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Abstract. Grand challenges stimulate advances within the medical imaging research community; within a com-
petitive yet friendly environment, they allow for a direct comparison of algorithms through a well-defined, cen-
tralized infrastructure. The tasks of the two-part PROSTATEx Challenges (the PROSTATEx Challenge and the
PROSTATEx-2 Challenge) are (1) the computerized classification of clinically significant prostate lesions and
(2) the computerized determination of Gleason Grade Group in prostate cancer, both based on multiparametric
magnetic resonance images. The challenges incorporate well-vetted cases for training and testing, a centralized
performance assessment process to evaluate results, and an established infrastructure for case dissemination,
communication, and result submission. In the PROSTATEx Challenge, 32 groups apply their computerized
methods (71 methods total) to 208 prostate lesions in the test set. The area under the receiver operating char-
acteristic curve for these methods in the task of differentiating between lesions that are and are not clinically
significant ranged from 0.45 to 0.87; statistically significant differences in performance among the top-performing
methods, however, are not observed. In the PROSTATEx-2 Challenge, 21 groups apply their computerized
methods (43 methods total) to 70 prostate lesions in the test set. When compared with the reference standard,
the quadratic-weighted kappa values for these methods in the task of assigning a five-point Gleason Grade
Group to each lesion range from −0.24 to 0.27; superiority to random guessing can be established for only
two methods. When approached with a sense of commitment and scientific rigor, challenges foster interest
in the designated task and encourage innovation in the field. © 2018 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.JMI.5.4.044501]
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1 Introduction

1.1 Challenges

The medical imaging research community has been highly
active in the field of computer-aided diagnosis (CAD), which
incorporates radiomics, machine learning, and deep learning.
The successful development of clinically useful algorithms in
this domain, however, requires extensive resources and many
years of dedication from committed research groups.
Working independently, these groups typically dedicate consid-
erable effort to acquiring sufficient patient data and providing
the “ground truth” required for proper algorithm training and
testing. Most of the time, these data do not become publicly
available. The reporting of CAD research, therefore, typically
does not allow a comparison of the relative merits of different
approaches used by different research groups, which is known to

depend on database composition, lesion subtlety, “truth” defini-
tion, and performance evaluation metric.1–3

Medical imaging grand challenges facilitate the direct com-
parison of different task-specific algorithms since, in the chal-
lenge paradigm, all algorithms must operate on a common
image dataset and have their performance evaluated with the
same metric. Through challenges, the most promising methods
for a specific task may be identified. Challenges provide the
resources necessary for friendly competition among research
groups with the overall goal of generating interest and collab-
orations among investigators. A relevant grand challenge in this
context (and the one that actually motivated the PROSTATEx
Challenges) is PROMISE12,4,5 which compares interactive
and (semi)-automated segmentation algorithms for magnetic
resonance images (MRI) of the prostate. Since its creation in
2012, PROMISE12 has been online and has accumulated 45
submissions to date. This ongoing challenge provides a ranking
of the latest technology in prostate MRI segmentation and has
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been referenced in 141 publications according to a recent
Google Scholar search.6,7

SPIE, the international society for optics and photonics, and
the American Association of Physicists in Medicine (AAPM)
along with the National Cancer Institute (NCI) sponsored the
LUNGx Challenge (the “SPIE-AAPM-NCI Lung Nodule
Classification Challenge”) for the computerized classification
of lung nodules as benign or malignant on diagnostic computed
tomography scans in conjunction with the 2015 SPIE Medical
Imaging Symposium.8,9 The success of this challenge motivated
these organizations to host another collaborative challenge with
timely clinical relevance; MRI of the prostate was identified as
presenting a number of possible tasks around which a meaning-
ful challenge could be developed.

1.2 Magnetic Resonance Imaging of the Prostate

Prostate cancer accounts for one in five diagnoses of cancer.10

Conventionally, biopsy has been used to diagnose prostate
cancer. Prostate MRI, however, can reduce unnecessary biopsies
by 25%, reduce over-diagnosis of clinically insignificant pros-
tate cancer, and improve detection of clinically significant
cancer,7,11 where a “clinically significant” prostate cancer is
one for which the highest biopsy Gleason score is ≥7 (i.e.,
Gleason Grade Group >1). Prostate MRI captures multiple ana-
tomic and functional parameters of the prostate and is, therefore,
referred to as “multiparametric MRI” (mpMRI). Interpreting
mpMRI of the prostate is difficult, and a scoring system [pros-
tate imaging-reporting and data system (PI-RADS)] has been
developed to help improve interpretation.12 Unfortunately,
even experienced radiologists achieve only moderate reproduc-
ibility with PI-RADS.13

Computerized image interpretation systems are being
developed to help improve human evaluation of mpMRI of
the prostate and the relationship between imaging and patho-
logic assessment.14–25 A first mpMRI CAD system for
classification15 had a standalone area under the receiver operat-
ing characteristic curve (AUC) value of 0.89 in the differentia-
tion of manually delineated lesions as insignificant or significant
prostate cancers. This system was used to help improve the per-
formance of less-experienced radiologists (AUC ¼ 0.81) to
approach that of experts (AUC ¼ 0.91).16 Another system
extracted texture features from two mpMRI sequences to distin-
guish cancer from benign lesions, a task that achieved an AUC
value of 0.83.17 A CAD system trained to identify prostate can-
cers with a Gleason score of at least seven attained a per-patient
AUC of 0.95, which was statistically significantly greater than
the AUC value from scores assigned manually on a five-point
Likert scale at biopsy.18 An AUC value of 0.95 in the differen-
tiation of prostate cancer from normal foci within mpMRI
images was achieved by a CAD system that also identified
image-based features demonstrating moderate correlation with
Gleason score.19 A commercial system generated less satisfac-
tory results with an MRI-based prostate cancer detection sensi-
tivity and specificity of 47% and 75%, respectively; a devised
feature-based index for prostate cancer classification demon-
strated an AUC value of 0.65 and failed to achieve a statistically
significant correlation with Gleason score.20 A fully automated
CAD detection and classification system to identify clinically
significant prostate lesions26 in a simulated combined reading
paradigm was shown to provide moderate improvement in read-
ing performance;6 however, evaluation of an automated CAD
detection system27 led Greer et al.28 to conclude: “CAD-assisted

mpMRI improved sensitivity and agreement, but decreased
specificity” in the task of detecting clinically significant prostate
cancers. This conclusion demonstrates that CAD for prostate
mpMRI is a very challenging topic. Many more prostate mpMRI
CAD systems have been published, yet they have been neither
clinically validated nor compared with other mpMRI CAD sys-
tems, thus making it impossible to compare systems or define
progress in the field. A major impediment to progress has
been the absence of a public mpMRI dataset of the prostate
with well-defined performance metrics to compare mpMRI
CAD systems. The PROSTATEx Challenges sought to over-
come this problem.

1.3 Two-Part PROSTATEx Challenge

The two PROSTATEx Challenges were a collaborative effort
sponsored by the SPIE, the AAPM, and the NCI. The first chal-
lenge, the PROSTATEx Challenge (the “SPIE-AAPM-NCI
Prostate MR Classification Challenge”), involved quantitative
image analysis methods for the diagnostic classification of clin-
ically significant prostate lesions, whereas the PROSTATEx-2
Challenge (the “SPIE-AAPM-NCI Prostate MR Gleason Grade
Group Challenge”) involved quantitative MRI biomarkers for
the determination of Gleason Grade Group in prostate cancer.
Both challenges sought to promote the advancement of image-
based computational approaches to reduce unnecessary biopsies.
The PROSTATEx Challenge was conducted prior to the 2017
SPIE Medical Imaging Symposium (Orlando, February 2017)
and was featured at a special session during the Symposium, dur-
ing which the two best-performing groups presented their meth-
ods (these groups were recognized at an awards ceremony and
were provided with complimentary meeting registration). The
PROSTATEx-2 Challenge was conducted prior to the 2017
AAPM Annual Meeting (Denver, July 2017), again with the
two best-performing groups presenting their methods at a spe-
cial session during the meeting (these two groups also received
recognition at an awards ceremony and received complimentary
meeting registration). The purpose of this paper is to (1) report
the clinical motivation behind the radiologic tasks that the
PROSTATEx Challenges were designed to promote, (2) describe
the complementary aspects (along with the integration difficul-
ties) of the two-part PROSTATEx Challenges, (3) describe the
processes involved with the conduct of these two challenges,
(4) report statistics for the numbers of participating groups,
(5) summarize the overall results of the performance assessment
metrics used in the PROSTATEx and PROSTATEx-2
Challenges, and (6) discuss the potential clinical implications
for best-performing methods in both parts of the challenge.

2 Methods

2.1 Dataset

A 2012 prostate mpMRI cohort acquired from a single center
(Radboud University Medical Center) was reused from a pre-
vious CAD study.26,29 Each mpMRI scan was read or supervised
by an expert radiologist (20 years experience), who indicated
point-based suspicious findings and assigned a PI-RADS
score. Findings with a PI-RADS score ≥ 3 were referred to
biopsy. All biopsies were performed under MRI guidance.
Biopsy specimens were graded subsequently by a pathologist
with over 20 years of experience, and these results were used
as ground truth for the PROSTATEx Challenges.
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Each mpMRI scan included multiple orthogonal T2-
weighted, dynamic contrast-enhanced (DCE), and diffusion-
weighted imaging (DWI). MRI hardware included a 3T
MAGNETOM Trio and Skyra (Siemens Medical Systems).
T2-weighted images were acquired using a turbo spin echo
sequence and had a 2-D resolution of∼0.5 mm and a slice thick-
ness of 3.6 mm. The DCE time series was acquired using a 3-D
turbo flash gradient echo sequence with a resolution of
1.5 × 1.5 × 4 mm3 and a temporal resolution of 3.5 s. The
DWI series was acquired with a single-shot echo-planar imaging

sequence with 2 × 2 × 3.6-mm3 resolution, diffusion-encoding
gradients in three directions, 3 b-values (50, 400, and
800 s∕mm2), and a computed apparent diffusion coefficient
map. Ktrans images computed from the DCE images30 were
included in mhd format. Location and a reference thumbnail
image were provided for each lesion, and each lesion had
a known pathology-defined Gleason Grade Group:31

• Grade Group 1 (Gleason score ≤ 6): only individual dis-
crete well-formed glands.

Gleason 
Grade 
Group

Transaxial T2-weighted image Sagittal T2-weighted image ADC image

1

2

3

4

5

Fig. 1 Example mpMRI images demonstrating lesions assigned to each of the five Gleason Grade
Groups based on subsequent biopsy and pathologic analysis. An arrow indicates the location of the
lesion in each image.
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• Grade Group 2 (Gleason score 3þ 4 ¼ 7): predominantly
well-formed glands with lesser component of poorly
formed/fused/cribriform glands.

• Grade Group 3 (Gleason score 4þ 3 ¼ 7): predominantly
poorly formed/fused/cribriform glands with lesser compo-
nent of well-formed glands.

• Grade Group 4 (Gleason score 4þ 4 ¼ 8, 3þ 5 ¼ 8,
5þ 3 ¼ 8): (1) only poorly formed/fused/cribriform
glands, (2) predominantly well-formed glands and lesser
component lacking glands, or (3) predominantly lacking
glands and lesser component of well-formed glands.

• Grade Group 5 (Gleason scores 9 and 10): lacks gland
formation (or with necrosis) with or without poorly
formed/fused/cribriform glands.

The Gleason Grade Group for each lesion, determined by the
pathologist, provided the ground truth for the PROSTATEx-2
Challenge (Fig. 1). Recent evidence suggests a relationship
between PI-RADS score based on mpMRI findings and pathol-
ogy-based Gleason Grade Group.32 The median age of patients
in this cohort was 66 years (range: 48 to 83 years). The median
PSA level was 13 ng∕ml (range: 1 to 56 ng∕ml). The percent-
ages of patients with Gleason Grade Group 1, 2, 3, 4, and 5 were
32%, 36%, 16%, 9%, and 7%, respectively.

2.2 Challenge Logistics

The challenge was conducted using the MedICI platform33

developed through funding from NIH and Leidos. This open-
source platform is built using a number of open-source modules
including CodaLab,34 caMicroscope, ePad, 3-D slicer, and R.
The platform supports user and data management, communica-
tions through mass emails and forums, and evaluation and visu-
alization of results. This platform has been used to host
a number of challenges including challenges sponsored by
MICCAI, RSNA, and AAPM. The platform was used as
a front-end for case download (images and associated metadata
along with lesion information), distribution of information
regarding challenge logistics (e.g., due dates and results format)
and rules, and ongoing communication among participants and
organizers through a discussion forum. All de-identified images
and lesion information were stored on NCI’s publicly accessible
The Cancer Imaging Archive (TCIA).35,36 The data will remain
on TCIA in perpetuity.

Participants were required to create an account on the
MedICI platform. The challenges were specifically designed
so that a participant (either an individual or a group) could par-
ticipate in PROSTATEx, PROSTATEx-2, or both. Although par-
ticipants were allowed to download the training cases and test
cases (once they were made available) for either challenge to
assess the compatibility of the images and clinical tasks with
their methods and software interfaces, participants were not
allowed to withdraw from either challenge once they submitted
test set results. Participants were not explicitly limited in the
manner in which they could use the provided training set
cases or in the use of independent cases for the training of
their methods. No human manipulation of, or intervention
with, the test set cases was allowed with the exception of manual
or human-supervised delineation of the prostate boundary or the
gross lesion margin; participants were on their honor to abide by
these rules.

2.3 Quality Assurance

Quality assurance (QA) is important for both the participants
and the organizers of a challenge. Well-curated data reduces
the burden of (1) the intensive communication between the par-
ticipants and the organizers when issues and inaccuracies are
discovered, (2) correcting the database once the tight timetable
of a challenge has been initiated, and (3) ensuring that any cor-
rections are reliably distributed to all participants. AQA process
following a data inspection protocol was performed on the
image data and the associated metadata to provide reliable
and high-quality data to the participants.

The first part of the QA process (1) verified the availability of
all image sets and associated metadata for download from TCIA
and (2) verified the technical logistics of the download process.
The database was corrected for missing images and missing
metadata. The procedure also verified that the downloaded
images were not corrupted and could be displayed with a stan-
dard graphic user interface tool.

The second part of the QA process verified the accuracy of
the provided metadata in relation to the images. The mpMRI
dataset used in the challenges had a complex composition, con-
taining multiple types of MRI scans and derivative image vol-
umes in different cross-sectional views. The QA process verified
that the provided lesion centroids pointed to the correct locations
on the corresponding MRI images for every lesion. The process
also verified that the provided thumbnails corresponded to the
correct lesion locations across all MRI scans. The lesion cent-
roid locations and thumbnails were corrected if necessary.
In addition, the QA process periodically assessed whether the
description and corresponding procedure for download, organi-
zation, and utilization of the image sets and the corresponding
metadata were up-to-date and correct; consequently, the work-
flow, the data, and the data descriptions were improved
continuously.

2.4 PROSTATEx

The PROSTATEx Challenge released a training set of cases in
November 2016 that contained mpMRI scans of 330 prostate
lesions along with spatial location coordinates, anatomic zone
location, and known clinical significance of each lesion.
Three weeks later the test set of cases was made available;
the test set contained mpMRI scans of 208 prostate lesions
(Table 1) with spatial location and anatomic zone, but the clini-
cal significance information for these lesions was not included.
After a period of five weeks, the results from each participant
were submitted to the organizers in the form of a single real
number on the range [0, 1] for each lesion representing the com-
puter-determined likelihood of the lesion being clinically
significant.

Table 1 The numbers of prostate lesions and patients in the training
and test sets for PROSTATEx and PROSTATEx-2.

Number of lesions
(training set/test set)

Number of patients
(training set/test set)

PROSTATEx 330/208 204/140

PROSTATEx-2 112/70 99/63
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To assess performance in the task of distinguishing clinically
significant from nonsignificant disease, receiver operating char-
acteristic (ROC) analysis based on the proper binormal ROC
model37,38 was used with AUC as the figure of merit. The perfor-
mance of each method was compared with that of random guess-
ing (AUC ¼ 0.5), and statistical significance of differences in
performance between methods was assessed. These analyses
were performed through bootstrapping (1000 iterations) to esti-
mate p-values and 95% confidence intervals for differences in
AUC. In this investigational study, corrections of statistical sig-
nificance for multiple comparisons were not performed. To assess
the potential synergy among methods used by participants, sub-
missions were incrementally “fused” in order of decreasing per-
formance by averaging the estimated likelihoods provided by
each submission for each lesion. In other words, submissions
were “fused” by averaging, for each lesion, the estimated prob-
abilities of being clinically significant disease for the two top-per-
forming methods, then for the three top-performing methods, and
so on through inclusion of all methods, and this average at each
iteration was used as the decision variable in ROC analyses.

2.5 PROSTATEx-2

The PROSTATEx-2 Challenge released a training set of cases in
May 2017 that contained mpMRI scans of 112 prostate lesions
(Table 1) and, for each lesion, included spatial location coordi-
nates, anatomic zone location, and known Gleason Grade
Group. Three weeks later, the test cases were made available
with mpMRI scans of 70 prostate lesions along with spatial loca-
tion and anatomic zone, but the Gleason Grade Group informa-
tion for these lesions was not included. After eight weeks, each
participant submitted their results to the organizers as a single
ordinal value on the range [1, 5] for each lesion representing the
computer-determined Gleason Grade Group. Cases used for the
PROSTATEx-2 Challenge were a subset of the cases use for the
PROSTATEx Challenge and included only clinically significant
lesions.

To assess the agreement between the Gleason Grade Group
for each lesion as estimated by each participant’s method and
the “truth” obtained from pathology, the quadratic-weighted
kappa was used.39 Kappa, unlike “accuracy,” accounts for agree-
ment by chance and uses quadratic weights to more strongly
penalize larger differences between the estimated Gleason
Grade Group and the true Gleason Grade Group. Should multi-
ple methods achieve the same kappa coefficient, the positive
predictive value of each method’s ability to identify Gleason
Grade Group > 1would be used to break the tie (after all results
were submitted, no tie breaker was needed). Analogous to the
analysis for the first PROSTATEx Challenge, submissions were
incrementally “fused” in order of decreasing performance by
averaging (and rounding) the submitted estimates for the
Gleason Grade Group by lesion. Bootstrapping (1000 iterations)
was used to assess statistical significance of differences in per-
formance, both for individual methods with respect to random
guessing (kappa ¼ 0) and for “fused” methods with respect to
the method achieving the highest kappa.

3 Results

3.1 PROSTATEx

Thirty-two groups submitted results from a total of 71 methods
(groups were allowed to submit results from up to three

methods). Most, but not all, methods outperformed random
guessing (AUC ¼ 0.5) (Fig. 2). The best-performing method
obtained an AUC value of 0.87 (standard error 0.027), and
the next three methods all achieved AUC values of 0.84
(with standard errors of 0.036, 0.032, and 0.032). Statistically
significant differences in performance among these four best
methods, however, were not observed. After ranking the meth-
ods by decreasing AUC, the first method that demonstrated a
statistically significant difference in AUC with respect to the
best-performing method had an AUC of 0.82 (standard error
0.034) (p-value with respect to the winning submission
0.036; 95% confidence interval for the difference in AUC
½−0.102;−0.003�).

When methods were “fused,” the maximum performance was
obtained for a fusion of the best 25 submissions, which obtained
an AUC of 0.92 (standard error 0.077) (Fig. 3). The first instance
in which the performance of fused methods exceeded that of the
winning submission was when likelihoods of the best nine meth-
ods were averaged to achieve an AUC of 0.90 (standard error
0.076) (p-value with respect to the winning submission
0.036; 95% confidence interval of the difference in AUC
[0.002, 0.055]). As expected, the performance of “fused” meth-
ods leveled off with increasing number of submissions “fused”
and subsequently declined when likelihoods of too many lower-
performing methods were included in the average.

From among the participating groups that responded to
a postchallenge questionnaire about their methods, most trained
their system exclusively on the PROSTATEx training cases.
Methods were equally divided between traditional feature
extraction with an appropriate classifier and the use of a convo-
lutional neural network. Different groups used various combi-
nations of the provided mpMRI image sequences in their
systems. The eight groups with a method that achieved one
of the top six scores were invited to submit a conference pro-
ceeding paper; four groups accepted this invitation.40–43

Fig. 2 AUC values achieved by the 71 methods that participated in
the PROSTATEx Challenge with error bars indicating 95% confidence
intervals.

Fig. 3 AUC values achieved by the incremental fusion of the 71 meth-
ods that participated in the PROSTATEx Challenge with error bars
indicating 95% confidence intervals.
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3.2 PROSTATEx-2

Twenty-one groups submitted results from a total of 43 methods.
Superiority to random guessing could be established for only
two methods, which achieved quadratic-weighted kappa values
of 0.27 (95% confidence interval [0.06, 0.48]) and 0.26 (95%
confidence interval [0.04, 0.47]) (Fig. 4). Two methods per-
formed significantly worse than random guessing with quad-
ratic-weighted kappa values of −0.22 (95% confidence
interval ½−0.37;−0.03�) and −0.24 (95% confidence interval
½−0.42;−0.06�). The other methods failed to achieve statistically
significant differences in performance with respect to random
guessing (i.e., their 95% confidence intervals for kappa included
zero).

When methods were “fused,” the maximum performance was
obtained for a fusion of the four best methods, which achieved

a quadratic-weighted kappa of 0.40 (95% confidence interval
[0.19, 0.55]) (Fig. 5). The difference with respect to the best-
performing method, however, failed to reach statistical signifi-
cance (95% confidence interval for the difference in kappa
½−0.05; 0.24�).

From among the participating groups that responded to
a postchallenge questionnaire about their methods, most trained
their system exclusively on the PROSTATEx-2 training cases.
Methods were equally divided between traditional feature
extraction with an appropriate classifier and the use of a convo-
lutional neural network. Different groups used various combi-
nations of the provided mpMRI image sequences in their
systems.

4 Discussion
The results achieved during the PROSTATEx Challenges are in
agreement with clinical practice. The highest AUC value in the
PROSTATEx Challenge (0.87) reflects promise for the potential
of such computerized methods to reduce the number of unnec-
essary biopsies. The PROSTATEx-2 Challenge demonstrates
that it is much more difficult for computerized methods to differ-
entiate pathologic Gleason Grade Group than it is for methods to
discriminate between clinically significant and clinically insig-
nificant cancers in the same dataset of cases. The methods in this
domain need further improvement before being used as an aid to
assist with the reduction of unnecessary biopsies or as decision
support in the management of prostate cancer. To further reduce
biopsies, the community should focus on the discrimination of
low- and high-grade cancers (i.e., clinical significance), which,
similar to clinical practice, is a very difficult task.

The PROSTATEx-2 Challenge, in which participants
attempted to assess a pathologic task based on radiologic data
by developing computerized methods to assign a Gleason Grade
Group to prostate lesions based on mpMRI, presented an espe-
cially challenging task, as evidenced by the resulting weak
weighted kappa statistic values across all methods (the best-per-
forming method achieved a weighted kappa value of 0.27).
Rather than signifying a failed challenge, this result demon-
strates that the development of imaging biomarkers for
Gleason Grade Group (to potentially spare patients from biop-
sies) could benefit from more focused effort and resources. In
effect, this “negative study” identified a line of investigation that
is open for creative ideas. It should be noted that even among
pathologists the unweighted kappa values for inter- and intraob-
server Gleason score were found to be 0.54 and 0.66, respec-
tively,44 which both serves as a target for how well a
computerized method should be expected to perform and as
an indication that the reference against which the methods in
the challenge were compared is itself variable. For a more direct
comparison of the present results with the findings of Melia
et al.,44 the highest unweighted kappa value attained in the
PROSTATEx-2 Challenge was 0.19; this value, it should be
noted, is based on the five-point Gleason Grade Group, which
has fewer gradations than the Gleason score used in Ref. 44.

A two-part challenge requires identification of two related
clinical, pathologic, or radiologic tasks that may use the
same dataset in such a way that the conduct of part 1 does
not compromise part 2, either by biasing the results of part 2
or by giving groups that participated in part 1 an unfair advan-
tage during part 2. The tasks could be related but independent, or
the tasks could be sequential and complement each other.
The PROSTATEx Challenges followed the latter approach:

Fig. 4 Weighted kappa values achieved by the 43 methods that par-
ticipated in the PROSTATEx-2 Challenge. Error bars were large and
are not shown for clarity. Filled circles indicate methods that differed
from random guessing (kappa ¼ 0).

Fig. 5 Weighted kappa values achieved by the incremental fusion of
the 43 methods that participated in the PROSTATEx-2 Challenge.
Filled circles indicate fusions that differed from random guessing
(kappa ¼ 0).
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PROSTATEx was a classification task to differentiate between
clinically significant and clinically insignificant prostate lesions,
whereas PROSTATEx-2 sought an additional level of detail
(Gleason Grade Group) for those lesions that were actually clin-
ically significant. A two-part challenge provides an opportunity
for participants to integrate their computational methods in a
more broad clinical context while enhancing the utility of a valu-
able resource (the datasets).

Limitations of this study included the modest sizes of the
datasets. The collection of a sufficient number of cases for train-
ing and testing remains a challenge for challenges, as does the
resulting statistical conclusions that may be drawn. The 330/208
and 112/70 training/test prostate lesions for PROSTATEx and
PROSTATEx-2, respectively, made achievement of statistically
significant differences across methods difficult; each challenge
had best-performing methods according to a rank ordering based
on the respective performance metric, but statistically significant
“winners” were not identifiable. It is worth noting that the sizes
of the training and test sets in the PROSTATEx Challenge were
nearly three times the sizes of the sets in the PROSTATEx-2
Challenge. The latter were a subset of the PROSTATEx datasets
due to the nature of the different tasks in this two-part challenge.
Ideally, to achieve reasonable statistical power and allow for par-
ticipants to better train their methods, the PROSTATEx-2
datasets should have been larger than those for PROSTATEx
since in PROSTATEx-2 participants were tasked with a five-cat-
egory classification (Gleason Grade Group) rather than a two-
class classification (clinically significant/insignificant) as in
PROSTATEx.

Collecting, vetting, and organizing images along with asso-
ciated metadata, clinical data (when appropriate), and “truth” is
a tremendous task. QA processes to ensure the integrity of the
provided data must be implemented for any well-run challenge.
The single-radiologist and single-pathologist reference standard
for the PROSTATEx Challenges was established in conjunction
with an earlier published study,26 although such a standard has
limitations. In a challenge setting, in which the overall goal is
not necessarily determination of absolute clinical performance
but is instead a comparison across methods, the impact of
not having a definitive gold standard might be somewhat
muted; however, incorporating multiple radiologists and poten-
tially multiple pathologists in the reference process would have
allowed incorporation of the variability inherent in these clinical
decisions. Unfortunately, enhancing the reference standard
through inclusion of multiple truthers was not possible within
the timeframe of these challenges. The biopsy-based localiza-
tion of prostate lesions could contribute to additional uncertainty
in the reference standard; however, the biopsies obtained for this
reference standard were performed using in-bore MRI, the
results of which have shown an 88% correspondence with pros-
tatectomy outcome,45 thus maximizing confidence that all
biopsy scores accurately reflect true focal pathology.

Another limitation of this study was the lack of a requirement
for participants to provide details regarding their methods. The
results of challenges are most valuable to the medical imaging
research community when the general algorithmic approach for
methods that performed well (and those that did not perform
well) is reported. Participants should support the intent of the
challenge as a friendly competition among research groups
with the overall goal of advancing the field. Public knowledge
of promising methods would allow researchers (and funding
agencies) to direct their effort and resources in a manner that

achieves the greatest impact. To ensure documentation of
each method’s general approach, the organizers of a challenge
should require participants to submit a methodological summary
at the time of results submission as a requirement for challenge
participation. Perhaps future challenges could encourage (and
eventually require) some forms of code sharing on the part
of participating groups to further accelerate the advancement
of the field.

5 Conclusion
The PROSTATEx Challenges provided annotated mpMRI data-
sets within a challenge framework that allowed for the compari-
son of state-of-the-art computational methods for prostate
cancer diagnosis. The challenge results demonstrate that auto-
mated classification of clinically significant cancer seems fea-
sible, but noninvasive prediction of aggressiveness is quite
difficult. Various future research strategies should be consid-
ered. First, to allow future methods to join the challenge, the
challenge has been made live at prostatex.grand-challenge.org
so that researchers may continue to receive objective feedback,
have the ability to reference their performance in scientific pub-
lications, and identify algorithms with generalizable performance.
Second, two aspects of datasets are crucial: quality and quantity.
Increasing dataset size is likely to increase performance, but there
might be practical limitations on quality. MRI annotation was
shown to be ambiguous in a few cases, and Gleason scoring
has demonstrated variability as well; these issues likely present
an upper limit to the performance achievable by the many top
algorithms having similar performance. A consensus mechanism
to update datasets (either in quality or quantity) in existing or new
challenges is currently lacking; the scientific community should
strive to develop such mechanisms.
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