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Abstract

Accurate segmentation of infant brain images into different regions of interest is one of the most 

important fundamental steps in studying early brain development. In the isointense phase 

(approximately 6–8 months of age), white matter and gray matter exhibit similar levels of 

intensities in magnetic resonance (MR) images, due to the ongoing myelination and maturation. 

This results in extremely low tissue contrast and thus makes tissue segmentation very challenging. 

Existing methods for tissue segmentation in this isointense phase usually employ patch-based 

sparse labeling on single modality. To address the challenge, we propose a novel 3-D multimodal 

fully convolutional network (FCN) architecture for segmentation of isointense phase brain MR 
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images. Specifically, we extend the conventional FCN architectures from 2-D to 3-D, and, rather 

than directly using FCN, we intuitively integrate coarse (naturally high-resolution) and dense 

(highly semantic) feature maps to better model tiny tissue regions, in addition, we further propose 

a transformation module to better connect the aggregating layers; we also propose a fusion module 

to better serve the fusion of feature maps. We compare the performance of our approach with 

several baseline and state-of-the-art methods on two sets of isointense phase brain images. The 

comparison results show that our proposed 3-D multimodal FCN model outperforms all previous 

methods by a large margin in terms of segmentation accuracy. In addition, the proposed 

framework also achieves faster segmentation results compared to all other methods. Our 

experiments further demonstrate that: 1) carefully integrating coarse and dense feature maps can 

considerably improve the segmentation performance; 2) batch normalization can speed up the 

convergence of the networks, especially when hierarchical feature aggregations occur; and 3) 

integrating multimodal information can further boost the segmentation performance.

Index Terms

3-D fully convolutional network (3D-FCN); brain MR image; isointense phase; multimodality MR 
images; tissue segmentation

I. Introduction

The Increasing availability of noninvasive infant brain magnetic resonance (MR) images 

affords unprecedented opportunities for precise charting of dynamic early brain 

developmental trajectories in understanding normative and aberrant brain growth [1]. For 

example, the recently awarded Baby Connectome Project,1 will acquire and release cross-

sectional and longitudinal multimodal MRI data from 500 typically developing children 

from birth to five years of age. This will greatly increase our limited knowledge on normal 

early brain development, and will also provide important insights into the origins and 

aberrant growth trajectories of neuro-developmental disorders, such as autism and 

schizophrenia. For instance, autistic children are reported to experience brain overgrowth 

associated with an increase in cortical surface area before two years of age [2]. As current 

treatments for many neuro-developmental disorders are ameliorative rather than curative, 

identifying early neuromarkers of risk for these disorders will allow designing targeted 

preemptive intervention strategies to improve prognosis or even prevent the disorders. To 

measure early brain development and identify biomarkers, accurate segmentation of MRI 

into different regions of interest (ROIs), e.g., white matter (WM), gray matter (GM), and 

cerebrospinal fluid (CSF), is the most critical step. It will allow for volumetric quantification 

and also more sophisticated quantification of the structures of GM and WM, such as cortical 

thickness, surface area, and gyrification, which may provide important indications of very 

early neuro-anatomical developmental events [3], [4].

The first year of life is the most dynamic phase of the postnatal human brain development. 

This is mainly because brain tissues grow rapidly, while cognitive and motor functions 

1http://babyconnectomeproject.org/
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undergo a wide range of development [5]. Accurate tissue segmentation of infant brain MR 

images in this phase is of great importance in studying normal and abnormal early brain 

development [6]–[8]. It is recognized that the segmentation of infant brain MRI is 

considerably more difficult than the segmentation of adult brain MRI, due to reduced tissue 

contrast [9], increased noise, severe partial volume effect [10], and ongoing WM 

myelination [9], [11]. Fig. 1 shows examples of T1-weighted MRI, T2-weighted MRI, and 

fractional anisotropy (FA) image acquired at around six months of age. It can be observed 

that WM and GM exhibit almost the same intensity levels (especially in cortical regions), 

resulting in the lowest tissue contrast and hence significant difficulty for tissue segmentation.

Many methods introduced in [12] have been used for infant brain image segmentation. 

However, they mostly focused on the segmentation of either infantile images (≤ three 

months) or early adult-like images (>12 months) using a single T1 or T2 modality [13]–[18]. 

These images often demonstrate a relatively good contrast between WM and GM tissues. 

Few studies have addressed the difficulties of segmenting isointense-phase images. Shi et al. 
[19] first proposed a 4-D joint registration and segmentation framework for segmentation of 

infant MR images in the first year of life. In their method, longitudinal images in both 

infantile and early adulthood phases were used to guide the segmentation of images in the 

isointense phase. A similar strategy was later adopted in [20]. The major limitation of these 

methods is that they are entirely dependent on the availability of longitudinal datasets [21]. 

Considering that the majority of infant subjects comprise the data only from a single time-

point, thus a standalone method working for cross-sectional single-time-point image is 

largely desired.

Recently, deep learning-based methods have achieved great success in image segmentation, 

including infant brain tissue segmentation. Zhang et al. [22] first proposed using deep 

convolutional neural networks (CNNs) to segment isointense-phase brain images, in which a 

hierarchy of increasingly complex features from MR images were learned. They used a 

patch-level learning by sliding windows in the 2-D space of the images. Their methods took 

the center voxel tissue label as the label for the whole patch during the learning. 

Consequently, their method was somehow sensitive to the patch size, especially for the 

voxels on the boundaries of WM or GM. In fact, such methods (based on the sliding 

windows) have to tradeoff between localization and classification accuracy, as utilizing large 

patches will lead to the loss in localization accuracy due to more pooling layers, while using 

small patches will yield perception of much less context information and thus become 

sensitive to noise. Moreover, these methods contain a large number of parameters, which 

over-burdens the convergence of the network. Moeskops et al. [23] further proposed a 

multiscale CNN for infantile brain tissue segmentation. Nie et al. [24] proposed a 

multipathway fully convolutional networks (FCN) to segment 2-D slices of infant brain 

tissue, while this model is very memory-costly due to the use of a multipathway architecture, 

and thus not suitable for 3-D MRI brain tissue segmentation. Chen et al. [25] introduced a 

residual learning technique to help the FCN training for the adult brain tissue segmentation. 

However, all the above-mentioned methods have overlooked the fact that CNN or FCN will 

lose information due to adoption of pooling operations, which will affect the localization 

accuracy.
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To overcome the above-mentioned challenges, we propose to employ and further extend the 

FCNs [26] for the segmentation of infant brain image. FCN [26] is a special case of 

convolutional networks (ConvNets), in which the training is an end-to-end (pixel-to-pixel) 

process and embodies less network parameters. FCN consists of multiple convolution and 

pooling layers, which reduces the number of network parameters to a large extent, without 

incorporating any fully connected layers. Thus, FCN can simplify and speed up the 

processes of learning and inference in the networks, and make the learning problem much 

easier. FCN is able to take inputs of arbitrary size and generate same-size outputs, through 

efficient inference and learning. It generates dense pixel outputs by interpolating the coarse 

output via deconvolution layers. FCN has achieved state-of-the-art performance for semantic 

segmentation on multiple public datasets [26], [27] of 2-D images.

It is very important to note that the infant brain imaging data are in 3-D, and therefore a 3-D 

network structure should be developed and applied. Many recent works on medical images 

use the conventional 2-D architectures [22], [24], [28] or even utilize pretrained networks 

from natural images [26], [27]. In this paper, we propose a 3-D-FCN trained in an end-to-

end and voxel-to-voxel fashion for segmentation of isointense-phase brain images. Our 3-D-

FCN, similar to the conventional 2-D-FCNs, is composed of two major stages of convolution 

and deconvolution, each of which contains a number of layers to gradually down-sample or 

up-sample the image, respectively. Although FCN brings an improvement in segmentation, it 

still struggles in tiny structure tissue segmentation and precise localization, which are mainly 

due to the coarseness of feature maps and loss of resolution after series of pooling 

operations. Accordingly, to better model small structure tissues, we design an information 

pass-through (PT) architecture for our 3-D-FCN. Specifically, we utilize the coarse feature 

maps learned in the convolution process, which are of high-resolution and can be used to 

better localization. The deconvolution stage learns dense feature maps that are highly 

semantic and can help better classification, and we show that integrating them with the 

coarse feature maps, learned in the previous convolution layers, can help better segment tiny 

structure tissues. However, the number of neurons from coarse feature maps are usually 

much larger than that from dense feature maps, which could degrade the integration of the 

information by ignoring the signals from dense feature maps. We propose to use additional 

convolution operations to balance the biased signals problem. In addition, to effectively 

employ multimodality images, we feed MR images from different modalities into the 

designed neural network, through a batch normalization (BN) process. As explained later in 

more details, this intensifies better integration of multiple imaging modalities and also 

escalates the segmentation results, compared to the cases of using each modality separately 

or even only concatenating them through the same method. To implement the method on real 

images of isointense subjects, an input MR image is first partitioned into overlapping 

patches. For each patch, the trained model is used to predict a patch, corresponding to the 

label patch. Finally, all predicted label patches are merged into a single label image by 

averaging the label values in the overlapping regions. In summary, our contributions include 

the following.

1. We design a general 3-D FCN framework, which provides a tradeoff between 

resolution and abstraction by using less pooling operations and smaller 

convolution filters.
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2. We further extend the initial model to aggregate coarse feature maps and dense 

feature maps. In addition, we propose a transformation module (e.g., 1 × 1 × 1 

convolution layers) to balance signals from the aggregating layers; we also 

propose a fusion module (e.g., extra convolutional layers) to better serve the 

fusion of feature maps. These steps allow preserving the resolution in the final 

segmented image.

3. Furthermore, through the normalization procedure we incorporate, our 

architecture can integrate information from multiple modalities for the task of 

segmentation.

4. Our proposed method could achieve not only better segmentation precision but 

also much faster speed.

II. Method

Deep learning models can learn a hierarchy of features by building high-level features from 

low-level features. The CNNs (also known as ConvNets) [29]–[32] are one of the most 

popular types of deep learning models, in which the trainable filters and local neighborhood 

pooling operations are applied in an alternating sequence, starting with the raw input images. 

The convolution operation sequence can be described as (1) and (2), where l is the layer 

index (l=0, 1, … , n), al is the output of the lth layer (with a0 as the input data), and wl +1 and 

bl+1 are the weight and bias in the (l + 1)th layer which need to be learned, and f is the 

activation function. Equation (1) mainly describes the convolution procedure and (2) 

describes the nonlinear operation over the convolution result by activation function, such as 

rectified linear unit (ReLU) as described in (3). The last layer of CNNs is usually a softmax 

layer that is actually composed of cross entropy loss. The cross entropy loss can be formed 

as in (4). Note, in (4), m is the number of samples, k is the total number of tissue categories, 

x and y denotes data and label, respectively, θ is the parameter. The loss is back propagated 

to the whole network. When trained with appropriate regularization, CNNs can achieve 

superior performance on both visual object recognition and image classification tasks [22], 

[30], [32], [33]. Ji et al. [34] first proposed to use 3-D CNN to do human action recognition 

and achieved promising results

zl + 1 = wl + 1 * al + bl + 1 (1)

al + 1 = f zl + 1 (2)

Where

f z = max 0, z (3)
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J θ = − 1
m ∑

i = 1

m
∑
j = 1

k
I y i , j log e

θ j
Tx i

∑l = 1
k e

θl
Tx i

(4)

Where

I y i , j = 1, y i = j

0, y i ≠ j .
(5)

CNNs are also often used for image segmentation tasks. Besides, the FCNs [26], [27] have 

recently been proposed for image segmentation tasks as well. However, many of such 

methods use patch-based techniques for segmentation [35]–[37], thus depending heavily on 

the preprocessing or post-processing steps for patch extraction as well as post-refinement 

steps for the result enhancement. Our proposed technique trains in an end-to-end and voxel-

to-voxel manner. On the other hand, the existing FCN often predicts dense outputs by 

feeding the whole image to the network and then learning through back-propagation. 

Upsampling layers are incorporated to enable voxelwise prediction. However, the traditional 

FCN have a big risk of losing resolution. To address this problem, we first design a basic 

FCN architecture which retains the resolution more by reducing times of pooling, and we 

further integrate features from lower layers into the higher layers to directly make up for 

resolution losses.

In the following, we will first introduce in Section II-A 3-D-FCN architecture (as shown in 

Fig. 2) by extending the conventional FCN [26] architecture to 3-D case, and then present 

the further extended 3-D-FCN model for multiple imaging modalities to more effectively use 

coarse and dense feature maps in Section II-B. Later, we give details of training in Sections 

II-C–II-E.

A. Designed Basic 3-D-FCN Architecture

One of the most challenging steps in adopting deep learning framework is the design of 

network architecture. The conventional FCN [26] utilize pooling operations four times 

which aims to highly abstracting the input information; however, the localization 

information could be seriously lost. We try to alleviate this problem by designing a basic 

framework to tradeoff the resolution and abstraction of input information. Inspired by 

Simonyan and Zisserman’s [32] work and Badrinarayanan et al.’s [38] work, we design our 

3-D-architecture for MR images with groups of convolutional layers and de-convolutional 

layers, as shown in Fig. 2. Note, we only have utilized pooling operation three times, and use 

smallest convolution filters 3 × 3 × 3 which are believed to be able to capture the details 

better [32]. Reducing pooling operations will definitely mitigate the loss of resolution and 

we can have more layers with the small convolution filters which will keep the abstraction of 

information. This network applies softmax loss to the top layer of the networks. As 

demonstrated by Wang et al. [39] that the complementary information from multiple 
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imaging modalities is beneficial to deal with insufficient tissue contrast, we thus feed three 

modality images as inputs to the neural network to learn complementary information from 

each other. In order to better use this complementary information, we further propose a PT 

architecture with BN procedure, as explained in detail in the following sections.

In our 3-D-FCN, the first group of layers consists of three convolutional layers (each 

containing 96 filters), followed by a pooling layer. These feature maps are fed into the 

second group of layers consisting of two convolution layers (each with 128 filters), followed 

by a pooling layer. In the third group of layers, one convolutional layer with 128 filters is 

applied, followed by a pooling layer. Note that all convolution filters are with a size of 3 × 3 

× 3, and ReLU [40] is employed as an activation function after each convolution layer. We 

use one voxel as stride and add one voxel as pad for all convolution layers.

Then, the output feature maps from the third group of layers are up-sampled through a 

deconvolution layer to the fourth layer group with 32 filters. The fifth and sixth layer groups 

are both deconvolution layers with 32 filters, following the fourth layer group. The 

deconvolution filters are all of size of 4 × 4 × 4. In addition, the last deconvolution layer 

owns four filters, which correspond to four categories such as CSF, GM, WM, and 

background. It is worth noting that, similar to many previous works [26], [32], [38], we add 

convolution layers after each deconvolution operation. Finally, we have a top layer 

consisting of the softmax units, aiming at predicting one label (out of four possible labels) 

for each voxel.

Our network minimizes the cross entropy loss between the predicted labels and the ground-

truth labels.

B. Convolution-Concatenate 3-D-FCN

With the architecture introduced in the above section, FCN actually consists of two major 

operations: down-sampling and up-sampling. The down-sampling operation streams (i.e., 

convolution and pooling) usually result in coarse and global predictions based on the entire 

input of the network; and the up-sampling streams (i.e., deconvolution) can generate dense 

prediction through finer inference. The information which reaches up-sampling layers is 

highly abstracted after series of pooling operation, and thus can easily ignore tiny-structure 

objects, especially in the 3-D image. To solve this issue, we propose to include PT 

operations in our architecture, in which we take advantage of the context information from 

the coarse feature maps of the down-sampling set of operations and copy the whole learned 

feature maps to the up-sampling layers. This is similar to the operations used in [26], U-Net 

[28], and [41]. More importantly, we provide fusion modules (extra convolutional layers in 

our case) after the concatenation layers to enhance the fusion of the low-level and high-level 

features. In this way, we pass the context information from coarse feature maps through the 

network and use them in the up-sampling phases. This operation is thus called PT. As a 

consequence, the convolution layers during the up-sampling phase can generate more 

precise outputs based on the assembled feature maps. We call this architecture as PT-3-D-

FCN.
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However, the above described combination operation cannot well deal with the feature maps 

with different numbers (i.e., the original deeper layers usually have much less feature maps 

than the shallower layers), and thus the signals from the deeper layers can be ignored during 

the fusion operation. To address it, we propose using additional convolutional layers to 

adjust the number of feature maps from lower layers to be comparable to the number of the 

corresponding higher layers. Moreover, these additional convolutional layers can also work 

as transformation modules to boost the low-level features to be complementary for the high-

level features. Note that this additional layer will not change the size of the feature maps, 

except adjusting just their numbers. The respective architecture is shown in Fig. 3, in which 

the whole PT operation is replaced by the convolution and concatenate (CC) subprocedures. 

We denote this model as CC-3-D-FCN for short. Furthermore, a BN [42] operation is 

adopted after each convolution operation to make the network easier to converge, as 

explained in more detail in the next section.

C. Batch Normalization

The training of 3-D deep learning architectures is always difficult, because it is much harder 

to converge compared to 2-D architectures [43], [44]. As we integrate lower-layer feature 

maps with high-layer ones, all these operations further increase the difficulty of network 

training because different layers have very different amplitudes [45]. And we have to 

account for this to aggregate the hierarchical feature maps. In this paper, we propose using 

BN [42] to solve this problem.

As the signals flow through our CC-3-D-FCN, the weights and parameters are applied to 

adjust these signals, which may sometimes make the signals too big or too small and may 

finally cause gradients vanishing or exploding. By normalizing the data in each mini-batch, 

this problem can be largely mitigated. Specifically, BN shifts the input signals to zero-mean 

and unit variance, and thus makes the data comparable across features. BN can regularize 

the signals from distraction to outliers and flow toward the common goal (by normalizing 

them), within the range of the mini-batch, which results in acceleration of the learning 

process.

D. Weight the Loss

In many real applications, like ours, the numbers of data samples from different categories 

are often different, and thus the distributions of the data between the sample classes are not 

balanced. This may cause over-fitting to a specific category, which is the so-called 

imbalanced data problem. To avoid this, we apply a class balance strategy during training. 

Specifically, we adopt a weighting scheme for the loss to address the class imbalance 

problem. The weighted cross entropy loss can also be formed as (4) but with (6) as the 

weight parameter (Cj is the loss weight for a specific category, and it can be given by 

inversely proportional to the fraction of samples in each corresponding category)

I y i , j =
C j, y i = j

0, y i ≠ j .
(6)
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E. Training the 3-D-FCN

As it is the case with almost every medical imaging application, the dataset used to train a 

model is often limited, while almost all deep models require a huge number of samples for 

training [31], [44]. On the other hand, 3-D-FCN usually operates on full images as inputs in 

order to have broad receptive fields. To remedy these challenges and also to train a reliable 

deep model, we perform a tradeoff between receptive field and the dataset size. Specifically, 

we extract the overlapping patches of size 32 × 32 × 32 for both original images and 

manually segmented images. To augment the number of training patches, we slide the patch 

throughout the whole image with a certain step size. In this way, we can generate a sufficient 

number of training patches.

With the deep architecture shown in Fig. 3, the total number of parameters is 2 534 276. To 

train the designed network, we initialize its network weights using Xavier algorithm [44], 

which can automatically determine the scale of initialization based on the numbers of input 

and output neurons. We also initialize the network bias with 0. Then, we do a coarse linear 

search to determine the initial learning rate and also the weight decay parameters. We further 

decrease the learning rate by ten times for a fixed step size during training. The proposed 

model is trained by backpropagation [46]. Specially, we use Caffe [47], a commonly used 

deep learning framework, with minor modification to implement our proposed method.

III. Experimental Results

In this paper, we use data containing multimodality infant brain MR images to run the 

experiments and compare our proposed method with the baseline and state-of-the-art 

methods. We will first introduce the dataset and the respective preprocessing steps, followed 

by description of evaluation metrics.

A. Multimodality Infant Brain Dataset

For this dataset, we acquired T1, T2, and diffusion-weighted MR images of 11 healthy 

infants using a Siemens 3T head-only MR scanner. Both T2 image and the FA image 

(derived from distortion-corrected DWI) were first rigidly aligned with T1 image of the 

same infant and further up-sampled into an isotropic resolution of 1 × 1 × 1 mm3. T1 images 

were acquired with 144 sagittal slices using parameters: TR/TE = 1900/4.38 ms, flip angle = 

7°, resolution 1 × 1 × 1 mm3. T2 images were acquired with 64 axial =slices using 

parameters: TR/TE = 7380/119 ms, flip angle 150° and resolution = 1.25 1.25 × 1.95 mm3. 

Diffusion-weighted MR images acquired with 60 axial slices using parameters: TR/TE = 

7680/82 ms, resolution = 2 × 2 × 2 mm3, 42 noncollinear diffusion gradients, and =b = 1000 

s/mm2; and seven nondiffusion-weighted reference scans were also acquired. We finally 

removed the skull, cerebellum and brain stem also from the aligned T2 and FA images with 

in-house tools. One example is shown in Fig. 1.

To generate manual segmentation for training, initial segmentation was first obtained with a 

publicly available infant brain segmentation software, iBEAT (http://www.nitrc.org/projects/

ibeat) [48]. Then, manual editing was carefully performed by an experienced rater according 

to T1, T2, and FA images for correcting possible segmentation errors.
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B. Evaluation Metrics and Comparison Methods

In the experiments, we focus on evaluating our proposed deep architectures for segmenting 

three types of infant brain tissues, and use Dice ratio as a performance metric

DR = 2 A ∩ B
A + B (7)

where A and B denote the binary segmentation labels generated manually and 

computationally, respectively, |A| denotes the number of positive elements in the binary 

segmentation A, and |A ∩ B| is the number of shared positive elements by A and B. We 

further evaluate the accuracy by measuring a modified Hausdorff distance (MHD) [49]. 

Supposing that C and D are the two sets of positive pixels identified manually and 

computationally, respectively, for one tissue class of a subject, the MHD can then be defined 

as

MHD C, D = max d C, D , d D, C (8)

where d(C, D) =, (1/Nc) ∑c∈C d(c, D), and the distance between a point c and a set of points 

D is defined as d(c, D) = min ∑d∈D ‖c – d‖.

To show the superiority of our proposed method, we use the following methods as 

comparison methods in the experiments.

1. FMRIB’s Automated Segmentation Tool (FAST) [50].

2. Majority Voting (MV): For the 11-subject dataset, we employed a leave-one-

strategy (for any testing image, the remaining ten subjects are used as atlases) 

and we used ANTs [51] for registration based on T1 MRI.

3. Random Forest (RF): In our implementation, for each tissue type, we randomly 

selected 10 000 training voxels for each class label from each training subject. 

Then, from the 7 × 7 × 7 patch of each training voxel, 10 000 random Haar-like 

features were extracted from all source images: T1, T2, FA images, and then we 

trained 20 classification trees. We stopped the tree growth at a certain depth (i.e., 

D = 50), with a minimum number of eight samples for each leaf node (smin = 8). 

Note that these settings have been optimized in LINKS [52].

4. RF With Auto-Context Model (LINKS) [52]: Based on the above-mentioned RF, 

we then apply the auto-context model to iteratively refine the results. 

Specifically, we not only extracted Haar-like features from all source images: T1, 

T2, and FA images, but also three probability maps of WM, GM, and CSF. And 

all the features were used to train the RF (note, it is now auto-context refined, 

and called LINKS). In each iteration, the training of model followed the RF 

settings introduced above.

5. Training CC-FCN for 2-D patches along each dimension, after which we 

perform MV for the results from different CC-FCN models (CC-2-D-FCN).
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6. 3-D-CNNs: The network shares the same three layer groups in Fig. 2, and 

followed by three fully connected layers, and the output corresponds to the 

center voxel of the input patch.

In the following sections, we will first discuss and evaluate the parameter selections as well 

as training strategies, and then present comparison with state-of-the-art methods.

C. Impact of Patch Size

Patch size plays an important role in CNN-based methods, since it regulates the tradeoff 

between localization accuracy and the use of context [35]. However, FCN-based 

architectures can mitigate the impact of patch size on the segmentation tasks [24], [28]. To 

investigate the impact of patch size in this project, we conduct several experiments using 

four different input patch sizes: 16×16 × 16, 32 × 32 × 32, and 64 × 64 × 64 for training the 

same FCN architecture shown in Fig. 3. Fig. 4 shows the respective results (i.e., Dice ratio of 

segmentation as a function of patch size).

As shown in Fig. 4, the segmentation performance is the worst with the patch size of 16 × 16 

× 16, which provides the smallest context. With the patch size of 32 × 32 × 32, the 

segmentation task obtains the best performance. It is interesting to note that the Dice ratio 

becomes slightly worse when the patch size grows. This may be due to the fact that, when 

we use larger patch size, we will have smaller available number of patches to train the 

model, thus resulting in a lower performance. The result also shows that the FCN-based 

architecture is robust to patch size when the patch size is larger than a certain value. This 

advantage roots from the fact that the localization accuracy is stable when using FCN-based 

architectures. On the other hand, when the patch size is larger, the improvement may be 

limited by the number of extracted patches. With the insight gained through this experiment, 

we set the patch size to be 32 × 32 × 32 throughout all experiments below.

D. Importance of Multimodality Information

To demonstrate the effectiveness of using multimodality data (i.e., T1, T2, and FA in our 

experiments), we run the same model for each imaging modality separately, or together. Fig. 

5 illustrates the Dice ratios of our proposed method with respect to different combinations of 

three imaging modalities. It can be seen that using more imaging modalities generally results 

in more accurate segmentations than using any single imaging modality. Moreover, using all 

three imaging modalities provides the best performance, compared to the cases of using any 

two imaging modalities. This indicates that the multimodality information is useful for 

guiding tissue segmentation. A same conclusion can also be drawn by looking into the 

experimental results on the second dataset as described below.

E. Importance of Using the Additional Convolution Before Concatenation

As described in Section II-B, we utilize an additional convolution layer on the coarse feature 

maps before concatenating them with dense feature maps. As discussed before, this layer is 

used to reduce the potential bias effect when directly copying the signals to the higher layer. 

We conduct some experiments to compare the networks with (CC-3-D-FCN) and without 

(PT-3-D-FCN) the additional convolution layer on the 11-subject dataset. All experimental 
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settings are the same except using the additional convolution layer. The experimental results 

in terms of Dice ratio are shown in Fig. 6. As can be seen, CC-3-D-FCN outperforms PT-3-

D-FCN on all three brain tissues, suggesting that the use of additional convolutional 

operations benefits the discrimination capability.

F. Importance of Batch Normalization

The proposed architecture (as shown in Figs. 2 and 3) involves information fusion from 

different modalities or sources. Information from different sources usually have different 

distributions, which could bring difficulty in training neural networks [44], [53]. Moreover, 

we combine hierarchical feature maps in our designed architecture, which further increases 

the difficulty of training. The use of BN [42] in our model plays a key role in solving this 

problem as explained below.

To show the advantage of using BN in our architecture, we present the loss on the testing 

dataset in Fig. 7. Also, we provide the performance in terms of Dice ratio with respect to 

different training strategies in Fig. 8.

The loss values obtained during the training of network as shown in Fig. 7 indicates that 3-

D-FCN + BN can decrease the loss a little bit. And our proposed method (combining 3-D-

FCN, BN, and CC) provides the lowest test loss, which confirms that the CC operation along 

with the BN can help improve the performance of neural networks. In contrast, 3-D-FCN

+CC gives the worst performance, which again shows that BN is critical in training 

networks. This is because when the data with different distributions and settings are 

incorporated from other layers, the BN operation can bring them into a same space before 

conducting the proceeding steps. The segmentation performance shown in Fig. 8 is 

consistent with our findings as discussed above for training the FCNs.

G. Impact of Network Initialization Strategies

We further explore the impact of network initialization over the network training and the 

performance of the segmentation task. Specifically, we use the following strategies to 

initialize the network, respectively, i.e., constant (0), Gaussian (0, 0.01), and Xavier [44]. All 

other settings are kept the same, and we present the convergence with different initializations 

in Fig. 9. Obviously, the “constant” initialization cannot guarantee a converged training, 

while “Gaussian” and “Xavier” initializations can both result in good convergence. As it is 

obvious, using Xavier to initialize the network leads to the best performance.

H. Impact of Pooling Layers: Pooling-Included Versus Pooling-Excluded Networks

In the FCN-based network architectures (pooling-included network, e.g., our designed 

network), pooling is an important component to increase the receptive field dramatically and 

produce invariant feature representation. However, it will also result in the loss of spatial 

information. In our designed network (Fig. 3), we propose to use a skip connection to 

aggregate the shallower (high-resolution) layers and the deeper (highly semantic) layers, 

aiming at making up the lost information. Another possible way to avoid the loss of spatial 

information is to exclude the pooling layers and include only the convolutional layers 

(pooling-excluded network). To see the importance of pooling layers, we conducted 
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comparisons between our designed network with pooling layers and two pooling-excluded 

networks.

1. Self-Designed: The network is with 11 convolutional layers, with each layer 

having 3 × 3 × 3 convolution filter (to satisfy the requirement of receptive field, 

as the input patch size is 32 × 32 × 32), but no pooling layer.

2. DeepMedic: The popular 3-D multiscale CNN (DeepMedic) [54], which was 

well-designed and showed excellent performance in lesion labeling.

The experimental results are presented in Fig. 10. The pooling-included network (our 

proposed model) works better than the other two pooling-excluded networks, indicating that 

the use of pooling-included networks with skip-connection is a better choice for our 

segmentation tasks. DeepMedic works better than the self-designed network, since 

multiscale designed network partially alleviates the insufficient receptive field problem and 

learns invariant features.

I. Impact of Upsampling Strategies

Upsampling layers (e.g., deconvolution layer in our proposed model) play an important role 

in the deep learning-based segmentation models. Thus, we conduct experiments to 

investigate different upsampling strategies.

1. “Multilinear” (using multilinear interpolation to upsample the input feature 

maps).

2. “Deconvolution” (upsampling by learning to deconvolve the input feature map) 

[26].

3. “Index-upsampling” (using the max pooling indices to upsample (without 

learning) the feature map(s) and convolve with a bank of trainable filters) [38].

Note, all the other settings are the same, except that we use different upsampling strategies 

for the comparison experiments. The comparison experimental results are shown in Fig. 11, 

indicating that deconvolution works best, and index-upsampling provides close performance 

to deconvolution, while multilinear interpolation leads to the worst results. Thus, we select 

deconvolution in our experiment.

J. Patch Merging Strategy

The CC-3-D-FCN is trained in a patch level. In the testing stage, we have to first partition a 

whole image (T1, T2, and FA) into overlapping or nonoverlapping patches, and then feed 

these patches into trained networks. The corresponding output patches are further merged to 

form a fully predicted label map. It is worth noting that the extent of patch overlapping can 

largely affect the final performance, in terms of both segmentation accuracy and 

computational complexity. We explore the extent of patch overlapping in the testing stage. 

Specifically, we extract the patches from MR images with a step size of 32 

(nonoverlapping), 16, 8, and 4. After these patches are fed into the trained model, all the 

predicted label patches from the same subject are combined into a single label image by 

averaging the label values of the overlapping image regions. The performance, in terms of 

Dice ratio and time cost, are given in Figs. 12 and 13, respectively.
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As shown by both figures (Figs. 12 and 13), the smaller the step size, the better the 

segmentation accuracy. This is because we can average over more predicted labels when the 

step size is smaller. However, small step size brings heavy work load and makes the 

computational cost increase dramatically. To this end, we conduct a tradeoff between 

computational cost and prediction accuracy, and finally select the step size as 8 for the 

testing stage.

K. Experimental Results on the First Dataset

We first conduct experiments on the first dataset containing three imaging modalities (T1, 

T2, and FA). The proposed CC-3-D-FCN is used to perform voxel-wise tissue segmentation 

with a leave-one-subject-out strategy. It takes approximately 130 h to train our designed 

neural networks on a Titan × GPU.

To qualitatively demonstrate the advantage of the proposed CC-3-D-FCN on this dataset, we 

first show the segmentation results of different tissues for a typical subject in Fig. 14.

To quantitatively evaluate segmentation performance, we use Dice ratio to measure the 

overlap ratio between automated and manual segmentation results. We report the 

segmentation performance in Table I. We can observe that CC-3-D-FCN outperforms other 

methods (p= 0.0371, performed by a paired t-test). Specifically, CC-3-D-FCN could achieve 

the average Dice ratios of 0.9269 for CSF, 0.8817 for GM, and 0.8586 for WM, from these 

11 subjects. In contrast, one of the state-of-the-art methods, i.e., RF with auto-context model 

(LINKS) [52], achieved the overall Dice ratios of 0.8896, 0.8652, and 0.8424 for CSF, GM, 

and WM, respectively.

We also provide WM surfaces obtained by different methods in Fig. 15. These WM surfaces 

qualitatively demonstrate the advantage of our proposed method, as it achieves the best 

visual results.

The MHD comparison is also shown in Table II. It can be seen again that our proposed 

method produces a competitive accuracy compared to all the state-of-the-art methods.

L. Comparison of 3-D- and 2-D-Based FCN

As medical image data is often acquired in 3-D, 3-D operations are assumed to offer better 

performance than 2-D operations. So, it is important to highlight how the 3-D architecture 

improves the performance, compared to the conventional 2-D architectures. Specifically, we 

run our model with exactly same architecture, but with all 2-D filters, and then provide 

results in Table I. As can be seen, the 3-D model performs approximately 11% better than 

the 2-D approach. This advantage comes from the fact that 3-D convolution filters can 

consider the 3-D structures, as input images are in 3-D. Thus, 3-D operations can model 

much better internal structures. Furthermore, adopting 3-D operations can avoid 

inconsistency in the third dimension of the images, which is usually a problem when simply 

applying 2-D filters to the 3-D images.

Nie et al. Page 14

IEEE Trans Cybern. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



M. Time and Computational Complexity

As the model training can be completed offline, the testing time cost is often more important 

for a segmentation task. Thus, in Table III, we provide the average time cost of segmenting 

one test subject by each segmentation approach. Note that this experiment is performed on 

the same PC with the following settings—memory: 16-GB Quad Channel DDR4; video 

card: Nvidia Titan X; processor: Intel i7–5820K; and operation system: Ubuntu 14.04. The 

running time in minutes are listed in Table III for different segmentation methods. As can be 

seen, our proposed CC-3-D-FCN method is significantly faster than any of the other 

methods.

N. Results on the Second Dataset

To show the generalization ability of our proposed 3-D-CC-FCN architecture, we further 

conduct experiments on the second large dataset with other 50 isointense-phase subjects 

which were obtained from the NIH-supported National Database for Autism Research 

(NDAR), where each subject has both T1 and T2 images, but no FA images. Fivefold cross 

validation is performed. Note that, in each fold, it takes approximately 25 h to train our 

designed neural networks on a Titan × GPU.

In Fig. 16, we show the segmentation results by different methods a typical subject in the 

second dataset. To quantitatively evaluate segmentation performance, we report Dice ratios 

in Table IV.

As shown in Table IV, our proposed CC-3-D-FCN again achieves the best performance in 

segmenting WM (0.9190±0.0085), GM (0.9401±0.0052), and CSF (0.9610±0.0090), 

compared to the state-of-the-art method [52] which uses multiscale RF and auto-context 

model to take advantage of multisource information and refine the results. Our proposed 

CC-3-D-FCN also outperforms the conventional CNN, indicating that our CC-3-D-FCN is 

more capable in this segmentation task. Furthermore, our proposed CC-3-D-FCN works 

better than CC-2-D-FCN in all three tissues, indicating that 3-D deep learning architectures 

are better for 3-D segmentation tasks than the 2-D deep learning architectures. We also 

provide WM surfaces obtained by different segmentation methods in Fig. 17, which further 

demonstrates the advantage of our proposed CC-3-D-FCN. Moreover, the MHD comparison 

is further provided in Table V, where our proposed CC-3-D-FCN produces less errors 

compared to all the state-of-the-art methods.

O. Limitation of Our Proposed Method

The main problem of our proposed method is that the segmented infant brain images are a 

little bit smooth, especially for the tissues near the boundaries, as shown in Figs. 14 and 16. 

This is mainly due to the use of convolution and pooling in the ConvNets. On the other 

hand, although we can get high localization accuracy because of using local image patch, we 

miss global context information to guide the spatial consistency of tissue segmentation. This 

is because patch size is much smaller compared to the whole image size, and thus we cannot 

use the whole image information to train our model; on the other hand, if using the whole 

image for training, the number of training images is too small to train our neural network. 

We will investigate these two issues in our future work.
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IV. Conclusion

In this paper, we have proposed CC-3-D-FCN to segment isointense-phase brain images 

with multimodality MR images. In our designed deep learning model, we integrate coarse 

layer information with dense layer information to refine the segmentation performance. We 

also propose to use an additional convolutional layer to solve the biased signals problem. 

Furthermore, we propose to employ BN to make the networks converge faster and better. We 

have also trained our CC-3-DFCN in an end-to-end and voxel-to-voxel manner to achieve 

voxel-level segmentation. With largely reduced parameters, our method is also easier and 

faster to train. We have compared our proposed method with several commonly used 

segmentation methods, along with state-of-the-art methods, and the experimental results 

show that our proposed method outperforms all comparison methods on isointense-phase 

brain segmentation, in terms of both segmentation accuracy and time cost. Moreover, our 

proposed method also presents a novel way of fusing multilayer information to better 

conduct brain tissue segmentation.
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Fig. 1. 
Multimodality MRI data of an infant subject scanned at six months old (isointense phase). 

From left to right: T1 MRI, T2 MRI, and FA image.
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Fig. 2. 
3-D-FCN architecture. Note, the number on the bottom row denotes the number of feature 

maps for the corresponding layers.
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Fig. 3. 
Proposed architecture for integration of coarse and dense feature maps (CC-3-D-FCN). 

Here, CC (blue arrow) denotes a convolution and concatenate subprocedure, which works as 

a transformation module. The convolutional layers after the concatenation layers work as 

fusion modules.
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Fig. 4. 
Changes of Dice ratios of WM, GM, and CSF on 11 isointense subjects, with respect to 

different patch sizes. Here, leave-one-subject-out cross validation is used.
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Fig. 5. 
Average Dice ratios of our proposed method with respect to different combinations of three 

imaging modalities.
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Fig. 6. 
Comparison of CC-3-D-FCN and PT-3-D-FCN.
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Fig. 7. 
Comparison of different training strategies in terms of loss on the testing dataset.
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Fig. 8. 
Average Dice ratios of our proposed method with different training strategies.
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Fig. 9. 
Comparison of different initialization strategies in the proposed model. (a) Convergence 

situation. (b) Segmentation performance.
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Fig. 10. 
Comparison between pooling-included network and pooling-excluded networks (self-

designed and DeepMedic).
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Fig. 11. 
Segmentation performance with respect to the use of different upsampling strategies for the 

proposed model.
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Fig. 12. 
Changes of Dice ratios of WM, GM, and CSF on 11 isointense subjects, with respect to 

different step size at the testing stage. Leave-one-subject-out cross validation is used.
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Fig. 13. 
Changes of average time cost of tissue segmentation for one subject, with respect to different 

step size at the testing stage.

Nie et al. Page 34

IEEE Trans Cybern. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
Comparison of segmentation results by different methods, along with manual ground truth 

on a typical infant subject as shown in Fig. 1. The Dice ratios for WM, GM, and CSF are 

listed below each method, respectively.
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Fig. 15. 
Comparison of WM surfaces obtained by different methods on a typical subject shown in 

Fig. 1.
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Fig. 16. 
Comparison of segmentation results by baseline comparison methods and our proposed 

CC-3-D-FCN, along with manual ground truth, on a typical subject in the second dataset. 

The Dice ratios for WM, GM, and CSF are listed below each method, respectively.

Nie et al. Page 37

IEEE Trans Cybern. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 17. 
Comparison of WM surfaces obtained with different methods on a typical subject (of the 

second dataset) shown in Fig. 16.
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TABLE I

Segmentation Performance in Terms of Dice Ratio and Standard Deviation, Achieved by the Baseline 

Comparison Methods and Our CC-3-D-FCN on 11 Subjects. The Highest Performance in Each Tissue Class Is 

Highlighted in Bold

WM GM CSF

FAST .4641(.0791) .4045(.0979) .5636(.2334)

MV .5729(.0327) .7099(.0412) .7160(.0386)

RF .8236(.0164) .8420(.0126) .8607(.0170)

LINKS .8424(.0183) .8652(.0154) .8896(.0251)

DeepMedic [54] .8458(.0150) .8608(.0158) .9196(.0210)

3D-UNet [55] .8418(.0161) .8680(.0172) .9012(.0225)

CC-2D-FCN .7583(.0215) .8146(.0115) .8586(.0101)

3D-CNN .8262(.0242) .8413(0.0329) .8999(.0269)

CC-3D-FCN .8586(.0139) .8817(.0158) .9269(.0201)
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TABLE II

Segmentation Performance in Terms of MHD and Standard Deviation, Achieved by the Baseline Comparison 

Methods and Our CC-3-D-FCN on 11 Subjects. The Highest Performance in Each Tissue Class Is Highlighted 

in Bold

WM GM CSF

FAST 1.7052(.0092) 1.0083(.0269) 1.8276(.0882)

MV 1.7204(.4780) 1.1840(. 1639) 1.9323(.2075)

RF .6837(.0893) .5625(.0502) .4624(.0669)

LINKS .5659(.0794) .4827(.0460) .3321(.0426)

DeepMedic [54] .5154(.0540) .4878(.0414) .3621(.0495)

3D-UNet [55] .5951(.0488) .4420(.0415) .3630(.0488)

CC-2D-FCN .7773(.1907) .6011(.1082) .5379(.1210)

3D-CNN .5802(.1386) .4967(.0839) .3561(.0817)

CC-3D-FCN .3423(.0358) .3108(.0256) .3230(.0788)
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TABLE IV

Segmentation Performance in Terms of Dice Ratio and Standard Deviation, Obtained by the Baseline 

Comparison Methods and Our Proposed CC-3-D-FCN on 50 Subjects. The Highest Performance in Each 

Tissue Class Is Highlighted in Bold

WM GM CSF

FAST .4358(.0903) .4523(.1397) .4213(3282)

MV .6104(.0163) .7300(.0196) .5194(.0316)

RF .8290(.0150) .8774(.0059) .9231(.0127)

LINKS .8971(.0074) .9241(.0043) .9420(.0074)

DeepMedic [54] .8943(.0088) .9265(.0051) .9484(.0086)

3D-UNet [55] .8907(.0087) .9228(.0049) .9465(.0095)

CC-2D-FCN .7861(.0240) .8615(.0080) .8846(.0177)

3D-CNN .8336(.0177) .8702(.0070) .9051(.0168)

CC-3D-FCN .9190(.0085) .9401(.0052) .9610(.0090)
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TABLE V

Segmentation Performance in Terms of MHD and Standard Deviation, Obtained by the Baseline Comparison 

Methods and Our Proposed CC-3-D-FCN on 50 Subjects. The Highest Performance in Each Tissue Class Is 

Highlighted in Bold

WM GM CSF

FAST 1.7161(.2884) 1.0184(.3712) 1.1053(.5241)

MV 1.4101(.0841) 1.0962(.2187) 1.3438(.6356)

RF .7757(.0571) .6513(.0321) .3090(.0250)

LINKS .4515(.0217) .3961(.0108) .2565(.0282)

DeepMedic [54] .4601(.0303) .3990(.0210) .2736(.02922)

3D-UNet [55] .4948(.0230) .4003(.0119) .2285(.0187)

CC-2D-FCN .8424(.0373) .8766(.0424) .9300(.0138)

3D-CNN .6867(.0443) .6912(.0576) .7401(.0756)

CC-3D-FCN .3676(.0223) .3530(.0110) .1890(.0122)
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