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Tracking the movements of birds in three dimensions is integral to a wide

range of problems in animal ecology, behaviour and cognition. Multi-

camera stereo-imaging has been used to track the three-dimensional (3D)

motion of birds in dense flocks, but precise localization of birds remains a

challenge due to imaging resolution in the depth direction and optical occlu-

sion. This paper introduces a portable stereo-imaging system with improved

accuracy and a simple stereo-matching algorithm that can resolve optical

occlusion. This system allows us to decouple body and wing motion, and

thus measure not only velocities and accelerations but also wingbeat fre-

quencies along the 3D trajectories of birds. We demonstrate these new

methods by analysing six flocking events consisting of 50 to 360 jackdaws

(Corvus monedula) and rooks (Corvus frugilegus) as well as 32 jackdaws and

6 rooks flying in isolated pairs or alone. Our method allows us to (i) measure

flight speed and wingbeat frequency in different flying modes; (ii) character-

ize the U-shaped flight performance curve of birds in the wild, showing that

wingbeat frequency reaches its minimum at moderate flight speeds; (iii)

examine group effects on individual flight performance, showing that

birds have a higher wingbeat frequency when flying in a group than

when flying alone and when flying in dense regions than when flying in

sparse regions; and (iv) provide a potential avenue for automated discrimi-

nation of bird species. We argue that the experimental method developed in

this paper opens new opportunities for understanding flight kinematics and

collective behaviour in natural environments.
1. Introduction
Measuring the three-dimensional (3D) flight of birds in nature has played an

important role in understanding flight kinematics [1], collective motion [2],

migration [3], animal ecology [4] and cognition [5]. Various 3D tracking tech-

niques have been used in the field, including ‘ornithodolites’ (essentially a

rangefinder mounted on a telescope) [6], radar [7], high precision GPS [8]

and others. Among them, multi-camera stereo-imaging systems [9], which

have been widely used by physicists and engineers to study fluid flows

in the laboratory [10], are increasingly attracting the attention of biologists

[11–15]. Due to their high temporal and spatial resolution, stereo-imaging sys-

tems allow the simultaneous 3D tracking of multiple individuals even in dense

flocks [16]. They thus hold great promise for developing our understanding of

avian flight, from the energetics of movement at an individual level [17] to the

mechanisms underlying the rapid spread of information and maintenance of

cohesion within flocks [18]. However, important methodological constraints

still limit the accuracy of stereo-imaging systems and their potential for deploy-

ment to capture natural phenomena such as bird flocks under field conditions.
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One major challenge in the application of stereo-imaging

in the field is camera calibration. Stereo-imaging relies on

matching the two-dimensional (2D) coordinates of an object

as recorded on multiple different cameras to reconstruct its

3D world coordinates (x1, x2, x3) through triangulation [9].

This stereo-matching procedure requires knowledge of var-

ious parameters for each camera such as their position and

orientation (extrinsic parameters) and focal length and princi-

pal point (intrinsic parameters). The purpose of camera

calibration is to determine these parameters. In early studies,

calibration was done manually by measuring the relative pos-

ition and orientation of each camera [19–21]. This method,

however, places limitations on the arrangement of the cam-

eras. More recently, however, the development of more

advanced camera calibration techniques has relaxed these

limitations. Camera parameters can be estimated based on a

set of matched pixels between cameras, e.g. using the eight-

point algorithm [9], and refined by bundle adjustment [22].

Here, we will adopt this calibration method and show that

it allows us to focus on arranging the cameras so that the

measurement accuracy is maximized rather than for ease of

calibration.

This flexibility allows us to address the longstanding issue

of the relatively low measurement accuracy in the out-

of-plane direction compared to that in the in-plane directions.

The distance between cameras, S, needs to be comparable to

the distance to the object being imaged in order to achieve

similar imaging resolution in all three directions. For

example, S � 50 m is desired when imaging birds that are

50 m away. However, requiring a large S raises many techni-

cal difficulties such as data transmission and synchronization

between cameras. Evangelista et al. [23] and Cavagna et al.
[21] used S � 9 m and S � 25 m, respectively, to record

flocks at distances greater than 80 m. Pomeroy & Heppner

[20] used S � 60 m, but their system was only able to

record a limited number of images. To the best of our knowl-

edge, no high-speed imaging system with S . 50 m or with

S comparable to the distance to the birds being imaged has

been developed.

Even with improved accuracy, there can be difficulties in

reconstructing the world coordinates of all objects in the field

of view when optical occlusion occurs and the images of two

objects overlap on the image plane of a single camera. Typical

stereo-matching is based on one-to-one matching: each

detected bird in any single view is associated with at most

one bird in the other views. Thus, this method will only

reconstruct one object from bird images that overlap, and

some bird positions will be lost. When tracking flocks over

long times, failures in reconstructing the positions of all

birds can compound and result in broken trajectories. By

tracking before stereo-matching, several researchers [24–26]

relaxed the one-to-one matching constraint and allowed a

single measurement on each 2D image to be assigned to mul-

tiple objects. Zou et al. [27] and Attanasi et al. [28] solved this

problem by introducing a global optimization framework

that allows all possible matches and then optimizes the

coherence between cameras across multiple temporal

measurements. However, optimizing across multiple views

and multiple times incurs significant additional compu-

tational processing time, especially when the number of

birds is large. A method based on information only from a

single current time step that solves the optical occlusion

problem robustly is not currently available.
Additionally, when the number density of birds in the

images increases and the number of cameras is limited, so-

called ‘ghost’ particles may arise due to false matches

across views. In this case, the typical procedure of doing tem-

poral tracking after stereo-matching [29] may fail to

reconstruct all trajectories. One can try to solve this problem

by relying on temporal information in addition to purely

spatial information to predict the 2D locations of each bird

on each image, for example, and tracking before stereo-

matching [24,30]. A simpler solution is to increase the

number of cameras. Stereo-imaging systems with four or

more cameras have been used in laboratory studies [29] and

in a field study to track a single bird [11,17]. However, to

our knowledge, no system with four or more cameras has

been used for measuring a large number of animals in the

field [16,19–21,23].

Finally, existing stereo-imaging measurements of birds in

natural settings have access only to bird position and associ-

ated kinematics; due to resolution limitations in both space

and time, empirical data on wing motion in natural environ-

ments are very limited [11]. Wing motion is typically only

documented for trained birds flying in laboratory wind tun-

nels [31] where high-resolution bird images can be more

easily recorded. When birds are flying at distances far away

(approx. 50 m) and each bird covers only a few pixels on

images, accurately calculating wing motion becomes very

challenging. Thus, most analyses of collective behaviour

only rely on positions [32], velocities [33] and accelerations

[18] of birds. The wing motion is not available along 3D tra-

jectories, even though it is what is directly controlled by birds

in response to changing environmental and social stimuli.

Wing motion can be measured by fitting tags containing iner-

tial sensors (accelerometers and gyroscopes) on individual

birds [1,34], but such systems are often costly, have limited

battery life, and may not be practical for smaller species or

large flocks [35].

Here, we describe an improved field-deployable stereo-

imaging system for bird flight measurements in the field

that addresses all these difficulties. We test our system on

flocks of wild corvids ( jackdaws, Corvus monedula; and

rooks, Corvus frugilegus). To improve the image resolution,

we developed a portable system using laptop-controlled

USB cameras with S � 50 m to record birds at distances of

20–80 m. To handle optical occlusion in a faster way, we

introduce a new, simple stereo-matching procedure based

on associating every detected bird on each camera with a 3D

position. Thanks to the portability of USB cameras, we use

four cameras so that the stereo-imaging system can resolve

individual birds even in flocks with high densities. With

these improvements in measurement accuracy, we are able

to measure wing motions and wingbeat frequency along indi-

vidual 3D trajectories of birds in the field. We argue that

information on wingbeat frequency in addition to velocity

and acceleration allows us to better understand the flight

kinematics and collective behaviour of birds in their natural

environment.
2. Material and methods
2.1. Camera arrangement and calibration
When developing a high-speed stereo-imaging system for field

applications, it is important to maintain portability. To fulfil
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this requirement, we used four monochrome USB3-Vision CMOS

cameras (Basler ace acA2040-90um). Each has physical dimen-

sions of 4 � 3 � 3 cm3, a sensor resolution of 2048 � 2048

pixels, a pixel size of 5.5 mm, and is connected to a laptop (Think-

pad P51 Mobile Workstation) through a USB 3.0 port. The laptop

serves as both power supply and data storage device for the

camera, making the system very portable. Given that the band-

width of a USB 3.0 port is �400 MB/s, the maximal frame rate

is 90 frames per second (fps). The laptop has a 512 GB Solid-

State Drive (PCIe NVWe) supporting a writing speed of greater

than 1000 Mb/s. We use one laptop for each pair of two cameras,

which allows us to continuously record at 80 fps for greater than

20 s. Higher frame rates can also be reached by reducing the

image size; e.g. when using 1024 � 1024 pixels, 300 fps could

be achieved. The four cameras are hardware-synchronized by

connecting with a function generator (Agilent 33210A) using

BNC cables. We fit each camera with a lens with a focal length

of 8 mm and an angle of view of 718 (Tamron, M111FM08). In

field tests, we found that the performance of the laptops was

reduced when running on their own internal batteries. We thus

used external batteries to power the laptops as well as the func-

tion generator. In deployments with less stringent performance

requirements, however, external batteries may not be necessary.

A typical arrangement of the four cameras is shown in

figure 1a,b. Two pairs of cameras are separated by S � 50 m,

which can easily be extended to 100 m by increasing the BNC

cable length (given that BNC cables support long-distance

signal transmission). This distance is similar to the distance

from the cameras to the birds being imaged in this study. The
distance between cameras in each pair is �8 m, since the high

data rates supported by the USB 3.0 protocol limit cable length.

However, it would be possible to extend this distance as well

by using an active data transfer cable. All cameras point to the

sky with an angle to the horizontal plane of �608. Cameras 1

and 3 are located in the same vertical plane, and cameras 2

and 4 are located in another vertical plane. At a height of 50 m,

the fields of view of the four cameras have an overlap area of

60 � 60 m2, with a spatial resolution of 4.0 cm per pixel at the

centre of images. The coordinate system is also shown in

figure 1, where 2x3 is aligned with the gravity direction. Note

that the actual arrangement varies slightly for every deployment.

On different days, we moved the camera system to different

locations to ensure we captured images of different individuals.

Note too that since the cameras are free-standing, they can

easily be placed on irregular or steep terrain.

To calibrate the cameras, we followed a procedure based on

that described in [36]. We attached two balls of different sizes (10

and 12 cm) to either end of a stick mounted on an unmanned

aerial vehicle, which was flown through the 3D tracking

volume. Figure 1c shows sample images of the two balls. The dis-

tance between the balls is fixed at 1.0 m, which provides a

physical scale for the camera calibration. The locations of the

balls in the images are automatically extracted to generate

matched pixels between cameras. About 200 to 300 sets of

matched points are detected in a typical calibration run and are

used to estimate the fundamental matrix of each camera as

well as the 3D locations of the matched points. Sparse bundle

adjustment is then used to refine the camera parameters. The
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x3 direction is found by fitting a 2D plane to the 3D points that

are located at a constant height. Figure 1d shows the recon-

structed camera and ball locations in 3D space. The re-

projection error, defined as the root-mean-square distance

between the original 2D points and those generated by re-pro-

jecting the 3D points on the 2D images, is less than 0.5 pixels.

This entire calibration process takes 10–20 min: 5–10 min for

recording the calibration points, 4–8 min for extracting the

matched points from the images, and 2 min for calculation of

the camera parameters.

2.2. Capturing images of flocking birds in the field
We recorded flocks of corvids flying towards winter roosts in

Mabe and Stithians, Cornwall, UK from December 2017 to Febru-

ary 2018. We focused predominantly on jackdaws flying in

flocks, but also recorded cases where either jackdaws or rooks

flew in isolated pairs, allowing us to extract comparable

measures of wingbeat frequency in the two species. Both jack-

daws and rooks are highly social members of the corvid family

and form large winter flocks, often including birds of both

species. Whereas research on collective movement typically

assumes individuals are identical and interchangeable, 2D

photographic studies suggest that birds within corvid flocks typi-

cally fly especially close to a single single-species neighbour,

likely reflecting the lifelong, monogamous pair bonds that form

the core of corvid societies [37]. How individuals respond to

the movements of others within these dyads and across the

flock as a whole is not yet understood.

The birds typically leave their foraging grounds in the late

afternoon. Different flocks often merge as they fly towards pre-

roosting assembly points (often at established sites such as rook-

eries) before flying to their final roosting location where they

spend the night. As flight trajectories towards roosts or pre-

roosts are fairly consistent each evening, we were able to position

the camera system so that flocks flew overhead. Nevertheless

flocks did not always fly perfectly through the measurement

volume; for example, they may fly out of the field of view of cam-

eras 1 and 2, and thus only be captured by cameras 3 and 4. We

only use data where the birds were seen on all four cameras. In

our measurements, the distance from the birds to the image

plane is about 20–60 m, given that the cameras are placed on tri-

pods on the ground. Jackdaws have body lengths in the range

34–39 cm, translating to a size of 5–20 pixels on the camera

sensors. Though higher frame rates can be reached, the data pre-

sented in this paper are recorded at 40 or 60 fps, which is still

much larger than the jackdaw wingbeat frequency (which is typi-

cally in the 3–6 Hz range [38]). The time-varying bird shape is

therefore resolved (figure 1e) and can be used for the calculation

of wingbeat frequency.

2.3. Stereo-matching and three-dimensional tracking
To construct 3D trajectories from images, we perform stereo-

matching frame by frame and then tracking in time. First, we

locate the birds on each 2D image. For each image, we first sub-

tract a background image calculated by averaging 50 temporally

consecutive images where the background exhibits only minor

changes. A global intensity threshold is then applied to segment

the image into distinct blobs of pixels corresponding to one or

more birds. The threshold is manually set and is low enough

so that all the birds are detected. There are only a few false detec-

tions, which we reject later during the stereo-matching phase if

no matched blobs in other views are found. In our datasets,

the images typically have low sensor noise levels (that is,

nearly uniform backgrounds) and the number of false detections

is less than 2% of the total number of birds. For each segmented

blob, we calculate the intensity-weighted centroid and treat it as

the bird centre. This location does not necessarily yet represent
the bird body centre due to time-varying wing morphologies

(figure 1e), but will be revised later to obtain both body and

wing motions.

Then, stereo-correspondences are established between all the

2D measurements. To solve the optical occlusion problem, we

introduce a new stereo-matching method based on associating

every detected bird on each camera with a 3D position. For con-

venience, we illustrate our proposed method with a set-up of

two cameras, though in our actual field system we use four cam-

eras. As shown in figure 2a,b, the images of two birds may

overlap on camera 1, but appear to be separated on camera

2. If we follow a typical one-to-one matching procedure, not all

birds in camera 2 will be used to calculate 3D locations. How-

ever, by including the additional step of searching the un-used

birds in view 2 and calculating their corresponding 3D positions

we can recover the missing birds. The detailed procedure is as

follows: for every detected bird on camera 1 (figure 2c), we

search for candidate matches on other views that are located

within a tolerance e of the epipolar lines [25,39]. All the candi-

dates are combined into a list and used to compute multiple

3D locations using a least-squares solution of the line of sight

equations [40]. Each of these potential 3D locations is scored by

a ray intersection distance (that is, the residual from the least-

squares solution). The smaller the score is, the more likely this

potential location is a true 3D location. Thus, only the potential

location with the smallest score is selected as a candidate. Ideally,

a true 3D location would have a score of 0 given perfect camera

calibration and no error in the 2D centroid detection. In reality,

however, the score is never 0. Thus, we set a threshold (with a

typical value of 0.3 m, roughly the size of one bird) below

which this 3D location is treated as a real bird location. Other-

wise, if the score is larger than the threshold, we treat the 2D

location as a false detection at the initial segmentation process.

As shown in figure 2d, the 3D locations corresponding to all

detected birds in camera 1 are reconstructed via this procedure.

During this step, we mark the birds on view 2 that have been

used for the calculation of the true 3D locations. Then, we con-

sider the remaining unmarked birds on camera 2 (figure 2e),

and reconstruct their corresponding 3D positions using the

same method as was used for camera 1. The 3D locations of

the missing birds are calculated as shown in figure 2f. Finally,

the reconstructed results in figure 2d,f are combined to generate

the 3D locations of all birds. For reference, we provide corre-

sponding Matlab codes to perform these 3D reconstructions

(see Data accessibility).

Once the 3D positions have been determined at every time

step, they are linked in time to generate trajectories (figure 2g).

We use a three-frame predictive particle tracking algorithm that

uses estimates of both velocity and acceleration. This method

has been shown to perform well in the biological context for

tracking individuals in swarms of midges [41]. It is also able to

handle the appearance and transient disappearance of particles

from the field of view by extrapolation using a predictive

motion model. Details of this procedure are described in [10].

Finally, the velocities and accelerations are calculated by convol-

ving the trajectories with a Gaussian smoothing and

differentiating kernel [42]. In the following sections, we will

use vi and ai to denote the velocity and acceleration in one of

the three Cartesian directions (x1, x2, x3) denoted by index i.
The same bold symbols are used to denote vectors, e.g. x, v, a.

The flight speed U is calculated as U ¼ ðv2
1 þ v2

2 þ v2
3Þ

0:5.
2.4. Body and wing motions
As mentioned above, the 2D locations of the birds are deter-

mined based on intensity-weighted centroids of segmented

pixel blobs, and may not accurately capture the true body

centre. As a result, the reconstructed 3D trajectory couples both
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the body and wing motions. However, since the wing motion has

much higher frequency than the body motion, one can decouple

the two effects in the frequency domain. To do so, we first calcu-

late the body acceleration abody
i by filtering the measured

acceleration ameasured
i in the frequency domain:

abody
i ¼ F�1ðFðameasured

i Þðf , fcutÞÞ, ð2:1Þ

where F and F21 denote the Fourier and inverse Fourier trans-

form, f is the frequency, and fcut is the filter cut-off frequency.

Typically, there is a peak in the power spectrum of F(ameasured
3 )

that corresponds to the time-averaged fwb of each trajectory.

In our dataset, the time-averaged fwb for different birds

varied from 2.5 to 7 Hz, and we used fcut ¼ 1 Hz for all birds.

The body velocity vbody
i and position xbody

i are then obtained by

integrating the body acceleration. Then, the wing motion xwing
i

is obtained by subtracting the body motion from the measured

motion:

xwing
i ¼ xmeasured

i � xbody
i : ð2:2Þ
Following a procedure similar to [43], the time variation of fwb

is calculated by applying a continuous wavelet transform

(CWT) to xwing
3 . Here, the CWT is applied to xwing

3 since the

wing motion is usually dominant in x3 direction given the pri-

marily horizontal flight of the birds. Two factors may affect the

accuracy of this estimate of fwb. First, as the distance from bird

to the image plane increases, the imaging resolution, and thus

the accuracy of xwing
3 , decreases. Given that the wing motion

has an amplitude of the order of a wing length (�0.3 m for

jackdaws), we are able to measure the wing motion for birds

flying up to 80 m away given our current imaging system.

For more distant birds, one would need a lens with a longer

focal length to capture the wing motion. Second, when birds

make turns, the wing motion has components in the x1 or x2

directions. The magnitude of xwing
3 reduces, and a higher

image resolution is required to resolve xwing
3 . We calculated

fwb for birds whose maximal jxwing
3 j is larger than 0.04 m, the

image resolution at a height of 50 m. For the data presented

here, fewer than 3% of the birds have a maximal jxwing
3 j smaller

than 0.04 m.
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We also attempted to separate body and wing motions by

setting a cut-off frequency in F(xmeasured
i ) or F(vmeasured

i ). We

tested the three methods on a numerically generated trajectory

xmeasured ¼ t þ 1 þ sin(2p � 5t), where first two terms represent

the body motion and the last term the wing motion with fwb ¼

5 Hz. We found that xbody obtained by setting a cut-off frequency

for F(ameasured) or F(vmeasured) had a mean error of less than 0.1%,

while for F(xmeasured) had a mean error of 2%. We also compared

the three methods on a real trajectory and found a similar trend:

xbody obtained by setting a cut-off frequency for F(ameasured) and

F(vmeasured) is more accurate than that obtained by setting a cut-

off frequency for F(xmeasured). Since velocity and acceleration are

time derivatives of position, F(vmeasured
i ) and F(ameasured

i ) have

stronger peaks at fwb compared to that of F(xmeasured
i ). Thus, set-

ting a cut-off frequency in F(vmeasured
i ) or F(ameasured

i ) removes the

wingbeat motion more reliably. Here, we opt to calculate body

motion by setting a cut-off frequency in F(ameasured
i ). One can

obtain similar results by setting a cut-off frequency in

F(vmeasured
i ). Attanasi et al. [18] used a low-pass filter on the

vmeasured
i (similar to setting a cut-off frequency in F(vmeasured

i ))

and then differentiated it to obtain abody
i . We compared abody

i cal-

culated from both methods and the results are very similar.

To illustrate our method, figure 3a shows a sample time trace

of xmeasured
3 , xbody

3 and xwing
3 . It clearly shows that xmeasured

3 con-

tains both a low-frequency body motion and a high-frequency

wing motion. The value of xwing
3 varies from 0.15 to 20.15 m,

which is comparable to the wing length of a jackdaw.

Figure 3b shows ameasured
3 , abody

3 and awing
3 corresponding to the

position traces shown in figure 3a. All the values are normalized

by the gravitational acceleration g (g ¼ 9.78 m s22). ameasured
3 is

clearly dominated by awing
3 , and has a magnitude up to 4g. The

magnitude of abody
3 is much smaller. Figure 3c shows the power

spectrum obtained by applying a CWT to xwing
3 . The time vari-

ation of fwb, the frequency at which the power spectrum peaks

at each time step, is shown by the dashed line. Figure 3d plots
the same 3D trajectory coloured by vbody
3 , abody

3 , and fwb, showing

that we can measure not only velocity and acceleration but also

wingbeat frequency along the 3D trajectory of each bird. Clearly,

fwb is not always constant, but rather depends on speed and flight

behaviour. Indeed, as we argue below, the variation of fwb can

provide additional information to characterize bird behaviour.

To demonstrate that the proposed method indeed captures

the bird body centre, we can re-project xbody
i onto one of the

2D images, as shown in figure 3e. The top image shows the 2D

positions based on the intensity weighted centroid, while the

bottom image shows the 2D positions obtained from re-project-

ing xbody
i onto the camera. Even with the uncertainties in the

camera calibration, the re-projected 2D positions still detect the

body centres very accurately. The average value of jxwing
3 j over

all the trajectories is 0.03 m and the maximal value of jxwing
3 j is

0.17 m. Therefore, the improvement of the estimate of the body

centre location after removing the wing motion can be as high

as 0.17 m, and has a mean value of 0.03 m. In the following sec-

tions, we report only these body positions, and omit the ‘body’

indication for simplicity.

2.5. Statistical analyses
Analyses were conducted in R version 3.1.2. Comparisons of

wingbeat frequency of birds flying alone or in groups were con-

ducted using linear mixed models (lme package) with a random

term to account for group membership. Wingbeat frequency was

fitted as the response term, with flight speed and grouping (in a

flock or in isolation) as explanatory terms.
3. Results
We recorded six flocking events (flocks #1–6) consisting of 50

to 360 individuals. Flock #1 includes jackdaws only, and
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Table 1. Summary of the datasets included in this paper. The reported numbers in the last four columns are the mean values and standard errors. D2 is the
distance to the second nearest neighbour.

date
flock
#

total number of
birds bird species

trajectory
length (s) U (m s21)

fwb in flapping
modes (Hz) D2 (m)

flying in a group

2018-01-29 1 354 jackdaw 2.7+ 0.1 13.7+ 0.1 4.70+ 0.04 2.5+ 0.1

2018-02-04 2 224 jackdaw, rook 2.8+ 0.0 14.3+ 0.1 4.37+ 0.05 2.9+ 0.1

2018-02-04 3 186 jackdaw, rook 2.3+ 0.1 15.4+ 0.1 4.58+ 0.06 3.2+ 0.1

2018-02-04 4 75 jackdaw, rook 3.1+ 0.1 14.1+ 0.1 4.01+ 0.12 5.4+ 0.5

2018-02-09 5 110 jackdaw, rook 1.7+ 0.1 17.6+ 0.1 4.69+ 0.10 4.6+ 0.3

2018-02-09 6 67 jackdaw, rook 1.8+ 0.1 17.6+ 0.2 4.68+ 0.13 3.5+ 0.3

flying in isolated pairs or alone

— — 32 jackdaw 2.5+ 0.2 12.2+ 0.4 4.00+ 0.13 .10

— — 6 rook 2.8+ 0.6 12.8+ 1.9 2.91+ 0.11 .10

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180653

7

flocks #2–6 include both jackdaws and rooks. It was known

beforehand via visual and vocal cues obtained during the

data recording process whether the flocks contained single

or mixed species. We also recorded 32 jackdaws and 6

rooks flying in isolated pairs or alone, which we defined as

birds flying at least 10 m away from a large group. The

species of these non-flocking birds were also identified and

known beforehand through visual and vocal cues. Sample

trajectories are provided in figure 4a,b. Details of all the trajec-

tories are provided in table 1.

We classified the trajectories into six flight modes

based on the magnitudes of fwb, v3 and jaj: three flapp-

ing modes where fwb . 2 Hz and jaj , 8 m s22, cruising

(jv3j , 1 m s21), climbing (v3 . 1 m s21), and diving

(v3 , 21 m s21); two non-flapping modes where fwb , 1 Hz

and jaj, 8 m s22, gliding (v3 , 21 m s21) and soaring

(v3 . 1 m s21); and one mode where jaj . 8 m s22 indicating

turning or accelerating. The sample times for the non-flap-

ping modes and the turning or accelerating mode were

relatively short compared to the flapping modes (figure 5a).

We therefore only report the statistics of U and fwb in the

three flapping modes (figure 5b,c). For most cases, fwb is high-

est in climbing mode and lowest in diving mode, and U is

lowest in climbing mode and highest in diving mode. We

note that we varied the threshold of v3 from 0.5 to 2 m s21

in separating the different flapping modes and found that

the general trends observed in figure 5b,c do not change.

Table 1 shows that jackdaws flying as isolated pairs or as

single birds have a lower wingbeat frequency than jackdaws
flying in the single-species flock #1. Linear mixed model

analysis confirms this result: controlling for the effect of

flight speed (Est (s.e.) ¼ 0.045 (0.019), t ¼ 2.33, p ¼ 0.02),

birds flying in isolation have a lower wing beat frequency

than those in a flock (Est (s.e.) 20.663 (0.129), t ¼ 25.14,

p , 0.001). This means that flocking jackdaws flapped their

wings, on average, 42 (+10) times more per minute than

when flying in isolation (282+ 2 wingbeats/minute versus

240+8 wingbeats/minute). We thus investigated the effect

of local density on the flight performance of individuals. To

estimate the local density, we counted the number of birds

N3m within a sphere of fixed radius of 3 m. As shown in

figure 6a, fwb increases with N3m (Pearson correlation

coefficient ¼ 0.20, p , 0.01). We also plotted the flight per-

formance curves, i.e. the relation between fwb and U, for

jackdaws in flock #1 and for jackdaws flying alone

(figure 6b). All curves had their minimum wingbeat frequency

at moderate flight speed. Moreover, for birds flying in a group,

increasing N3m moves the curves upward. In all other five

mixed-species flocks, birds in the denser region had higher

wingbeat frequencies (figure 6c). One may argue that this

trend may be due to a preference for bird species with lower

fwb (here, rooks) to fly in less dense regions. Given that

rooks have fwb ¼ 2.9+ 0.1 Hz (table 1), we can exclude most

rooks from our analysis by ignoring birds whose mean fwb is

smaller than 4 Hz; when doing so, we found that the same

trend exists (electronic supplementary material, figure S1).

We also compared the flight performance curves for jack-

daws and rooks flying alone or in isolated pairs (figure 7).
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Clearly, the two species have different flight performance

curves, with the larger rooks having lower wingbeat frequen-

cies than jackdaws at the same flight speed. Due to our

limited sample size for rooks, we were not able to compare

fwb at higher speeds. To determine whether species differ-

ences in wingbeat frequency persist when the two species

flock together, we manually identified 8 rooks and 12 jack-

daws in mixed-species flocks on the basis of visible

morphological characteristics. Extracted fwb values for these

individuals show that rooks still have lower wingbeat fre-

quency than jackdaws (rook ¼ 3.4+0.4 Hz, jackdaw ¼

4.2+0.3 Hz) (electronic supplementary material, table S1).
4. Discussion
In this paper, we have described a new stereo-imaging

system for tracking the 3D motion of birds in the field. The

new system overcomes the technical difficulty of extending

the distance between cameras and improves the accuracy of

3D stereo-reconstruction. It allows the measurement of not

only velocity and acceleration but also wingbeat motion
and frequency along the 3D trajectory. In addition, we have

developed a new stereo-matching algorithm to solve the opti-

cal occlusion problem. This is based solely on information in

instantaneous frames, and thus is much faster than global

optimization [27,28] when solving for data associations

across multiple views and time steps. We have demonstrated

the new reconstruction algorithm on dense flocks ranging in

size to over 300 birds. A detailed comparison of the recon-

struction accuracy between our method and global

optimization is, however, beyond the scope of this paper.

When applying our method to birds flying alone, we

showed that measurements of wingbeat frequency along 3D

trajectories allow us to better understand the flight kin-

ematics of birds. First, the system allows us to characterize

the flight performance of birds in the wild without the

need to fit bio-logging tags. Our results confirm the typically

reported U-shaped flight performance curve (with wingbeat

frequency reaching a minimum at moderate flight speed)

measured in wind tunnel experiments [44]. Moreover, the

system allows us to compare flight speeds and wingbeat fre-

quencies in different flight modes. The reason that birds vary

flight modes may be due to a balance between flight speed
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and energy expenditure [45,46]. We observed that the birds’

total energy (that is, the sum of the kinetic and gravitational

potential energy) increases with the flight height. We thus

suggest that birds may increase their total energy by increas-

ing wingbeat frequency during climbing, and lower their

total energy by decreasing wingbeat frequency during

diving. Finally, the birds have a mean diving angle of 268
to the horizontal plane, and a mean climbing angle of 68.
These values may provide valuable guidance for designing

wind tunnel experiments that are as faithful as possible to

real flying conditions [47].

When applying the system to study group flight, we

argue that measurements of wingbeat frequency within

flocks provide new opportunities to understand collective

motion. Using wingbeat frequency as a proxy for energy con-

sumption [1] allows us to study whether birds flying in

groups save energy. Although flying in a group offers

many benefits, such as reduced risk from predation [48,49],

our data suggest that flying in a group also comes at a cost,

as fwb was higher for birds flying in a group than flying in

isolated pairs or alone (an average difference of 42 wingbeats

per minute), and increased with local density. The same trend
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was reported for observations of groups of pigeons by Usher-

wood et al. [1]. The explanation proposed by those authors

was that flying in a dense group requires more manoeuvres

and coordinated motion to avoid collisions. Our data support

this explanation since birds flying in groups make more turn-

ing and accelerating manoeuvres than birds flying alone

(figure 5a).

Finally, the fact that many birds form mixed species flocks

offers important opportunities to examine the impacts of

individual heterogeneity on collective motion [50]. However,

addressing this issue requires techniques to accurately clas-

sify birds within mixed-species flocks. Here, we show that

our system allows us to quantify the different wingbeat fre-

quencies of two closely related species—jackdaws and

rooks—when they fly alone or in mixed-species groups. An

appropriate generic thresholding of wingbeat frequency to

separate jackdaws and rooks in mixed-species flocks, how-

ever, remains to be determined.

The proposed method can be applied to other birds or

even other flying animals (e.g. insects) if the following

requirements are met: (i) their flight routes, feeding grounds,

or roosts are known; (ii) the imaging spatial resolution is high

enough that the body and wings are distinguishable; and (iii)

the recording temporal resolution is high enough to sample

the wing movements. For example, to study birds of different

sizes, one could bring the cameras closer to or further from

the objects being imaged and select lenses with suitable

focal lengths. To study insects with higher wingbeat fre-

quency (e.g. greater than 50 Hz), one could use cameras

that record data at higher frame rates. In addition, our

method is very easy to reproduce under other experimental
conditions. We provide Matlab codes (see Data accessibility)

so others can compute 3D motion and wingbeat frequency

from raw images. Therefore, our method provides important

opportunities for studies of both the flight kinematics of indi-

viduals and the collective behaviour of groups under natural

conditions.
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