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High-resolution poverty maps are important tools for promoting equitable

and sustainable development. In settings without data at every location,

we can use spatial interpolation (SI) to create such maps using sample-

based surveys and additional covariates. In the model-based geostatistics

(MBG) framework for SI, it is typically assumed that the similarity of two

areas is inversely related to their distance between one another. Applications

of spline interpolation take a contrasting approach that an area’s absolute

location and its characteristics are more important for prediction than dis-

tance to/characteristics of other locations. This study compares prediction

accuracy of the MBG approach with spline interpolation as part of a gener-

alized additive model (GAM) for four low- and middle-income countries.

We also identify any potentially generalizable data characteristics influencing

comparative accuracy. We found spatially scattered pockets of wealth in

Malawi and Tanzania (corresponding to the major cities), and overarching

spatial gradients in Kenya and Nigeria. Spline interpolation/GAM performed

better than MBG for Malawi, Nigeria and Tanzania, but marginally worse in

Kenya. We conclude that the spatial patterns of wealth and other covariates

should be carefully accounted for when choosing the best SI approach. This

is particularly pertinent as different methods capture geographical variation

differently.
1. Introduction
Poverty has strong associations with adverse health outcomes, lost human

potential and societal instability [1,2]. The international community and

national governments that signed on to the Sustainable Development Goals

are committed to eradicating poverty in all its forms. To achieve this goal, it

is helpful to have information on where affected individuals and communities

reside at refined spatial scales since aggregate data can conceal heterogeneity

and any underlying patterns. Subnational poverty maps that describe spatial

patterns of poverty and inequality across a country can help more effectively

allocate resources and implement targeted interventions to attain higher

levels of wealth and welfare among the most deprived.

Data on poverty indicators at refined geographical scales across a country

are regularly collected via censuses. However, decennial censuses are too infre-

quent to enable timely monitoring and tracking. National surveys are generally

more frequent but representative only for coarse spatial units. To overcome

these constraints, Elbers and colleagues extended the techniques of small area

estimation (SAE) to both types of data in 2000 [3]. The SAE method for area-

unit mapping identifies comparable census and survey variables, models the
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desired attribute (e.g. poverty) using the survey variables

common to the census, and computes poverty on small geo-

graphical partitions (e.g. enumeration area, village or hamlet)

across the country based on the model obtained and the

census predictor variables. Poverty/welfare is assumed to

be uniform within each target region. The method has been

widely used to produce subnational choropleth maps of pov-

erty indicators in many low- and middle-income countries

(LMICs) [4–7]. Other areal interpolation techniques include

the dasymetric modelling method, which takes advantage

of ancillary data to better approximate and redistribute

count data within each target area [8]. This method has

been demonstrated for accurate population mapping by age,

sex and race [9], and may be extended to other socioeconomic

characteristics.

The availability of georeferenced data has drastically

increased in recent years. The Demographic and Health

Survey (DHS) Program, for instance, has gained a reputation

for collecting and providing georeferenced data on core

development indicators in LMICs over the last few decades.

Better data, coupled with new geographical information

system (GIS) analytical techniques, have fuelled interests

among researchers to improve output quality, including

using spatial interpolation (SI) modelling techniques to

create high-resolution gridded map surfaces. We assume

that the variable of interest (e.g. poverty) has a meaningful

value at every location within a study region, which is typi-

cally divided into non-overlapping small grid squares. SI

techniques are then employed to predict values at every

grid based on the sampled data and, where applicable,

auxiliary covariates. Many multivariate spatial statistical

methods have been applied in studies using DHS georefer-

enced data for spatial modelling and interpolation, such as

SAE, kriging, autoregressive methods and model-based

geostatistics (MBG) [10]. In 2013, The DHS Spatial Interp-

olation Working Group assessed various properties of

these SI methods, e.g. computational efficiency, account

for non-stationary variance and inclusion of optimal covari-

ate selection procedures. The Working Group proposed the

MBG approach as the most suitable for creating interpolated

surfaces [10–12]. The incorporation of uncertainty into the

modelling framework was seen as a compelling strength of

MBG [10].

In 2014, the WorldPop project and partners pioneered

the creation of high-resolution gridded map surfaces of the

estimated proportions of people living under the USD1.25

and USD2.00 poverty thresholds with DHS data using a

Bayesian MBG approach [13]. Poverty map surfaces were

drawn for Kenya, Tanzania, Uganda and Pakistan, among

others [13]. Furthermore, maps of population age structure

[14], fertility indicators [15], malaria indicators [16,17] and

other health indicators (e.g. childhood vaccination, child-

hood malnutrition, household access to improved source

of drinking water and sanitation [12,18]) were also produced

using the same framework.

The MBG methodology is detailed elsewhere [19].

Briefly, it divides spatial variation into three components—

deterministic variation, spatial autocorrelation and random

noise [20]. The deterministic variation of the phenomenon

of interest is modelled as a set of covariates, while spatial

autocorrelation refers to a variable’s relationship with

itself in space [21]. It is generally assumed that nearer neigh-

bours are more related to each other than more distant
counterparts. Such positive autocorrelation structure is

defined and used as part of the MBG approach to

explain variation in the data and make more accurate

predictions at unsampled locations across the map region.

Non-stationarity and other localized effects can be dealt

with when implementing MBG via, for instance, optimal

estimation of the covariance matrix or a Bayesian partition

model [22], but the method remains most widely used

for phenomena that are more similar as a function of

the distance separating the sampled locations in practice

[23–25].

On the other hand, spline interpolation is grounded in

a slightly different theoretical viewpoint. Spline inter-

polation assumes that the interpolation function should

pass through (or close to) the data points while being as

smooth as possible. Spline interpolation can be conceptual-

ized as bending a sheet of rubber through the observations

in three-dimensional space. In this method, the geographi-

cal structure of the mapped phenomenon is not explicitly

formulated. Researchers have incorporated spline

spatial interpolation in a generalized additive model

(GAM) formulation with the geographical coordinates

(e.g. longitude and latitude) and other covariates to

create interpolated map surfaces. In this GAM framework,

each predictor variable is related to the outcome via a

smoothed function, then all functions are added to predict

the link function. Insurance pricing [26], property pricing

[27], lexical data [28] and fish ecology [29,30], just to

name a few different outcomes, have been mapped using

this robust method in the literature.

The assumptions about the underlying variation in

the sampled data, the choice of method and the parameters

used can be critical to SI prediction accuracy [20]. Individ-

uals and households with common characteristics

sometimes cluster together either by choice or due to

social, economic, geographical or political forces [31]. The

assumption of spatial autocorrelation in wealth may be

valid, as poverty tends to concentrate in mountainous

regions, arid land, land-locked areas, and levels-off closer

to the national/financial capitals, bodies of water and

coastal areas [32]. In recent years however, the emergence

of secondary cities in many LMICs may have led to certain

degree of within-country redistribution of the population,

economic opportunities and wealth [33]. Secondary cities

are fast-developing regional hubs that provide critical sup-

port functions for governance, production services and

transportation. Sometimes the locations of these cities are

deliberately planned for deprived regions. Thus, a rather

complex spatial structure of towns and cities might be

expected, and raises concerns regarding the quality of

interpolation when (positive) spatial autocorrelation is

assumed and used for prediction making.

The way in which wealth is distributed across the map

region likely affects prediction accuracy of the poverty

maps made using existing SI approaches to different extents.

We present an analysis comparing the performance of spline

interpolation as part of GAM-based fitting with multivariate

MBG for four LMICs in sub-Saharan Africa. The result of this

comparative analysis will empirically reveal the data charac-

teristics that contribute to any discrepancies in prediction

accuracy found between methods. This will in turn shed

light on the suitability of the two methods for the creation

of interpolated poverty maps.



Table 1. Country data and statistics in 2016. GDP, gross domestic product; PPP, purchasing power parity.

Kenya Malawi Nigeria Tanzania

total area (km2) 580 367 118 484 923 768 947 300

% land area 98.1 79.4 98.6 93.5

national population (million)a 47.2 17.6 181.2 53.9

% urban populationa 26 16 48 32

population annual growth rate (%)a 2.6 2.9 2.6 3.1

unemployment rate (%)a 11.9 6.4 4.3 2.1

GDP per capita, PPP (international dollar)a 3020 1159 6039 2653

GDP annual growth rate (%)a 5.7 2.8 2.7 7.0

GDP composition (%)a

agriculture 33.3 29.7 20.9 31.5

industry 19.1 16.0 20.4 26.4

services 47.6 54.3 58.8 42.2

labour force by occupation (%)b

agriculture 38.0 84.7 2.1 66.7

industry 14.3 8.4 19.5 6.0

services 47.8 6.9 78.5 27.3

Gini indexc 48.5 46.1 43.0 37.8
aData for 2015.
bInternational Labour Organization modelled estimates for 2017.
cMost recent data available from http://databank.worldbank.org (last accessed: 31 March 2018).
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2. Data and methods
2.1. Study area
We studied four LMICs in sub-Saharan Africa—Kenya,

Malawi, Nigeria and Tanzania. These countries were

selected based on available data and variability in terms

of geography and economy. National statistics on wealth

and economics of the four countries according to The

World Bank [34] and International Labour Organization

[34] are presented in table 1.

2.2. Data
We used the most recent DHS as of October 2017. The DHS

collects nationally representative data on population health

and sociodemographic characteristics using a multi-stage

cluster sampling design with enumeration area as the pri-

mary sampling unit (PSU). As part of the DHS sampling

procedure, a list of established households in each sampled

PSU is obtained and used as the sampling frame for house-

hold selection [35]. The surveys include the longitude and

latitude coordinates of the population centroids of sampled

PSUs. The accuracy of these locations is estimated within

15 m [36]. For anonymity considerations, urban clusters are

displaced up to 2 km and rural clusters up to 5 km [37].

The displaced point is then checked to ensure that it falls

within the boundaries of the first administrative region, and

re-displaced if necessary [37].

For each DHS, a household wealth index (WI) is com-

puted from a range of consumer durables, access to services

and housing materials via a principal component analysis

[38]. The WI is widely adopted in LMICs as an indicator of

socioeconomic position that describes a household’s
cumulative living standard within an individual survey

[39]. The index is also broadly used for assessing pro-poor

targeting and inequality, and, where relevant, for controlling

for socioeconomic confounding [40]. To approximate poverty

at the PSU level, we used the average household WI (rescaled

by a factor of 1026) with adjustment for survey-specific

weights as outlined by DHS manuals. We present descriptive

results of the data distribution and spatial pattern of WI of

the four study countries.
2.3. Model covariates
We identified and assembled a collection of remote sensing

covariates based on those used by others to generate maps

of multidimensional poverty [13]. In general, the accuracy

of these data to provide up-to-date indication on welfare

and living conditions is considered acceptable [13,41–45].

We included data on population density from version four

of the Gridded Population of the World (GPW) [46], on day-

time land surface temperature [47] and vegetation index [48]

from the NASA Earth Observations (NEO), on elevation data

from the United States Geological Survey (USGS) [49], raster-

ized surfaces of Global Potential evapotranspiration and

Global Aridity Index from the Consortium for Spatial

Information at the Consultative Group for International Agri-

cultural Research (CGIAR-CSI) [50–52], and on night-time

light emission from the National Oceanic and Atmospheric

Administration (NOAA)/National Geophysical Data Center

by the United States Air Force Weather Agency [53,54]. At

their finest resolutions, the land surface temperature layer

and the vegetation index layer were 0.1 degree grids

(approximately 11 km at the equator), while the other cova-

riate layers were 30 arc second grids (approximately 1 km at

http://databank.worldbank.org
http://databank.worldbank.org
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the equator). Using these files, we extracted covariate values

from each raster layers at the georeferenced PSUs, rep-

resented as spatial points, via spatial overlaying [55]. That

is, we superimposed a spatial layer of the georeferenced

PSUs over different covariate layers and obtained covariate

values at the corresponding locations. To account for PSU

location displacement, averages were obtained from the

four nearest raster cells. As a check of sensitivity to alternative

analytical scales, these averages were compared to those

resulting from applying buffer sizes of 5, 10 and 20 km

using Pearson correlation coefficients.

We updated accessibility measures for the current analy-

sis with Natural Earth’s free data on ‘populated places’

(v. 4.0.0, released in October 2017), which included national

and subnational capitals, as well as places with a population

size of at least 50 000 [56]. We calculated the straight-line dis-

tance from every included DHS PSU to the nearest populated

place. We opted for straight-line distance for its comparability

to proxy accessibility with more complicated metrics such as

mechanized and non-mechanized estimated travel time in

LMIC settings [57]. Country administrative areas shapefiles

were obtained from the freely available Database of Global

Administrative Areas [58].

We found missing data in the spatial coordinates of 9 of

1594 PSUs from the Kenya DHS and 7 of 896 PSUs from

the Nigeria DHS. These PSUs were removed from the analy-

sis [59]. There were no other missing data. In addition, one

PSU data point was removed from the analysis in the

Southern Region in Malawi as it had an extreme value of

41 453 for population density, while the median and 75th per-

centile were 267 and 579 and observations of the nearest

neighbours were below 10 000.
2.4. Methods of interpolation
2.4.1. Model-based geostatistics
The MBG model is a class of generalized linear mixed models

with an approximation of a multivariate stationary Gaussian

Process for outcome z at location si with mean m and covari-

ance C for the spatial component, as well as an unstructured

component 1(si) represented as Gaussian with zero mean and

variance [19]. The mean m is modelled using a linear func-

tion of the predictor variables, while spatial covariance is

written as

C(Z(s1), Z(s2)) ¼ E[(Z(s1) – m)(Z(s2) – m)],

where s1 and s2 are a pair of sampled locations of distance h
units apart. Covariance expresses the amount of variation in

the observed Z values at s1 and s2. We separately modelled

the spatial dependency structure using a spherical covari-

ance function for each included survey. The spherical

covariance function is written as r(h): C(h) ¼ s2r(h), where

r(h) ¼ 1� 1:5fhþ 0:5(fh)3, if h ,
1

f

0, otherwise

8<
:

and f the decay parameter [60].
2.4.2. Generalized additive model using spline spatial
interpolation

The spline interpolation consists of polynomials that describe

pieces of a surface and are fitted together so that they join
smoothly [20]. The Akima method was developed to

implement bivariate interpolation onto a grid for irregularly

spaced point data using bivariate smoothing techniques

[61,62]. The interpolation function should pass through or

nearby the observed values at all sampled locations.

For each survey, the interactions between latitude and

longitude of the DHS PSUs are used as a predicator variable

together with the aforementioned in a GAM as smooth func-

tions. The GAM regression technique supports non-Gaussian

error distributions and nonlinear relationships between the

outcome and predictor variables [63]. GAMs are non-

parametric extensions of linear model regressions that

apply nonparametric smoothers to each predictor and

additively calculate the component outcome [63]. A GAM

is expressed as

g(E(Z)) ¼ aþ
Xp

i¼1

f(Xi)þ 1:

We use the identity link g(.) to relate the linear predictor

with the expected value of the response Z. For each predictor

variable Xi, a smoothing function fi is found. GAM can

provide fit for a linear, nonlinear and non-monotonic

relationship. We specified each term as a penalized thin

plate regression spline. A truncated eigen-decomposition is

used to achieve the rank reduction [64].
2.4.3. Linear models
Lastly, we compared the spatial methods with a multivari-

able linear regression, which estimates WI by exploiting its

dependency on population density and other covariates as

outlined earlier. The equation used is

E(Z) ¼ aþ
Xp

i¼1

biXi þ 1:

The regression coefficients bi are constant over the whole

study area and can be estimated using the least square

method, from a set of covariates at N observed locations.
2.5. Assessment of predictive performance
We randomly divided the PSUs of each selected survey into

a training set of 80% and a holdout of 20% for validation.

We used the training set to build the models with all

predictor variables, which was then used to make predic-

tions for the holdout locations. This enabled us to directly

assess prediction accuracy of the three methods compared

to the observed values. We conducted the process for 100

randomly selected training and testing datasets and com-

pared the mean values of four accuracy metrics for each

method. We further repeated the process with three differ-

ent proportions of holdout—30%, 40% and 50%—to

examine the potential impact on prediction accuracy, as

data availability changes.

Prediction accuracy was measured by the mean absolute

error (MAE), root mean square error (RMSE), the goodness-

of-prediction (G) statistics (also referred to as the predictive

R-squared), and correlation coefficient between observed

and predicted values. The MAE was used to detect bias,

and should be zero if the predictions were unbiased. RMSE

was used to measure the average magnitude of the squared

error. Smaller MAE and RMSE values would indicate few
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errors and more accurate predictions from the model. The

two are calculated as follows:

MAE ¼ 1

n

Xn

i¼1

jpi – oij

RMSE ¼ 1

n

Xn

i¼1

( pi – oi)
2

" #1=2

,

where n is the number of predictions made, pi the predicted

value at point si and oi the observed value at location si.

The G-value is a measure of the effectiveness of model

estimates relative to estimating with just the sample mean.

The G-value is written as

G ¼ 1�
Pn

i¼1 ( pi – oi)
2Pn

i¼1 (oi – �o)2

" #
:

A G-value of 1 indicates perfect prediction, a positive

value indicates a more reliable model than if the sample

mean had been used, a negative value indicates a less reliable

model than if the sample mean had been used.

We used Stata/SE 14 data management and R v. 3.4.1 for

all the statistical analyses. MBG and GAM-based fitting were

performed using the R packages spBayes [65] and mgcv [64],

respectively.
3. Results
The number of georeferenced PSUs across the four study sur-

veys ranged from 605 in Tanzania and 1585 in Kenya

(figure 1). The number of sampled households ranged from

12 558 in Tanzania to 38 021 in Nigeria. The average

number of PSU per 1000 km2 was higher in Malawi than in

the other countries—9 compared to 1–3 (figure 1). The aver-

age numbers of households per PSU in Kenya, Malawi,

Nigeria and Tanzania, respectively, were 23, 28, 43 and 21,

and of de-jure household members per PSU were 91, 141,

199 and 104.

The distributions of PSU mean WI for each country are

shown in figure 1b–e. In Tanzania and Malawi, majority of

PSUs were relatively poor and the distributions of the WI

were heavily right-skewed. The spatial distribution of PSU

mean WI is also presented and showed good survey coverage

in all areas (figure 1a and electronic supplementary material A).

The spatial pattern of PSU mean WI varied across

countries. In Malawi, concentrations of wealthy PSUs were

observed in Mzuzu, Lilongwe and Blantyre, among others.

In Tanzania, we found relatively wealthy PSUs in Dar es

Salaam, Arusha, Mwanza and Zanzibar. On the other

hand, prominent spatial gradients were observed in Kenya

and Nigeria. In Kenya, majority of the north and northeast

was poor except for a few larger towns and the regional capi-

tals. The wealthiest PSUs were found in the Nairobi and

Central Kenya provinces. Most mid-WI PSUs were found to

the west and east sides of Central Kenya Province. Northern

Nigeria was predominantly poor. The majority of relatively

rich PSUs were located in the southern part of the country,

and one cluster at the centre in Abuja. In the south, a substan-

tial number of mid-WI PSUs were seen the Enugu and

Makurdi states.

Table 2 shows the four accuracy metrics for all results.

Across all study countries, both SI approaches performed
better than the linear fit. For both MBG and GAM, mean

errors generally increased from lower to higher holdout pro-

portions, and the opposite was observed for G-value and

correlation. This indicated a greater probability that inaccur-

ate predictions occurred in models with larger holdouts.

Regardless of the SI method used, G-value and correlation

were the lowest for Malawi which reflected worst prediction

effectiveness when compared with the other three countries.

The GAM fit performed better at all holdout proportions

for Malawi, Nigeria and Tanzania based on all four metrics.

In Kenya, mixed results were observed—MBG interpolations

were comparatively better for RMSE, G-value and correlation

between predicted WI and observed WI at 20–40% holdout.

The relative performance of the GAM in Kenya improved as

holdout proportions increased to 50%.

The spatial patterns of the covariates are illustrated in

electronic supplementary material B, and we explored the

effects of the covariates by country using the full datasets

(electronic supplementary material C). Night-time light emis-

sion most consistently showed an association with WI across

all countries, followed by population density. Overall, night-

time light was positively associated with WI, while the

opposite was observed for population density. In the GAM

fits, in all cases except for population density in Tanzania,

the curves were significant at the 0.001% level.

Finally, Pearson correlation coefficients between the aver-

age values used for our analysis and those resulting from

using buffer sizes of 5, 10 and 20 km showed strong corre-

lations across different extractions methods (table 3), thus

we do not expect the analytical results to differ by using

alternative scales.
4. Discussion
In this study, we assessed the performances of two

spatial methods to predict poverty for four countries in

sub-Saharan Africa. We compared a Bayesian multivariable

MBG approach with spline interpolation as part of a GAM

to predict WI at holdout locations using DHS data. We

observed better predictive performances of these spatial

methods when compared to non-spatial models. Our results

revealed marked differences in the shape of the distribu-

tion and spatial pattern of WI across the four countries.

We found that predictive performance was the lowest in

Malawi compared to the other three countries regardless of

the method used. GAM-based fitting of smoothed functions

of the spatial coordinates and WI, adjusted for other predictor

variables, generally performed better than MBG in Malawi,

Nigeria and Tanzania. In Kenya, on the other hand, the

GAM fit resulted in marginally worse prediction accuracy

than the MBG approach.

4.1. Study limitations
Our findings have important implications but should be

understood within certain limitations. First, the random dis-

placement applied to the GPS coordinates of the DHS PSUs

could have misclassified assignment of predictor variables

[66]. The extent of misclassification depends on the smooth-

ness of the surface from which data are being linked [66].

We attempted to mitigate the effects of potential bias of

rough/unsmooth surfaces by integrating from raster cells

close to the displaced locations. Second, as we conducted



2014 Kenya 2015 Malawi 2013 Nigeria 2015 Tanzania
number of primary sampling unit (PSU) 1585 850 889 608
average number of PSU per 1000 km2 (land area) 3 9 1 1
average number of households per PSU 23 28 43 21
average number of de jure members per PSU 91 141 199 104
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Figure 1. Study region. (a) Geographical location of the study countries and DHS PSUs. (b) 2014 Kenya DHS. (c) 2015 Malawi DHS. (d ) 2013 Nigeria DHS. (e) 2015
Tanzania DHS. Note: the original values of wealth index have been rescaled by a factor of 1026.
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an out-of-sample validation based on sampled data, the com-

parative performance between MBG and GAM if 100% of the

data were used to make predictions at unsampled locations is

uncertain. Third, we did not use the revised global map of
travel time to cities estimated by Weiss and colleagues [67]

which was published after we analysed our data. Fourth,

we opted for a straight-line measure for accessibility as it is

unclear that more sophisticated methods are better [57,68].



Table 2. Performance assessment of the non-spatial and spatial interpolation methods for 20 – 50% of data holdout. Note 1: the more optimal value is
shaded for each comparison. Note 2: each value is calculated as the mean of 100 random model runs. OLS, ordinary least squares; MBG, model-based
geostatistics; GAM, generalized additive model; MAE, mean absolute error; RMSE, root-mean-square error; G-value, goodness of fit value.

holdout

Kenya Malawi Nigeria Tanzania

OLS MBG
spline
based
GAM

OLS MBG
spline
based
GAM

OLS MBG
spline
based
GAM

OLS MBG
spline
based
GAM

20%

MAE
RMSE
G-value
correlation

0.487 0.399 0.392 0.403 0.385 0.324 0.487 0.429 0.387 0.475 0.453 0.364
0.651 0.531 0.540 0.575 0.548 0.513 0.619 0.551 0.506 0.595 0.581 0.499
0.441 0.604 0.589 0.416 0.464 0.528 0.487 0.594 0.657 0.535 0.535 0.656
0.668 0.780 0.772 0.656 0.691 0.741 0.703 0.775 0.816 0.737 0.742 0.816

30%

MAE
RMSE
G-value
correlation

0.490 0.403 0.395 0.404 0.388 0.328 0.489 0.435 0.391 0.478 0.458 0.371
0.655 0.537 0.544 0.576 0.552 0.520 0.623 0.559 0.512 0.597 0.584 0.509
0.438 0.596 0.585 0.420 0.456 0.516 0.489 0.587 0.655 0.541 0.541 0.649
0.665 0.775 0.769 0.658 0.685 0.732 0.703 0.771 0.813 0.740 0.744 0.812

40%

MAE
RMSE
G-value
correlation

0.487 0.407 0.396 0.402 0.393 0.334 0.488 0.440 0.395 0.479 0.462 0.377
0.651 0.543 0.545 0.575 0.558 0.537 0.622 0.564 0.518 0.599 0.591 0.518
0.441 0.585 0.581 0.420 0.451 0.488 0.491 0.581 0.647 0.537 0.529 0.638
0.667 0.767 0.766 0.657 0.681 0.722 0.704 0.766 0.809 0.737 0.736 0.805

50%

MAE
RMSE
G-value
correlation

0.487 0.413 0.400 0.402 0.397 0.340 0.487 0.446 0.399 0.478 0.465 0.385
0.651 0.552 0.553 0.575 0.565 0.547 0.622 0.571 0.524 0.599 0.594 0.531
0.441 0.571 0.569 0.417 0.437 0.469 0.491 0.571 0.638 0.533 0.521 0.612
0.667 0.758 0.760 0.655 0.672 0.710 0.704 0.760 0.803 0.734 0.731 0.795
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Fifth, the use of asset-based indices to assess poverty may be

affected by the choice of components and poor comparability

between urban and rural areas [69,70], but such indices are

easy to compute and compare well to more complex indi-

cators of wealth [71–73]. Sixth, we only used four case

countries, and our results may have limited generalizability

to LMICs. Last, the wealth index data used for modelling

were aggregated to the PSU from household-level data, and

the covariates exploited were provided at different grid

sizes. Grid size of the land surface temperature layer and

the vegetation index layer, in particular, are larger and have

potential within-grid variations that cannot be accounted

for in the current analysis.

4.2. Model-based geostatistics and generalized additive
model

Comparison based on goodness-of-fit value and correlation

showed that predictive performance was lowest in Malawi,

indicating neither model was sufficient to address the spatial

variability of WI. The covariate datasets used were provided

as raster objects at set grid size. Within each grid, covariate

values are considered constant. Given that Malawi has a sub-

stantially smaller land area compared to the other three

countries, every grid on a Malawi covariate layer covers a

larger proportion of the country’s surface area, leading to

higher levels of aggregation. At higher levels of aggregation,

there is greater potential for information loss [74]. Night-time

light emission, one of the strongest predictors found in this

study (see electronic supplementary material C), ranged

between zero and approximately 60 units across all four

countries. If the spatial scale of covariate effect in Malawi

was also similar to the other countries, higher levels of aggre-

gation may not lead to greater information loss. On the other

hand, if the spatial scale of covariate effect for night-time

light in the smaller country and economy was as least
as rapid as the other three countries, greater potential for

information loss might be expected [74]. This may have con-

tributed to the reduced model performance and prediction

accuracy in Malawi.

While the two SI methods explored in this analysis offer

different ways of capturing the underlying spatial pattern,

they share certain mathematical connection as previously dis-

cussed by Cressie and Wahba [75,76]. Cressie, for instance,

demonstrated commonalities between the two-dimensional

Laplacian smoothing spline of degree two and the universal

kriging predictor [76]. Nonetheless, the two methods

remain ‘practically very different’ [76], and the predictive per-

formances resulting from the typical ways in which these

methods are applied are the main interest of the current

analysis.

Many factors affect the predictive performance of differ-

ent SI methods, and our study did not yield a consistent

‘best method’. Rather, each approach offers different

ways of capturing different data structure, and in line with

previous studies [77–79], we found different methods

performed better under different conditions. Our results

revealed four possible factors for the performance of the

methods: (i) data density, (ii) normality of data, (iii) the

underlying spatial wealth pattern and (iv) the choice of

covariates.

Firstly, the comparative performance of the two

approaches might be sensitive to data density. Our results

across a range of holdout proportions demonstrated that pre-

dictive performances reduced for both methods when sparse

datasets were used. While this may not be surprising, the

more optimal SI method for Kenya changed from MBG to

GAM when data density decreased from 80 to 50%.

Secondly, non-spatial exploratory data analysis indicated

that the WI values at the PSU level for Kenya (figure 1b)

followed a normal distribution. On the other hand, the distri-

butions for Malawi, Nigeria and Tanzania were right-skewed
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(figure 1c–e). This empirical difference across countries

coincided with MBG performing more optimally for Kenya.

Although normality in the outcome is not required for

MBG, second order variation is structured as a multivariate

normal-distributed random field. The influence of data nor-

mality, together with the choice of covariates (more below),

on the suitability of different SI methods should be carefully

accounted for. This may be particularly pertinent as top

inequality—large and slowly declining top wealth shares as

indicated by right skew—is rising both globally and in

many countries [80–82]. It is also unlikely to be solely due

to our use of WI as a measure of wealth, since previous

studies have also found a similar distribution in other

wealth indicators in Malawi [83] and Tanzania [84].

Thirdly, the underlying spatial pattern in the data is

important to choosing the ‘best’ performing SI method in a

given map region. MBG predictive maps are typically

based on the assumptions of stationarity of the spatial pro-

cess, as the approach accounts for the covariance of the

residuals between any two locations by modelling it as

dependent on the distance and direction between them, and

is independent of the location itself. In the presence of good

global spatial autocorrelation, such as the case of Kenya,

where the global spatial pattern of wealth appears to decrease

over distance from Nairobi (figure 1a), MBG performed mar-

ginally better than GAM. In 1969, the post-colonial Kenyan

government selected seven cities around Nairobi to develop

as secondary cities to decongest urban conditions [85].

While Nairobi remains economically dominant in Kenya,

the seven cities have developed a sizable economic base

over the last few decades [85]. Except for Mombasa, these

cities span across the Kenyan savannah in the southwest

[86]. The rest of the country is predominately arid land

where livelihoods are generally challenging [87,88]. The geo-

graphical pattern of wealth in Kenya may thus be more

parsimoniously explained by spatial autocorrelation com-

pared to the other study countries. The tendency for

poverty rates to be more similar in nearby locations has

also been shown in other LMICs [89,90].

In other settings, pairs of locations distant from each other

may be more similar than nearby neighbours although local

spatial autocorrelation is observed, in which case the assump-

tion of stationarity may not be optimal when considering

spatial processes over the whole map region. One practical

way to take non-stationarity into account in an MBG frame-

work is by partitioning the study area into disjoint regions

and define a separate stationary process in each region [91].

Other non-stationary models may also be appropriate. The

GAM formulation, for instance, allows the outcome to vary

smoothly in space instead of assuming locations’ predictive

power on one another to be dependent on distance. In our

study, the GAM approach provided better predictions than

MBG at all holdout proportions for Malawi and Tanzania,

where we observed spatial scatter of concentrations of

wealthy locations across the national extents. The pattern

observed in Malawi and Tanzania may not be unique. In

Ethiopia and Rwanda, for instance, a secondary cities devel-

opment component involving collections of locations that

form a spatially multi-centred network has been proposed

as part of a strategy to attain inclusive growth and build

resilience [92,93]. The identification and inclusion of these

secondary cities were partially based on their institutional

capacity at the time of selection. Moreover, there were also
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the intentions to relieve urban conditions in primary cities,

promote a spatial balance and equity and transform the econ-

omic geography of the countries through redistributing

resources [92,93].

As development of secondary cities continues to be the

focus of sustainable growth, it is important to account for

the geographical organization of these emerging cities

when constructing smoothed map surfaces of wealth and

other development indicators using SI techniques. Research-

ers, planners and development agencies have conceived

several types of theoretical city/settlement patterns, includ-

ing nucleated, clustered, dispersed and random [33,94,95].

Depending on the spatial processes of the outcome and avail-

able covariates, the assumption of spatial stationarity in the SI

model formulation may or may not be suitable. The poten-

tials for the similarities between a distant pair of locations,

or any pair of locations, to be used as an input for poverty

mapping warrant further research. In particular, the appli-

cation of some non-spatial methods for interpolation,

including machine learning techniques, without the con-

straint of using neighbouring data to make prediction at an

unsampled or unobserved location offers new opportunities

to capturing more complex spatial patterns [41]. With these

methods, an algorithm is used to decide which observations

should be leveraged for a certain prediction, allowing the

inclusion of data from any other sample points if the model

finds them similar to the location being interpolated in

terms of the predictor variables.

Lastly, the choice of predictor variables and their relation-

ships with the outcome is a strong factor influencing the

predictive performance and the choice of SI method. The out-

come being mapped may be spatially correlated, and largely

due to certain spatial trends in the covariates. In which case,

accounting for covariate effects and examining whether any

residual spatial correlation remains are crucial. The current

analysis was performed using the full model formulation

with all covariates included. Overall, the curvatures for

night-time light emission and population density showed

the strongest effects across study countries, while the other

climatic and environmental features have moderate effects

in Kenya and Nigeria, and weak effects in Malawi and Tan-

zania. This is an important point to note for two reasons:

(i) the spatial processes of WI in Malawi and Tanzania are

less stationary compared to Kenya and Nigeria and (ii) remo-

tely sensed data are generally less costly to collect on a vast

scale compared to other data collection efforts, making

them suitable for the use of SI, but their availability is usually

higher for natural conditions in LMICs where the determi-

nants of the spatial structure of wealth are becoming more

complex. Non-stationary spatial processes that lack suitable

and readily available predictors (e.g. wealth/poverty in

Malawi and Tanzania) can limit the predictive performance

of SI methods that rely on good spatial stationarity. Different

groups around the world are working on producing high res-

olution data on ‘man-made’ features for large geographical

areas—anonymised mobile data [96], human settlement pat-

tern [97], urban–rural classification [97], which are

potentially more closely associated with the spatial process

of wealth for some settings. Although mostly confined to

smaller geographical areas such as subnational administra-

tive regions, the number of studies on high or very high

resolution of urban slum mapping have also been increasing

[98]. The use of these data as covariates may mean that
spatial autocorrelation would become more or less informa-

tive, and have potential influence on the comparative

performance of different SI methods. In future attempts to

create a smoothed poverty surface for a given region, one

may wish to explore method-specific, contextually relevant

covariates/interactions, perform variable selection as well

as allowing for a more flexible predictor–outcome structure

to find the best SI method and model formulation.
5. Conclusion
MBG and spline interpolation offer different ways of captur-

ing spatial variability in the data. Our results shed light on

four factors relevant to selecting a suitable method when

interpolating poverty for an LMIC from sampled data and

other covariates. These factors include data density, normal-

ity of data, the underlying geographical pattern of wealth

and the choice of covariates. As part of the progress towards

inclusive growth and resilience, governments and policy-

makers in some LMICs are beginning to aim for a spatial

economic balance by redistributing resources within the

national extent instead of having one primary city. This

likely impacts the spatial autocorrelation structures of wel-

fare, health and demographic indicators, leading to

deviations from the most ideal conditions for some SI

methods to perform optimally. The use of covariates further

influences the extent to which residual spatial correlation

can be informative in the prediction making process. In

future attempts to create an interpolated poverty surface for

an LMIC, researchers and analysts should carefully explore

the structure of the possible covariates and the outcome in

order to identify the most suitable SI method.
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