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Abstract. Ultrasound images acquired during axillary nerve block procedures can be difficult to interpret.
Highlighting the important structures, such as nerves and blood vessels, may be useful for the training of inex-
perienced users. A deep convolutional neural network is used to identify the musculocutaneous, median, ulnar,
and radial nerves, as well as the blood vessels in ultrasound images. A dataset of 49 subjects is collected and
used for training and evaluation of the neural network. Several image augmentations, such as rotation, elastic
deformation, shadows, and horizontal flipping, are tested. The neural network is evaluated using cross valida-
tion. The results showed that the blood vessels were the easiest to detect with a precision and recall above 0.8.
Among the nerves, the median and ulnar nerves were the easiest to detect with an F -score of 0.73 and 0.62,
respectively. The radial nerve was the hardest to detect with an F -score of 0.39. Image augmentations proved
effective, increasing F -score by as much as 0.13. A Wilcoxon signed-rank test showed that the improvement
from rotation, shadow, and elastic deformation augmentations were significant and the combination of all aug-
mentations gave the best result. The results are promising; however, there is more work to be done, as the
precision and recall are still too low. A larger dataset is most likely needed to improve accuracy, in combination
with anatomical and temporal models. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.4.044004]
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1 Introduction
Ultrasound-guided axillary nerve blocks are used for local anes-
thesia of the arm as an alternative to general anesthesia.
Ultrasound imaging is used to find the target nerves and the sur-
rounding blood vessels. Local anesthetics are administered using
a needle, which is usually visualized in the ultrasound image
plane. The ultrasound images of these procedures can be difficult
to interpret, especially for inexperienced users. Worm et al.1 con-
cluded in their study that ultrasound-guided regional anesthesia
education focusing on still ultrasound images is not sufficient,
whereas ultrasound videos and graphical enhancers may help stu-
dents learn how to identify nerves in ultrasound. Wegener et al.2

did an experiment with 35 novice subjects, who had performed
<30 ultrasound-guided nerve blocks, on identification of nerves
and related structures in ultrasound of several locations, including
the axillary nerve block region. They observed that after a basic
training course, one group of the participants failed to identify
more than half of the anatomical structures while the other
group, which received an additional tutorial, failed to identify
one-third of the structures. These low identification scores of
novices indicate that there is a need for better training tools.

Image segmentation can be used to automatically identify the
different critical structures in an image, such as nerves and blood
vessels. Highlighting these structures in real time, as shown in
Fig. 2, may be useful for training of inexperienced users. If good
enough accuracy can be achieved, it may also be used for guid-
ance during actual nerve block procedures.

Nerves are often difficult to distinguish from surrounding tis-
sue in ultrasound images. In general, nerves appear as bright
structures with black spots inside. Hadjerci et al.3 segmented
the median nerve from ultrasound images using k-means clus-
tering to find hyperechoic tissue, and then a texture analysis
method based on a support vector machine classifier was
used to identify the nerve. Hadjerci et al. developed this method
further in Refs. 4 and 5. A segmentation method for the sciatic
nerve in ultrasound images was presented by Hafiane et al.6 This
method involved active contour segmentation driven by a phase-
based probabilistic gradient vector flow. Smistad et al.7 created a
guidance system for femoral nerve blocks, where the femoral
artery and nerve were automatically segmented in real time.
This system used a combination of the location of the artery,
fascia, and presence of hyperechoic tissue to infer the location
of the femoral nerve.

The short-axis cross section of blood vessels usually appears
as dark ellipses in an ultrasound image. Several tracking meth-
ods based on using a Kalman filter have been proposed.8–10

Most of these methods require manual initialization and are sen-
sitive to user settings, such as gain on the ultrasound scanner.

In recent years, deep convolutional neural networks (CNNs)
have achieved great results in image classification, segmenta-
tion, and object detection, even on challenging ultrasound
images. There are some recent works using CNNs to find the
nerves in ultrasound images. In 2017, Zhao and Sun,11 and
Baby and Jereesh12 used a U-net CNN on the Kaggle dataset
on ultrasound images of nerves in the neck. The appearance
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of nerves varies a lot depending on the patient and the location in
the body. Creating a segmentation method that can accurately
find nerves anywhere in the body is challenging. All previous
studies, therefore, target specific nerves. CNNs have also been
used to find blood vessels in ultrasound images. Smistad and
Lovstakken13 used an image classification network to classify
image patches of candidate vessel structures.

This paper investigates the use of CNNs to identify the four
nerves (musculocutaneous, median, ulnar, and radial nerve) and
blood vessels in ultrasound images acquired during axillary
nerve block procedures. Figure 1 shows a typical example of
an ultrasound image from this procedure. Compared to current
state of the art, the presented method is able to identify and dif-
ferentiate multiple nerves and blood vessels. Also, the method is
validated on a relatively large dataset of 49 subjects with leave-
one-subject-out cross validation. The end goal of this work is to
highlight important structures in real time to aid in the training
of clinicians and not to achieve a pixel perfect segmentation. The
reason for distinguishing the four different nerves, instead of
detecting all nerves as a single class, is to be able to highlight
the different nerves with different color as shown in Fig. 2.

2 Methods

2.1 Dataset

A dataset of 49 subjects was collected from both healthy vol-
unteers and patients undergoing axillary nerve block procedures
at St. Olavs Hospital in Trondheim, Norway. The study was

approved by the local ethics committee and informed consent
was given by all healthy volunteers. Informed consent was
not required by the ethics committee for the patients, as these
were routine acquisitions saved without any patient information.
For each subject, one or more ultrasound videos were acquired,
resulting in a total of 123 ultrasound videos. From each of these
videos, one or more image frames were selected for annotation.
The goal of selecting frames in a video was to capture frames
that were as different as possible so that the final training set
would cover as much variation as possible. Two annotated
images that are almost identical contribute very little, if any-
thing, to the training and can most likely be covered by image
augmentations instead. Thus, if a video had almost no probe
movement, only 1 image frame was selected from that video.
More than one frame was selected if the probe was moved dur-
ing the recording. The frames selected were then the ones that
differed the most to the observer. In total, 462 image frames
were extracted and manually annotated. All ultrasound record-
ings were acquired while the subjects were lying on their backs
in supine position with the arm abducted 90 deg. The ultrasound
probe was positioned on the arm, next to the arm pit, and
perpendicular to the arm axis giving a short-axis view of the
nerves, artery, and veins. Optimization of the ultrasound image
is done by minor movements of the probe while keeping the
artery in the image. Three different ultrasound scanners were
used, Ultrasonix Sonix MDP (L14-5 transducer, 38 mm width,
6 MHz harmonic) (Analogic, Peabody), SonoSite M-Turbo, and
SonoSite Edge (HFL38 transducer, 38 mm width, nerve appli-
cation settings) (FUJIFILM SonoSite, Bothell). The imaging
depth varied from 2.5 to 5 cm.

The location of each structure was annotated by an expert
anesthesiologist using bounding boxes in an in-house web-
based annotation tool. The reason for using bounding boxes
instead of free-hand segmentation was to reduce the time needed
to perform the annotation. Also, pixel-level accuracy was not
required, as the goal was only to highlight the location of the
structures.

After annotation, all images were resized to a width of 256
pixels while keeping the original aspect ratio. Images with a
height above 256 pixels after resizing were cropped, and images
with a lower height were padded with zero values so that the
final image had a size of 256 × 256 pixels. An alternative
would be to stretch smaller images. However, this would also
stretch the blood vessels and nerves and might stretch the target
structures to unnatural proportions.

2.2 Neural Network

Although the data were annotated using bounding boxes, a seg-
mentation neural network was used. The reason for doing seg-
mentation instead of bounding box detection was to achieve a
confidence-based highlight visualization as shown in Fig. 2.
Thus, the bounding box annotations described in Sec. 2.1 were
converted into segmentation by setting all pixels in each box to
the appropriate class.

The fully convolutional U-net neural network architecture
was used, as shown in Fig. 3. The U-net architecture consists
of an encoder and decoder stage and has shown to work well
on several medical image segmentation problems.14 The encoder
performs several 3 × 3 convolutions followed by 2 × 2 max
pooling in steps similar to an image classification network.
The decoder stage performs upsampling and 3 × 3 convolutions.
The number of convolutions was doubled after each

Fig. 1 A typical example of an ultrasound image from the axillary
nerve block procedure with the structures of interest annotated
with bounding boxes.

Fig. 2 The same image as in Fig. 1 is processed with the proposed
method, which highlights the structures of interest. Even though the
dataset is annotated with bounding boxes as shown in Fig. 1, the neu-
ral network performs segmentation, and each pixel’s estimated class
is used to add color with a confidence-based transparency resulting in
a highlighting effect.
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downsampling starting with eight convolutions on the first level
and halved after each upsampling. Cross-over connections from
the encoder to the decoder help to recover fine-grained image
features from the encoder. The cross-over connections were con-
catenated with the upsampled features. Spatial dropout with
a probability of 0.2 was used after each convolutional layer
in the encoder stage.15 This dropout removes entire feature maps
randomly and was essential for preventing overfitting on this
dataset.

The axillary nerve block segmentation problem in this paper
has six different classes: (1) background, (2) blood vessel,
(3) musculocutaneous (MSC) nerve, (4) median nerve,
(5) ulnar nerve, and (6) radial nerve. Thus, the output layer of
the neural network has six output channels for each pixel. A soft-
max activation function is used for the output. Each pixel is
assumed to belong to exactly one class. The majority of the pixels
will belong to the background class; thus, the Dice loss function is
used for all classes except background. This loss function effec-
tively avoids the class imbalance problem.

Training was performed using Tensorflow 1.816 and Keras
2.017 with the Adam optimizer,18 50 epochs, and batch size 32.

2.3 Data Augmentation

The five following types of data augmentations were performed
on the original dataset to increase the variability in the training
data. The augmentations were generated on the fly using the
original data while training. Since the parameter values of each
augmentation are selected at random, this will in theory generate
an infinite stream of distinct images. Nevertheless, the same
original image was never used more than once in one epoch.

2.3.1 Horizontal flipping

Images were flipped horizontally with a probability of 0.5.

2.3.2 Rotation

Images were rotated with a random angle between −10 deg
and 10 deg.

2.3.3 Gamma intensity transformation

The image intensities were transformed with a random gamma
value between 0.25 and 1.75 and clipped to a range between 0
and 1. This mimics the effect of using different settings for gain
and dynamic range on the scanner.

EQ-TARGET;temp:intralink-;e001;326;431Igðx; yÞ ¼ min ð1;max ð0; Iðx; yÞγÞÞ: (1)

2.3.4 Elastic deformation

Elastic deformation was applied to the images using the
approach of Simard et al.19 as shown in Fig. 4. The displacement
fields are multiplied with a scaling factor of α, which controls
the amount of deformation. α was drawn from a uniform distri-
bution of ½0.8; 1.0� multiplied with the image width. The elas-
ticity coefficient σ was sampled from a uniform distribution of
½0.08; 0.1� multiplied with the image width. The segmentation
ground truth was transformed using the same deformation as
the input image.

Fig. 3 The U-net neural network architecture used in this work. For each level, two layers of 3 × 3 con-
volutions were applied. In the encoder stage, every second convolution layer was followed by 2 × 2 max
pooling, and in the decoder, 2 × 2 upsampling and concatenation with a cross-over connection.

Fig. 4 An example of elastic deformation. The original ultrasound
image is superimposed on the deformed image. The scales are in
millimeters.
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2.3.5 Gaussian shadows

Ultrasound often has acoustic shadows due to air or tissue,
which block acoustic energy from penetrating deeper in the tis-
sue. To mimic this effect, a two-dimensional Gaussian shadow
was randomly applied to the image in the following manner.
A random pixel in the image was selected as the center for
the shadow (μx and μy). The Gaussian’s standard deviations,
σx and σy, control the size of the shadow and were chosen
from a uniform distribution between 0.1 and 0.9 of the
image size. The strength of the shadow s was drawn from a uni-
form distribution between 0.25 and 0.8. The Gaussian shadow
image G is then calculated as

EQ-TARGET;temp:intralink-;e002;63;444Gðx; yÞ ¼ 1 − se

�
− ðx−μxÞ2

2σ2x
− ðy−μyÞ2

2σ2y

�
: (2)

Finally, G is pixelwise multiplied with the image I:

EQ-TARGET;temp:intralink-;e003;63;390Isðx; yÞ ¼ Iðx; yÞ � Gðx; yÞ: (3)

An example of a Gaussian shadow is shown in Fig. 5.

2.4 Highlight Visualization

The highlight visualization shown in Fig. 2 was implemented in
OpenGL using blending functions. The final color of a pixel CF

was calculated as the sum of the grayscale color of the ultra-
sound image CUS and the color Ci of all N structures multiplied
by the confidence ci of class i in the pixel:

EQ-TARGET;temp:intralink-;e004;63;263CF ¼ CUS þ
XN
i¼1

Ciciα: (4)

Thus, if the confidence is zero, no color is added to the ultra-
sound image, whereas for higher confidence, more color is
added. A parameter α was used to scale the amount of coloring.
Setting this value to 1 would give a complete coloring of areas
with confidence 1, completely occluding the ultrasound image.
Ideally, one would want to see both the ultrasound image and the
structure’s colors, thus a value of α ¼ 0.3 was used in this work.
The authors believe this visualization is not only more visually
pleasing than bounding boxes but also able to convey the neural
network’s confidence on each pixel by scaling the coloring
strength with the confidence.

2.5 Evaluation

Usually, image segmentation accuracy is reported using pixel-
wise metrics, such as Dice and Hausdorff distance. However, the
goal of this work was only to highlight the nerves and blood
vessels and not to have a perfect delineation of the structures.
This also allows us to use simple bounding boxes for annotation,
instead of free-hand segmentation, which is much more time
consuming. Instead of pixelwise accuracy metrics, we calculate
for each image whether the structures were found or not using
the following criteria:

• True positive: The structure was found. Twenty-five per-
cent of the bounding box was classified as the correct
structure (see Fig. 6).

• False negative: A structure was not found. More than 75%
of the bounding box was classified as the wrong structure.

• False positive: An incorrect structure was found. Any seg-
mentation region >15 × 15 pixels, ∼1.5 mm2, outside of
an bounding box was considered a false positive.

The reasons for using a limit of 25%/75% as shown in Fig. 6
for true positives and false negatives, respectively, are: (1) the
bounding boxes are set to cover the entire structure, as most
structures are not rectangular; this can leave a lot of background
pixels inside the box. (2) Some bounding boxes are set larger
than necessary when annotating. (3) The goal is not pixel perfect
segmentation but only highlighting the location of the structures.

With these measures, recall and precision were calculated for
each image. A confidence threshold has to be used to determine
the class of a pixel. One option is to choose the class that has the

Fig. 5 An example of a Gaussian shadow: (a) the original ultrasound image and (b) has an added
Gaussian shadow.

Fig. 6 At least 25% of a bounding box has to be classified as the cor-
rect class with a confidence above 0.5 to be counted as a true
positive.
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highest confidence. However, in the worst case where each class
has about the same confidence of 1∕6 ¼ 0.16, a class with
a confidence just above 0.16 would get selected, which is
a very low value. On the other hand, a high threshold value
of 0.9 would not leave much room for uncertainty. Thus, a con-
fidence threshold of 0.5 was chosen.

In machine learning, the dataset is usually divided into three
sets: training, validation, and test set. To ensure an unbiased
evaluation, leave-one-subject-out cross validation was used.
Thus, a total of 49 neural network models were created, one
for each subject. This is time consuming but gives a better
impression of the expected results on data from a new subject.
For each model, one subject was used as the test subject, three
random other subjects were used for validation, and the rest for
training as shown in Fig. 7. The best performing model on the
validation data from all epochs was selected. All accuracy mea-
surements were done per subject.

3 Results
The average precision and recall of each structure for the cross
validation are shown in Fig. 8. The precision and recall were
calculated for each subject and then averaged for all the subjects.
This was done for each of the five structures. The standard
deviation was calculated to be in the range of 0.2 to 0.4 as
shown in the figure. To see the effect of image augmentations,
the results are presented with and without augmentations.
Augmentations were only used during training.

Figure 9 shows the effect of each augmentation method for
each object. Here, the F-score, which combines recall and pre-
cision, was used to fit everything in one figure. A Wilcoxon
signed-rank test was used to check for statistical significance
in improvement in F-score compared to using no augmenta-
tions. The p-values for augmentations flip, rotate, gamma,
shadow, and elastic were 0.335, <0.001, 0.583, <0.001, and

 

 

 

Fig. 7 Leave-one-subject-out cross validation. Each number and square represent one subject.

Fig. 8 Precision and recall per structure averaged over all subjects. The numbers above each bar are the
average values and the black lines represent the standard deviation. The blue bars are the results with no
augmentations, and the green results are with all the described augmentations.
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0.028, respectively. Thus, rotate, shadow, and elastic augmenta-
tions yielded a statistical significant improvement. The p-value
of all augmentations combined was <0.001.

The F-score was also used to identify the best-, median-, and
worst-case subjects. Two result images from each of these sub-
jects are shown in Fig. 10. In these images, the bounding boxes
of the expert annotations are shown in different colors for each
structure. The highlight visualization was not used in this figure;
instead, the pixels were given a fixed color if the confidence was

above 0.5 for a given class. This was done to better show which
pixels are actually used when calculating the accuracy.

Inference runtime of the network was within real-time con-
straints. The runtime was measured to be 10 ms on average for
single frames using a NVIDIA Geforce GTX 1080 Ti GPU.
Training took about half an hour per model.

A video showing the real-time highlighting on ultrasound
recordings of the best, median, and worst cases in Fig. 10
has been uploaded and is available online.20

Fig. 9 Comparison of the different augmentation methods using the average F -score.

Fig. 10 Two result images from the best-, median-, and worst-case subjects in terms of F -score. The
bounding boxes are the expert annotations, while the colored regions are the neural network output for
each class thresholded at 0.5: blood vessels (red), MSC nerve (yellow), median nerve (green), ulnar
nerve (magenta), and radial nerve (cyan).
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4 Discussion
The results show that the CNN best detect the blood vessels with
an average recall of 0.81 and precision of 0.88. This is not sur-
prising as blood vessels are usually easily distinguishable from
other types of tissue.

The MSC nerve is generally the most visible nerve as it is
located inside a muscle. Muscles appear dark in ultrasound
images, giving a good contrast to the hyperechoic nerve.
Still, the results show that the neural network has more trouble
finding the MSC nerve than the median nerve, which is more
difficult to distinguish from surrounding tissue. This may be
due to the fact that the median nerve is almost always located
close to the axillary artery. By finding the artery, the CNN might
more reliably guess where the median nerve is compared to the
MSC nerve, which is usually located more distal to the artery.

The results also show that the radial nerve is the most diffi-
cult to detect. This is also the case for humans. The radial nerve
is often located below the axillary artery and, therefore, not
clearly visible at this position. However, this nerve can be easily
visualized and blocked at the level of the elbow instead. One
potential extension of this work would be to collect images
from this area and annotate the radial nerve from this site
as well.

The standard deviation for the precision and recall was high
(0.25 to 0.4) for the nerves. Thus, the accuracy can vary a lot
from one subject to the other, as shown in Fig. 10. This is most
likely due to the high variation in anatomy and acquisition.

The comparison of different augmentation methods in Fig. 9
shows that each augmentation contributes to improved F-score,
and the combination of all leads to the best overall F-score.

Direct comparison with previously published methods is dif-
ficult since we have not found any that target the axillary block
and the four nerves present there. Previous work focuses on the
median nerve at the forearm,3–5 the sciatic nerve,6 the femoral
nerve,7 or the brachial plexus of the neck (Kaggle competi-
tion).11,12 Also, most of these studies use the pixelwise Dice
score for evaluation, which is not directly comparable to the
objectwise precision–recall detection scores. The reported
Dice scores range from 0.65 to 0.9, whereas the Dice score
in this work is lower than this because the dataset is annotated
by bounding boxes while the neural network learns to perform
segmentation. The most relevant work for comparison is the
work of Hadjerci et al.5 from 2016, which performed automatic
localization of the median nerve at the forearm. Their localiza-
tion method achieved an average F-score of 0.70, which is com-
parable to the proposed method, which has an F-score of 0.73
for the median nerve at the armpit. However, the same nerve can
appear differently when imaged at different places, such as the
forearm and the armpit.

The main goal of this work was to create an application for
training clinicians in interpreting ultrasound images for nerve
block procedures. Whether the proposed system is accurate
enough today for aiding training is hard to say and will require
a follow-up study. One thing is certain: there is room for improv-
ing the detection results of the proposed highlighting method. In
a training setting, where the volunteer to be scanned is known in
advance, it is also possible to acquire one or two ultrasound
images of this person in advance, have experts annotate the
images, and run the training again. The neural network should
then be able to learn the anatomical configuration of this per-
son’s nerves and correctly highlight image planes different

than the ones that were annotated while a novice user scans
the volunteer.

More training data will most likely improve the accuracy by
covering more anatomical and acquisition variations expected to
be seen in the population. The fact that augmentations are
increasing accuracy supports this belief, as augmentations create
more training data, although with limited variation. Also, in a
training setting, it should be possible to select subjects with
average anatomy and good acoustic conditions.

Clinicians performing these kinds of procedures use real-
time ultrasound to determine the position of the nerves. With
real-time imaging, they can study the dynamics of the tissue
by applying pressure with the probe and also see how the tissue
moves with the pulsatile artery. The neural network in this paper
only processes single images and, therefore, has no form of tem-
poral memory. In addition to acquiring a bigger dataset, incor-
porating temporal information should be a key to improving the
accuracy.

5 Conclusion
The results are promising in terms of real-time automatic high-
lighting nerves and blood vessels in peripheral nerve blocks.
There is, however, more work to be done, as the precision
and recall are still too low. Ultrasound images from axillary
nerve block procedures exhibit large variation in anatomy
and image quality, and the nerves can be hard to detect even
for human experts in still images. A larger dataset is most likely
needed to improve accuracy, in combination with methods that
can incorporate anatomical and temporal information.
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