼ P(I )P(C ),

and as a result, N(I, C ) ¼ N(I )N(C).

Under this assumption, the average of I may only be used

to infer the distribution of I. Similarly, the average of C may

only be used to infer the distribution of C. This allows us to

reduce the constraints (4.15)–(4.17) as follows:

hIi ¼
X
I[V

IN(I)
xI

ZI
, ð4:29Þ

hCi ¼
X
C[E

CN(C)
yC

ZC
, ð4:30Þ

1 ¼
X
I[V

xI

ZI
ð4:31Þ

and

1 ¼
X
C[E

yC

ZC
, ð4:32Þ

where ZCZI ¼ Z. We then follow the derivations outlined in

§§4.4 and 4.5, solving (4.29) and (4.31) for P(I ) ¼ xI/ZI, and

(4.30) and (4.32) for P(C) ¼ yC/ZC separately. Doing so, we

find that P(I ) is a binomial random variable with V trials

and the probability of success kI*l and that P(C ) is a binomial

random variable with E trials and the probability of success

kC*l. Thus, our next result is that

P(I, C)¼ V
I

� �
E
C

� �
hI�iI(1� hI�i)V�IhC�iC(1� hC�i)E�C: ð4:33Þ

Under the assumption that I and C are independent, we may

express the entropy of the system in its steady state, that

is, the entropy of the joint variable (I, C ), as the sum of the

individual entropies of I and C:

H(I, C) ¼ H(I)þH(C):

Furthermore, given the partition functions of the marginal

probability distributions obtained as

ZI ¼
1

1� hIi�
� �V

and ZC ¼
1

1� hCi�
� �E

,
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we derive the free entropy of the entire system as

log (Z) ¼ log (ZIZC) ¼ log (ZI)þ log (ZC)

¼ �V log (1� hIi�)� E log (1� hCi�): ð4:34Þ

4.7. Fisher information
Now we will use the derived Gibbs distributions in

expressing the Fisher information of the joint random

variable (I, C ) and characterizing critical regimes of SIS

epidemics. Under the assumption that I and C are independent,

FI,C(n)¼ FI(n)þ FC(n) [43].

Our control parameter in this case is n, and the Fisher

information of the joint variable (I, C ) describing the

macroscopic state of the system will be derived with

respect to n, and then with respect to the average con-

straints I* and C*.

FI(n) ¼ E
@2

@n2
log P(Ijn)

� �

¼ E
@2

@hI�i2
log P(IjhI�i) @hI�i

@n

� �2
" #

: ð4:35Þ

The first term within the expectation operator is exactly the

Fisher information of I with respect to kI*l, i.e. FI(kI*l),

yielding

FI(n) ¼ FI(hI�i)
@hI�i
@n

� �2

: ð4:36Þ
Analogously,

FC(n) ¼ FC(hC�i) @hC�i
@n

� �2

: ð4:37Þ

Thus, the Fisher information of the joint variable (I, C ) with

respect to the control parameter b can be expressed via

Fisher information with respect to the conserved quantities

I* and C*:

FI, C(n) ¼ FI(hI�i)
@hI�i2

@n
þ FC(hC�i) @hC�i

@n

� �2

:

Using binomial random variables (V, kI*l) and (E, kC*l) in

the expression for Fisher information (3.11), we can pro-

duce our next result, directly expressing the Fisher

information of the MaxEnt distribution in terms of the

conserved quantities I* and C*:

FI, C(n) ¼ V
hI�i(1� hI�i)

@hI�i
@n

� �2

þ E
hC�i(1� hC�i)

@hC�i
@n

� �2

:

ð4:38Þ

Importantly, the independence assumption, which

allowed us to obtain analytic expressions for the Fisher

information (4.36)–(4.38), reveals the mechanism for its

divergence at criticality. It is known that the divergence of

the Fisher information indicates a critical regime and pin-

points the critical threshold. In this instance, it shows that,

when 0 , kI*l , 1 or 0 , kC*l , 1, the phase transition
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should occur when the derivative of kI*l or kC*l with respect

to the control parameter n becomes infinite (i.e. has a verti-

cal tangent). In other words, one of the implications of the

independence assumption is that the mechanism behind

criticality is explicitly linked to non-differentiability of kI*l
or kC*l.

In order to explicitly distinguish between the MaxEnt

distribution and the distributions observed from simulations,

we introduce IM, CM, the random variables distributed

according to the MaxEnt solutions given in (4.33); and IO,

CO, the random variables associated to the observed prob-

ability distributions of our simulations (see electronic

supplementary material, S.1 and S.2, for details of numeri-

cally calculating the corresponding Fisher information and

thermodynamic efficiency of computation, respectively).

C ) as a function of n, the probability of infection per time step. The value of
the Fisher information is an average of values calculated for individual graphs.
The peak of each of these plots occurs at n ¼ 2.01 � 1024, corresponding
to R0 ¼ 1.004. (Online version in colour.)
5. Numerical results

We constrain our analysis to the specific case of Watts–

Strogatz random graphs [23] across a broad range of simulated

pathogens. Having considered the statistical mechanics of SIS

processes under the assumption of independence, we will

compare our analytical derivations with the results of

numerical simulations of the steady-state probability distri-

butions. To reiterate, these probability distributions are

obtained from computational simulations of stochastic discrete-

time parallel-update SIS dynamics on Watts–Strogatz random
graphs with 1000 nodes, parameters k ¼ 6 and p ¼ 1, varying

the probability of infection n and holding the probability of

recovery, d ¼ 0.001, constant. Probability distributions are

observed for each of 30 graphs across 30 realizations over

100 000 time steps per run for each value of n. For each run,

we perform a logarithmic sweep of the parameter n from

1024 to 1022 with 100 steps in this range. In order to obtain
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an appropriate representation of the stationary distributions,

we do not record any data until the system has sufficient

time to equilibrate (40 000 time steps). In addition to analy-

sis of the steady-state probability distributions, we study

important thermodynamic quantities such as the entropy,

Fisher information and free entropy of the system.

Firstly, we study the constraints kI*l and kC*l as a function

of the parameter n, the probability of infection, as shown in

figure 4. These constraints are averaged over all simulations

described above. kI*l and kC*l set the constraints used in

order to obtain the MaxEnt probability distribution.

Secondly, we investigate the two types of marginal and

joint probability distributions, shown in figures 5 and 6,

respectively. Each of the figures shows both the distribution

obtained empirically from computer simulations and the dis-

tribution obtained from the MaxEnt solution (4.33), given the

average quantities. Specifically, the empirical distributions

allowed us to estimate the average quantities kIl and kCl,
shown earlier in figure 4a,b, used in deriving the MaxEnt sol-

utions. These results are obtained from simulations with n ¼

3.68 � 1024 and d ¼ 0.001, where n is the per time step prob-

ability of infection and d is the per time step probability of

recovery. Figure 5 compares the marginal distributions of I
and C observed from simulations to the MaxEnt distributions

obtained only from the observations of the average values

kIl and kCl on a particular Watts–Strogatz graph. Secondly,

figure 6a,b demonstrates the differences between the ex-

perimentally observed distribution of (I, C ) and the

distributions of (I, C ) according to the MaxEnt principle.

5.1. Fisher information
As mentioned earlier, it is well known that the Fisher infor-

mation diverges at a phase transition [17]. We now

compare the Fisher information for both the MaxEnt and

observed distributions. This comparison is carried out with

the change of variables given by electronic supplementary

material, equation (S.1), with umin ¼ �4 and Du ¼ 4.65 �
1022 for 100 values of ui ¼ umin þ iDu, using electronic sup-

plementary material, equation (S.7), to calculate the Fisher

information of the observed distributions. For each value of

n, a single probability distribution is obtained for each

graph using multiple runs, and then the Fisher information

is calculated, as outlined in §5, by averaging over each of

the graphs.

As shown in figure 7, for d ¼ 1 � 1023, the Fisher infor-

mation of each of the random variables peaks around

2.01 � 1024. For this system, this corresponds to R0 ¼ 1.004

(see electronic supplementary material, equation (S.16)).

Owing to uncertainty in the location of this maximum, n [

(1.9179 � 1024, 2.1049 � 1024), there is corresponding uncer-

tainty in the value of R0. In this case, R0 is in the interval

(0.9657, 1.0435). Importantly, the approach identifies the

critical threshold for the epidemic phase transition.

As pointed out in §3.3, under a quasi-static protocol chan-

ging the control parameter n, the Fisher information may also

be interpreted as the generalized work, Wgen (3.16).

5.2. Entropy and free entropy
We now turn our attention to other thermodynamic charac-

teristics, beginning with the configuration entropy (3.1), and

again comparing the observed and the MaxEnt distributions

across a range of values of n. Figure 8a shows that, after a
phase transition, there is decreasing log-linear relationship

between the entropy of I and n for the distributions obtained

from the simulations. By contrast, the entropy of the MaxEnt

distributions does not show this dependency, resulting in an

asymptotic overestimate.

We also note that although the entropy of the MaxEnt

solution for C captures the overall trend of the observed

entropy, as shown in figure 8b, it does not precisely capture

the qualitative behaviour of the entropy of C, ‘smoothing’ the

drop in entropy immediately following the phase transition.

Figure 9 shows the distributions of C inset for multiple

values of n. Furthermore, we note a good general agreement

for the entropy of the joint variable, illustrated by figure 8c.
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These discrepancies and similarities clarify the impact of

the independence assumption on the thermodynamics of

the epidemics: despite disagreements in a ‘super-critical’

phase, the phase transition itself has been identified equally

well by both the MaxEnt distributions and the distributions

obtained from the simulations.
5.3. Thermodynamic efficiency of computation
Figure 10 illustrates the two key components of the thermo-

dynamic efficiency of computation. We observe three

qualitatively distinct regions in the space of n, which can be

associated with subcritical, critical and super-critical regions.

Most strikingly, we note that in both the subcritical and

super-critical regions, the thermodynamic efficiency is very

low, while around criticality, the system is most efficient, as
shown in figure 11. The peak of the thermodynamic effi-

ciency does not concur precisely with the peak of the Fisher

information, due to finite-size effects, and the discrepancy

is higher for the estimates based on the MaxEnt method,

rather than those based on the observed distributions. The

specific reasons for this discrepancy can be seen in figure

12, which contrasts both components in more detail, showing

that the reduction in uncertainty (the numerator) estimated

by the MaxEnt method starts to diverge earlier, while the

rate of work (the denominator) estimated by the MaxEnt

method starts to diverge later, than the corresponding esti-

mates based on observed distributions. As a result, the ratio

hM ‘suffers’ from the finite-size effects more than hO.

In summary, at criticality, where a higher disorder is

generated, there is relatively more work extracted out of the

system. In an epidemiological context, considering an inter-

vention process that reduces the transmission probability

from the super-critical phase towards the subcritical phase,

expending the work, the thermodynamic efficiency would
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tend to increase as the critical point is passed. On the other

hand, we can consider the efficiency of the contagion itself,

as a biological phenomenon, i.e. a pathogen emergence pro-

cess that increases the transmission probability from the

subcritical phase towards the super-critical phase. In this

case, from the pathogen ‘perspective’, the thermodynamic

efficiency would tend to peak on the approach towards the

critical point.

Finally, figure 13 shows the free entropy of the system,

log(Z), which is proportional to the free energy. Again, we

observe a clear critical regime separating the ‘subcritical’,

non-epidemic, phase from the ‘super-critical’, epidemic, phase.
6. Discussion and future work
In this paper, we considered epidemics as thermodynamic

phenomena, modelling SIS dynamics on a contact network

statistical-mechanically. Applying the MaxEnt principle,

under certain assumptions, allowed us to derive closed-

form solutions for specific cases and interpret key epidemic

variables in a statistical mechanical setting. Specifically, the

reproductive ratio R0 of a SIS model was related to the inverse

temperature of a Gibbs distribution resulting from entropy

maximization, applied to the initial state of an outbreak.

Using the model, we evaluated the Fisher information,

configuration and free entropy, as well as the thermodynamic

efficiency of contagion (considered as a computational process),

in an epidemiological context. This allowed us to identify criti-

cal regimes and distinct phases of epidemic processes.

Analytical derivations of MaxEnt modelling of SIS process

were contrasted with results of the simulated dynamics on

Watts–Strogatz random graphs, confirming the critical

thresholds, while assessing the impact of our simplifying

assumptions. Importantly, the analytical derivations high-

lighted the mechanism for the emergence of critical regime—

via non-differentiability of key variables kIl and kCl—manifesting

itself in the divergence of the Fisher information.

The statistical-mechanical perspective taken in this work

placed epidemic processes within a broad class of distributed

processes. This allowed us to define thermodynamic effi-

ciency of contagions which was shown to peak at criticality.

Interestingly, this can be interpreted as (i) the efficiency of
an intervention process that expends the work needed to

reduce the transmission probability or (ii) the efficiency of

the pathogen emergence that extracts the work by increasing

the transmission probability. These processes explore the par-

ameter space in opposing directions at the expense/extraction

of (thermodynamic) work, but despite the opposite directions

the maximal thermodynamic efficiency is attained at the same

critical point. Furthermore, the concept of thermodynamic effi-

ciency enables comparative analysis of various interventions

and pathogen emergence paths.

We presented both numerical and analytical techniques

based on the MaxEnt method. The numerical technique

does not need the independence assumption between I and

C, and attains a high degree of accuracy. However, it requires

an explicit combinatorial calculation of the macrostates which

is prohibitive for large networks without further simplifying

assumptions. The analytical technique allowed us to derive

important general thermodynamic properties of the

contagion phenomena, but relies on the independence

assumption and is less accurate in the super-critical phase.

We believe that both presented techniques provide useful

arguments for the utility of the MaxEnt method and serve

their distinct purposes.

We would like to reiterate that in practical scenarios, when

simulation results are not available and the exact topology of

the underlying interaction network is not known, one may

still rely on the MaxEnt solutions derived under the constraints

on kIl and kCl which are obtainable from the real-world obser-

vations of the epidemic dynamics. If, on the other hand, the

underlying interaction network belongs to a specific type,

e.g. Watts–Strogatz random graph, one may go one step

further and, under the simplifying independence assumption,

obtain analytic solutions and estimate their parameters.

Determining the precise range of applicability of the

independence assumption, and the extent of the resultant

approximations, remains the subject of future work. In

general, this assumption is reasonable in networks with

a significant number of random connections, and so

would be applicable to many real-world networks in

which epidemics take place, e.g. epidemics in urbanized

societies [1,52].

We believe that the presented approach can be extended

to other contact network topologies and contact processes.

In addition, the constraints used during the entropy
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maximization can be effectively generated by large-scale

simulations of epidemics based on demographic datasets

and real-world epidemic dynamics.
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20. Tkačik G, Marre O, Mora T, Amodei D, Berry II MJ,
Bialek W. 2013 The simplest maximum entropy
model for collective behavior in a neural network.
J. Stat. Mech. Theory Exp. 2013, P03011.
(doi:10.1088/1742-5468/2013/03/p03011)

21. Bialek W, Cavagna A, Giardina I, Mora T, Silvestri
E, Viale M, Walczak AM. 2012 Statistical
mechanics for natural flocks of birds. Proc. Natl
Acad. Sci. USA 109, 4786 – 4791. (doi:10.1073/
pnas.1118633109)

22. Artalejo JR, Lopez-Herrero M. 2011 The SIS and SIR
stochastic epidemic models: a maximum entropy
approach. Theor. Popul. Biol. 80, 256 – 264. (doi:10.
1016/j.tpb.2011.09.005)

23. Watts DJ, Strogatz SH. 1998 Collective dynamics of
‘small-world’ networks. Nature 393, 440 – 442.
(doi:10.1038/30918)

24. Prokopenko M, Lizier JT. 2014 Transfer entropy and
transient limits of computation. Sci. Rep. 4,
srep05394. (doi:10.1038/srep05394)
25. Spinney RE, Lizier JT, Prokopenko M. 2016 Transfer
entropy in physical systems and the arrow of time.
Phys. Rev. E 94, 022135. (doi:10.1103/PhysRevE.94.
022135)

26. Spinney RE, Prokopenko M, Lizier JT. 2017
Transfer entropy in continuous time, with
applications to jump and neural spiking
processes. Phys. Rev. E 95, 032319. (doi:10.1103/
PhysRevE.95.032319)

27. Kempes CP, Wolpert D, Cohen Z, Pérez-Mercader J.
2017 The thermodynamic efficiency of computations
made in cells across the range of life. Phil.
Trans. R. Soc. A 375, 20160343. (doi:10.1098/rsta.
2016.0343)

28. Spinney RE, Lizier JT, Prokopenko M. In press.
Entropy balance and information processing in
bipartite and nonbipartite composite systems. Phys.
Rev. E.

29. Keeling M, Rohani P. 2008 Modeling infectious
diseases in humans and animals. Princeton, NJ:
Princeton University Press. See https://books.google.
com.au/books?id ¼ G8enmS23c6YC.

30. Pastor-Satorras R, Vespignani A. 2001 Epidemic
dynamics and endemic states in complex networks.
Phys. Rev. E 63, 066117. (doi:10.1103/PhysRevE.63.
066117)

31. Kermack WO, McKendrick AG. 1927 A contribution
to the mathematical theory of epidemics.
Proc. R. Soc. Lond. A 115, 700 – 721. (doi:10.1098/
rspa.1927.0118)

32. Porta M. 2014 A dictionary of epidemiology. Oxford,
UK: Oxford University Press.

33. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM.
2005 Superspreading and the effect of individual
variation on disease emergence. Nature 438,
355 – 359. (doi:10.1038/nature04153)

34. Keeling M. 2005 The implications of network
structure for epidemic dynamics. Theor. Popul. Biol.
67, 1 – 8. (doi:10.1016/j.tpb.2004.08.002)

35. Andersson H. 1998 Limit theorems for a random
graph epidemic model. Ann. Appl. Probab. 8,
1331 – 1349. (doi:10.1214/aoap/1028903384)

36. Keeling MJ, Eames KT. 2005 Networks and epidemic
models. J. R. Soc. Interface 2, 295 – 307.
(doi:10.1098/rsif.2005.0051)

37. Rhodes C, Anderson R. 1996 Dynamics in a lattice
epidemic model. Mod. Phys. Lett. A 210, 183 – 188.
(doi:10.1016/s0375-9601(96)80007-7)

http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/PhysRevE.60.7332
http://dx.doi.org/10.1103/PhysRevE.60.7332
http://dx.doi.org/10.1103/PhysRevE.61.5678
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1016/S0025-5564(02)00117-7
http://dx.doi.org/10.1090/S0273-0979-06-01148-7
http://dx.doi.org/10.1371/journal.ppat.1003277
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1038/srep24676
http://dx.doi.org/10.3390/e19050194
http://dx.doi.org/10.1007/s12064-011-0145-9
http://dx.doi.org/10.1007/s12064-011-0145-9
http://dx.doi.org/10.1007/978-3-642-53734-9_5
http://dx.doi.org/10.1038/nature02104
http://dx.doi.org/10.1038/nature02104
http://dx.doi.org/10.1007/s12080-013-0185-5
http://dx.doi.org/10.1038/ncomms7101
http://dx.doi.org/10.1162/artl_a_00041
http://dx.doi.org/10.1103/PhysRevE.84.041116
http://dx.doi.org/10.1103/PhysRevE.84.041116
http://dx.doi.org/10.1103/PhysRevE.97.012120
http://dx.doi.org/10.1103/PhysRevE.97.012120
http://dx.doi.org/10.1103/PhysRevE.98.022302
http://dx.doi.org/10.1103/PhysRevE.98.022302
http://dx.doi.org/10.1088/1742-5468/2013/03/p03011
http://dx.doi.org/10.1073/pnas.1118633109
http://dx.doi.org/10.1073/pnas.1118633109
http://dx.doi.org/10.1016/j.tpb.2011.09.005
http://dx.doi.org/10.1016/j.tpb.2011.09.005
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1038/srep05394
http://dx.doi.org/10.1103/PhysRevE.94.022135
http://dx.doi.org/10.1103/PhysRevE.94.022135
http://dx.doi.org/10.1103/PhysRevE.95.032319
http://dx.doi.org/10.1103/PhysRevE.95.032319
http://dx.doi.org/10.1098/rsta.2016.0343
http://dx.doi.org/10.1098/rsta.2016.0343
https:&sol;&sol;books.google.com.au&sol;books&quest;id&thinsp;&equals;&thinsp;G8enmS23c6YC
https:&sol;&sol;books.google.com.au&sol;books&quest;id&thinsp;&equals;&thinsp;G8enmS23c6YC
https:&sol;&sol;books.google.com.au&sol;books&quest;id&thinsp;&equals;&thinsp;G8enmS23c6YC
https:&sol;&sol;books.google.com.au&sol;books&quest;id&thinsp;&equals;&thinsp;G8enmS23c6YC
https:&sol;&sol;books.google.com.au&sol;books&quest;id&thinsp;&equals;&thinsp;G8enmS23c6YC
https:&sol;&sol;books.google.com.au&sol;books&quest;id&thinsp;&equals;&thinsp;G8enmS23c6YC
https:&sol;&sol;books.google.com.au&sol;books&quest;id&thinsp;&equals;&thinsp;G8enmS23c6YC
http://dx.doi.org/10.1103/PhysRevE.63.066117
http://dx.doi.org/10.1103/PhysRevE.63.066117
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1038/nature04153
http://dx.doi.org/10.1016/j.tpb.2004.08.002
http://dx.doi.org/10.1214/aoap/1028903384
http://dx.doi.org/10.1098/rsif.2005.0051
http://dx.doi.org/10.1016/s0375-9601(96)80007-7


rsfs.royalsocietypublishing.org
Interface

Focus
8:20180

15
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