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Comparative phylogeography can inform many macroevolutionary ques-

tions, such as whether species diversification is limited by rates of

geographical population differentiation. We examined the link between

population genetic structure and species diversification in the fully aquatic

sea snakes (Hydrophiinae) by comparing mitochondrial phylogeography

across northern Australia in 16 species from two closely related clades that

show contrasting diversification dynamics. Contrary to expectations from

theory and several empirical studies, our results show that, at the geographi-

cal scale studied here, rates of population differentiation and speciation are

not positively linked in sea snakes. The eight species sampled from the

rapidly speciating Hydrophis clade have weak population differentiation

that lacks geographical structure. By contrast, all eight sampled Aipysurus–
Emydocephalus species show clear geographical patterns and many deep

intraspecific splits, but have threefold slower speciation rates. Alternative fac-

tors, such as ecological specialization, species duration and geographical

range size, may underlie rapid speciation in sea snakes.
1. Background
Speciation biology predicts that if population differentiation and species

diversification are limited by similar causal factors, their rates will be linked

over macroevolutionary timescales [1,2]. However, the few studies that have

examined relationships between rates of intraspecific differentiation and specia-

tion show inconsistent patterns. For example, studies of birds [3] and fish [4]

have found positive associations between genetic estimates of population

geographical structure and speciation, supporting theory that the generation

of differentiated populations contributes to broad-scale species diversity.

However, work on orchids has revealed decoupled differentiation and diversi-

fication rates [5], indicating that speciation in this group is limited by other

factors, such as ecological opportunity or population persistence. Better under-

standing of the links between population differentiation and species

diversification requires phylogeographic comparisons of recently diverged

groups that show contrasting diversification dynamics, ideally across a

shared landscape. Such examples may be atypical but have the potential to

provide important insights into the speciation mechanisms that explain

diversity patterns in focal taxa.

Here, we compare phylogeographic patterns in two clades of sea snakes

(Hydrophiinae) that share a common ancestor only approximately 6–16 Ma

but have undergone very different rates of species diversification. The Hydrophis
clade is the most rapidly speciating group of reptiles known, with 47 species

that are ecologically diverse and typically have wide geographical distributions

in the Indo-West Pacific [6]. By contrast, the Aipysurus–Emydocephalus clade has
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Table 1. Nei’s pairwise population genetic distances between major
regions; values in bold are significant ( p , 0.05) and are italicized to
show monophyletic clades in the BEAST tree. Superscripts denote numbers
of haplotypes shared between regions. Shading delimits the Aipysurus –
Emydocephalus versus Hydrophis clades.

WAC
versus TS

WAC versus
N&E AUS

TS versus
N&E AUS

E. annulatus 0.461 — —

A. mosaicus — 0.305 —

A. duboisii 0.103 0.023 0.545

A. foliosquama 0.163 — —

A. apraefrontalis 0.581 — —

A. fuscus/tenuis

complex

0.175 — —

A. laevis 1.754 0.148 0.2432

H. elegans — 0.3363 —

H. ocellatus — 20.0481

H. stokesii — 0.033 0.846

H. peronii 20.0151 0.083 0.365

H. major — 0.1472 —
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only nine species, most of which are less ecologically special-

ized and have narrower geographical ranges restricted to the

Australasian region. Estimates of speciation rates based on

Bayesian analyses of speciation and extinction (using molecu-

lar timetrees and correction for differential sampling across

lineages) are more than three times higher for Hydrophis
compared to Aipysurus–Emydocephalus: 0.333 versus 0.090

species per million years, respectively [7]. Many species in

the two clades have overlapping distributions in various

shallow-water habitats across northern Australia. These

habitats experienced recurrent cycles of contraction and expan-

sion in response to sea-level fluctuations from the Late Miocene

to the Late Pleistocene [8]. Phases of habitat contraction during

glacial maxima are thought to explain geographically concor-

dant patterns of population differentiation in many marine

taxa, including Australian sea snakes [9], and have been

linked to speciation in some groups (e.g. [10]).

In this paper, we generated mitochondrial cytochrome b

sequences to analyse phylogeographical histories of 16 sea

snake species in the Hydrophis and Aipysurus–Emydocephalus
clades. If rates of population geographical differentiation

and species diversification are positively linked at the

geographical scale studied here, we would expect to find

stronger intraspecific differentiation in the Hydrophis
taxa because these have threefold higher speciation rates

compared with Aipysurus–Emydocephalus.
2. Methods
We analysed 373 individual samples from 16 species collected

from across their ranges in northern Australia (electronic sup-

plementary material, table S1). These species were initially

recognized and described using morphology, but represent mono-

phyletic groupings based on mitochondrial and nuclear genetic

markers [11,12]. We sampled eight species from each of the Aipy-
surus–Emydocephalus and Hydrophis clades. Thirteen species

(including one complex of two nominal species) were densely

sampled, with 15–63 (mean 29) individuals sampled per species

or species complex (table 1). Three Hydrophis species that were

less densely sampled (six to eight individuals per species) were

included only in the phylogenetic analysis (see below). Sampling

localities were grouped into three major regions (figure 1): the

Western Australian coast (WAC), Timor Sea Reefs (TS), and northern

and eastern Australia (N&E Aus) (figures 1 and 2).

DNA was extracted and the mitochondrial cytochrome

b gene was amplified and sequenced using standard protocols.

A time-calibrated phylogeny was reconstructed using BEAST

v.2.4.7 [13], haplotype networks were created using TCS network

methods in PopART [14], and genetic diversity statistics and esti-

mates of pairwise population genetic differentiation were

calculated in ARELEQUIN v.3.5.2.2 [15] and DnaSP v.5 [16] (see

the electronic supplementary material). An important caveat of

our analyses of population differentiation is that they are based

on a single mitochondrial gene. However, several previous

studies have shown congruent patterns of population structure

based on mitochondrial and fast evolving nuclear markers in

sea snakes [9,17]. This supports the utility of mitochondrial

data in providing meaningful estimates of phylogeographic

histories in these species.
3. Results
The final alignment comprised 373 cytochrome b sequences of

1099 base pairs. Divergence time estimates are broadly
consistent with previous studies [9,11] and most intraspecific

splits are dated within the last approximately 2 Myr

(figure 1). Species sampled from the two clades show

contrasting phylogeographic patterns. All Aipysurus–Emydo-
cephalus species have strong population structure that is

broadly congruent with geographical regions. The BEAST

tree (figure 1) recovered well-supported clades corresponding

to the WAC versus TS and N&E Aus in A. laevis; WAC versus

TS in A. foliosquama, A. fuscus–A. tenuis, A. apraefrontalis, and

E. annulatus; and WAC versus N&E Aus in A. mosaicus. A.
foliosquama also contained monophyletic groupings within

the WAC (Shark Bay versus more northern WAC localities).

Haplotype networks for Aipysurus–Emydocephalus species

show clear geographical segregation with no haplotypes

shared among regions (figure 2), and pairwise comparisons

of Nei’s genetic distance were significant for 7 of the 11

comparisons among geographical regions (table 1). The only

significant Tajima’s D-value was for the A. laevis WAC

population (21.66226; p-value: 0.034).

None of the eight Hydrophis species showed clear phylo-

geographical structure. Two (H. major, H. ocellatus) were

recovered in the BEAST tree as shallow clades with no

discernable geographical structure (figure 1), and yielded

star-shaped haplotype networks with haplotypes shared

across distant localities (figure 2). Tajima’s D-values were

significantly negative for WAC populations of these species,

at 22.00107 ( p-value: 0.006) and 21.54236 ( p-value: 0.02),

respectively. The three other densely sampled Hydrophis
species (H. peronii, H. elegans, H. stokesii) contained weakly

supported clades in the BEAST tree but these did not corre-

spond to geographical regions, and haplotypes were shared

among regions in H. peronii and H. elegans. Of the eight

pairwise comparisons of Nei’s genetic distance in Hydrophis,

only one was significant (table 1). Nucleotide and haplotype

diversities were high within regions for most species

(electronic supplementary material, table S2).
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Figure 1. Mitochondrial maximum clade credibility tree for all 16 sampled species. Sampling localities are shown as colours and correspond to the map. Timescale is
in millions of years ago (Ma). Posterior probability support values greater than 0.95 are shown as black dots. (Online version in colour.)
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4. Discussion
Contrary to expectations from theory and several empirical

studies, our results show that rates of fine-scale population

differentiation are not positively linked to speciation in sea

snakes. The species sampled from the rapidly speciating

Hydrophis clade have weak population differentiation

that lacks geographical structure. By contrast, all sampled

Aipysurus–Emydocephalus species show clear geographical

patterns and many deep intraspecific splits, but have
threefold slower speciation rates (figures 1 and 2) [7]. Species

in the two groups have diversified across very similar habitats

and regions over the past approximately 2 Myr (figure 1).

Hence, these lineages’ contrasting phylogeographic patterns

indicate heritable differences in their responses to historical

landscape conditions.

All shallow marine species in northern Australia must

have been impacted by the recurrent contractions of their

habitats during the Miocene and Pleistocene [8]. However,

the persistence of geographical population structure (and
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therefore the extent that it contributes to species diversity)

will depend on the propensity of previously allopatric popu-

lations to introgress during expansion phases. Various

demographic factors must influence the rate of gene flow in

expanding populations that are incompletely reproductively

isolated, particularly dispersal-related traits such as popu-

lation size, intraspecific competition, habitat preference and
dispersal ability. Unfortunately, most of these traits are

poorly known for sea snakes. However, Hydrophis species

typically have large geographical ranges in the Indo-West

Pacific, whereas all but two Aipysurus–Emydocephalus species

are restricted to Australasian waters. Species’ range sizes are

often indicative of their dispersal capacity [18]. If Hydrophis
species underwent rapid post-glacial colonization, exporting
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haplotype diversity over large geographical distances, this

may have eroded phylogeographic signal in genetically struc-

tured species H. peronii and H. elegans, and could explain the

star-shaped haplotype networks and significantly negative

Tajima’s D-values (indicating recent population expansion)

in H. major and H. ocellatus. It is also possible that range

expansion of Hydrophis species is less constrained by inter-

specific competition, given that they are more ecologically

specialized than most Aipysurus and often co-occur in diverse

assemblages [19]. Future studies are needed to examine

dispersal dynamics in sea snakes, and identify whether any

clade-specific differences are owing to life-history traits

and/or interspecific interactions. It will also be important

to identify the locations of refugia (such as the remote

Timor Sea reefs) used by the two clades during peak habitat

contractions.

Regardless of their causative factors, the phylogeographic

patterns reported in this paper have several important impli-

cations. It is clear that the anomalously high rates of

speciation in Hydrophis are not limited by rates of population

genetic differentiation at the geographical scale studied here.

Instead, speciation rates may be promoted by greater

range sizes in Hydrophis that enhance species’ persistence

and provide opportunities for divergence across major bio-

geographic and ecological boundaries. Our previous studies

of Hydrophis have shown strong vicariance at inter-regional

scales [12], and rapid morphological evolution driven by eco-

logical specialization [20]. However, work is needed to

identify links among geographical, ecological and life-history
traits in sea snake species formation and diversity limits. Our

findings also provide a valuable evolutionary context for sea

snake conservation planning. In particular, the contrasting

phylogeographic histories of Hydrophis and Aipysurus–
Emydocephalus species suggest that they may respond differ-

ently to shared threats and require different spatial strategies

to preserve genetic diversity and population processes.
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